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Abstract. Vision-assisted surface defect detection technology is shallowly applied in crack 
identification of assembly building components, for this reason, the study proposes a crack 
identification and defect detection method for assembly building components oriented to 
intelligent construction. An image preprocessing algorithm is designed by improving bilateral 
filtering, on the basis of which an image classification model is constructed using the GhostNet 
algorithm, and the cracks are localized and measured using the 2D pixel positioning technique. 
Algorithm validation showed that the processed image denoising is better, and the peak signal-to-
noise ratio of the image of the proposed algorithm is improved by 15.701 % and 2.395 %, 
respectively, compared to other algorithms. The F1 value of the proposed model after 50 training 
rounds increased by 20.970 % on average compared to other models, and the detection accuracy 
was as high as 0.990. The actual measurements of cracks in concrete wall panels revealed that the 
research-proposed method has better results compared to the traditional manual measurements, 
and is not subject to the limitations and interferences of factors such as manual experience, and it 
is more effective in the recognition of crack images. Overall, the detection method proposed by 
the study has high accuracy and small error, can meet the needs and standards of crack detection 
in assembly building components, and can intelligently locate the maximum length and width 
coordinates of the cracks, which is of high value in the application of crack detection in assembly 
building components. 
Keywords: assembled buildings, surface crack detection, 2D code localization, image 
classification, image preprocessing. 

Nomenclature 

AB Assembled buildings 
D-D Defect detection 
CR Crack recognition 
ABCC Assembled building construction cracking 
IC Image classification 
CNN Convolutional neural network 
BF Bilateral filtering 
CIP Crack image pre-processing algorithm 
HE Histogram equalization 
GV Gray value 
QR Code Quick response code 
PSNR Peak signal to noise ratio 
SSIM Structural similarity 
BM3D Block matching 3D 
ABCCD Assembled building construction cracking dataset 
ROC Recipient operating characteristics curves 
FPR False positive rate 
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TPR True positive rate 

1. Introduction 

As a result of the construction industry’s modernization and transformation brought about by 
advancements in industrial technology, the Assembled Buildings (AB) sector has improved. 
Unlike the inefficiency of traditional construction methods, AB transfers the on-site operational 
work to factories and transports the components and fittings required for the building to the 
construction site for assembly and installation after processing and fabricating them [1-3]. Quality 
control is an important part of AB, and it is the cornerstone of building application value. 
However, current ABs frequently exhibit surface cracks, and traditional manual defect detection 
(D-D) is subject to human subjectivity and is difficult to achieve detection efficiency [4-5]. The 
advancement of computer vision technology offers a fresh approach to this issue. Scholars at home 
and abroad have applied D-D methods based on vision technology to various industrial fields, 
which have greatly improved the efficiency and accuracy of industrial D-D [6-7]. However, most 
of the current research focuses on small and medium-sized products, and there are fewer D-D 
methods for large industrial products such as AB components, and they cannot be directly applied 
in Crack Recognition (CR) and D-D of AB components, which have lower accuracy in 
recognizing component cracks. Therefore, the study proposes an intelligent construction-oriented 
Assembled Building Construction Cracking (ABCC) recognition and D-D method. By designing 
an image preprocessing algorithm to preprocess the crack image, and constructing an Image 
Classification (IC) model to extract and measure the cracks by using traditional digital image 
processing techniques, on the basis of which the dimensional measurement of cracks is realized 
by using 2D pixel calibration technique. The overall structure of the study consists of four parts: 
in the first part, the research results and shortcomings of domestic and international research on 
ABCC recognition and detection are summarized. In the second part, the ABCC recognition and 
D-D method combined with intelligent construction-oriented is studied and designed. In the third 
part, the proposed CR and D-D methods are experimented and analyzed. In the fourth part, the 
experimental results are summarized and future research directions are indicated. 

2. Related works 

Scholars domestically and internationally have conducted several studies on the vision-assisted 
D-D approach due to its widespread application in a variety of industries due to the ongoing 
advancements in automation technology. Jing et al. proposed a Convolutional Neural Network 
(CNN) incorporating depth-separable convolution to realize end-to-end defect segmentation in 
order to improve the actual fabric production efficiency and product quality in factories, thus 
improving the segmentation accuracy and detection speed [8]. For digital agriculture, increasing 
the product yield has emerged as a contemporary challenge. In order to detect cherries with 
varying degrees of ripeness in the same area and increase yield, Gai et al. proposed an enhanced 
YOLO-V4 deep learning model by adding a network to the YOLO-V4 backbone network, 
CSPDarknet53 network, and incorporating the DenseNet interlayer density [9]. Bergmann et al. 
designed an MVTec dataset for anomalous structures in natural image data and comprehensively 
evaluated it using an unsupervised anomaly detection method on the basis of a deep architecture, 
thus realizing pixel-accurate ground-truth annotations for all anomalies [10]. Chun proposed an 
automatic crack detection method incorporating image processing on the basis of optical gradient 
lifter, thus realizing photo detection of concrete structures under unfavorable conditions such as 
shadows and dirt with 99.7 % accuracy [11].  

Crack defects on the surface, as the most common defect problem in the industrial field, are 
difficult to meet the high requirements of efficiency and accuracy by traditional detection means, 
for which scholars at home and abroad have explored them in various aspects. Ni et al. proposed 
an attentional neural network for D-D of rail surface by centroid estimation consistency guided 
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jointly by intersections for the problem of D-D of rail surface subject to complex background 
interference and severe data imbalance, thus obtaining higher regression accuracy than the existing 
inspection techniques [12]. Ngaongam et al. employed piezoelectric discs for crack location 
amplitude detection based on thermoelastic damping analysis in order to optimize the vibration 
frequency that produces the maximum temperature difference between the crack location and the 
non-defect location. They discovered that high amplitude did not increase the temperature 
difference between the crack and non-defect location after optimization [13]. Due to the difficulty 
of illumination, the visual inspection techniques for defects in industry cannot fully reflect the 
defects on smooth surfaces, for this reason Tao et al. proposed a D-D for laptop panels, which 
utilizes phase-shifted reflective fringes to obtain parcel phase maps for detection, and an improved 
network on the basis of deep learning for recognition [14]. Qiu et al. proposed an effective 
framework consisting of an image registration module and a D-D module for the high reflectivity 
and various defect patterns on metal surfaces, and constructed the D-D module using an image 
differencing algorithm with a priori constraints based on the algorithm of double weighted 
principal component analysis [15]. Aiming at the traditional visual crack detection method which 
is highly subjective and influenced by the staff, E. Mohammed Abdelkader proposed a new 
adaptive-based method. Global context and local feature extraction is performed by an improved 
visual geometric group network and structural optimization is performed using K-nearest neighbor 
and differential evolution. The method achieved good results in terms of overall accuracy as well 
as Kappa coefficient and Yoden index [16]. X. Chen et al. In order to solve the problem that the 
measurement accuracy of 3D laser scanner has limitations for 3D crack detection methods based 
on point cloud, an automatic crack detection method fusing 3D point cloud and 2D images was 
proposed. Coarse extraction of crack images was performed by the improved Otsu method and 
finely proposed using connected domain labeling and morphological methods, which resulted in 
an experimental result of AP89.0 % [17]. 

When the aforementioned information is combined, it becomes clear that as automation 
continues to advance, vision-assisted inspection technology has been thoroughly researched across 
a number of industries, particularly in the area of industrial D-D. However, with the continuous 
development of intelligent construction, there are fewer ABCC recognition and D-D studies 
oriented to this field, and the existing research methods cannot be directly applied in AB scenarios. 
In addition, D-D for AB requires higher accuracy than traditional buildings, and the D-D 
application environment and so on are even more affecting the development prospect of intelligent 
buildings. Therefore, the study proposes an ABCC recognition with D-D method. An image 
preprocessing algorithm is designed based on improved Bilateral Filtering (BF), and the GhostNet 
algorithm is used to construct an IC model to extract and measure the cracks. Meanwhile, the 
study innovatively designed an AB-oriented 2D pixel calibration technique to locate and size the 
cracks, with a view to promoting the value of vision-assisted D-D in smart construction. 

3. Assembled building construction cracking identification and defect detection method 
design 

A CR and detection method is proposed for component surface cracks in AB. A Crack Image 
Pre-processing (CIP) algorithm is designed and the IC model is constructed using traditional 
digital image processing techniques. Finally, a 2D pixel calibration technique is introduced to 
realize ABCC recognition with D-D. 

3.1. CIP algorithm based on improved bilateral filtering 

Before crack identification, preprocessing the image is frequently required to guarantee image 
quality. Therefore, the study proposes a BF-based CIP algorithm. Firstly, the Retinex algorithm is 
used for image enhancement, the improved BF is used for image denoising, and finally the 
Histogram Equalization (HE) and Laplace correction are combined for image detail enhancement 
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[18-20]. Among them, Retinex algorithm, as an image enhancement algorithm with a color 
recovery factor, it can well achieve image color enhancement, image defogging, and color image 
recovery [21-22]. Its main principle is shown in Fig. 1. 

 
Fig. 1. Retinex schematic 

Eq. (1) displays the Retinex algorithm’s mathematical expression: 𝐽 𝑥,𝑦 = 𝑃 𝑥,𝑦 𝑄 𝑥,𝑦 ,log𝑃 𝑥,𝑦 = log𝐽 𝑥,𝑦 − log𝑄 𝑥,𝑦 . (1)

where, 𝐽(𝑥,𝑦) denotes the observer or observation main viewpoint, 𝑃 denotes the reflected object. 𝑄 denotes the incident light, and 𝑥 and 𝑦 denote the coordinate values. In order to obtain the 
enhanced image, the incident image is replaced and then calculated using Gaussian filtering. And 
the specific mathematical expression formula is shown in Eq. (2): 𝐷(𝑥,𝑦) = 𝐽(𝑥,𝑦) ⋅ 𝐹(𝑥,𝑦),𝐹(𝑥,𝑦) = 𝑘 ⋅ exp −𝑥 + 𝑦𝛿 , (2)

where, 𝐷(𝑥,𝑦) denotes the Gaussian filtered processed image and 𝐹(𝑥,𝑦) denotes the Gaussian 
function. 𝑘 denotes the normalization parameter of the Gaussian function and 𝛿 denotes the scale 
parameter of the Gaussian function. However, the Gaussian function will make the image blurrier 
and at the same time compress the dynamic range of the image. Therefore, the study utilizes 
Gaussian filtering with different parameters to process the image separately and then generates 
the output image by weighted summation. In practical detection, the output image often has 
various background noises, and further denoising of the image is required. However, the 
traditional BF apparatus does not meet the requirement of AB to construct crack-preserving edges. 
Therefore, the study innovatively utilizes the segmentation function to improve the gray scale 
kernel function of BF. According to the constructed threshold and normalized Gray Value (GV), 
the improved gray kernel function is shown in Eq. (3): 

⎩⎪⎨
⎪⎧𝐻 = 0,     Δ ≥ 𝐴,exp − 𝑔 − 𝑔2𝜔 ,
Δ = 𝑔 − 𝑔𝑁 ,    𝐴 = exp(−𝜕), (3)

where, 𝐴 denotes the threshold value, Δ denotes the absolute value of the difference between the 
GV of the center pixel point and the GV of the neighboring pixel points normalized. 𝜕 denotes the 
standard deviation of the image, 𝑁 denotes the number of gray levels of the image, and 𝐻  is the 
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grayscale kernel function. 𝑔  and 𝑔  denote the GV of the image pixel points 𝛼 and 𝛽, 
respectively, and 𝜔  denotes the gray level difference. Improving the grayscale kernel function 
does not completely guarantee that the strong noise in the background of the image is completely 
removed, so the study uses the difference between the strong noise and the pixel values of the 
nearby points as the basis for the establishment of the regional similarity model. Eq. (4) displays 
the precise calculation formula: 

𝐷(𝑥,𝑦) = ∑ exp −‖𝛼 (𝑥,𝑦) − 𝛼 (𝑖, 𝑗)‖2𝜔( , )∈ |𝑆| , (4)

where, 𝛼 (𝑥,𝑦) denotes the pixel value of any pixel point in the image and |𝑆| denotes the number 
of all pixel points in the region. 𝜔  denotes the gray level difference within the region, 𝛼 (𝑖, 𝑗) is 
the pixel value of any pixel point in the neighborhood, and 𝑖 and 𝑗 denote the pixel coordinates. 
In the meantime, the model is further deduced, and Eq. (5) illustrates the primary procedure: 

𝐷(𝑥,𝑦) = ∑ exp −‖𝛼 (𝑥,𝑦) − 𝛼 (𝑖, 𝑗)‖2𝜔( , )∈ |𝑆| < exp −12( , )∈ . (5)

The study uses median filtering to remove the strong noise obtained from modeling 
calculations. Median filtering is able to pick out the strong noise in the image before processing, 
while still retaining the image details with high GV. Eq. (6) displays the formula for its specific 
expression: 𝑅(𝑥,𝑦) = 𝑀𝑒𝑑𝑖𝑎𝑛 𝐵(𝑥,𝑦) ,     (𝑥,𝑦) ∈ 𝐴, (6)

where, (𝑥,𝑦) is the strong noise point and 𝐵(𝑥,𝑦) is the pixel value of all pixel points centered 
on (𝑥,𝑦) within the median filter. Since the contrast of the crack image is reduced after Retinex 
and improved BF processing, and the smooth image is not conducive to perform CR with D-D 
with high accuracy requirements, the study utilizes the HE technique with Laplace correction to 
sharpen the output image. Using a set of rules, the HE approach redistributes the image’s pixel 
values based on the original image histogram. And the transformation is mainly carried out with 
the cumulative distribution function [23-24]. The specific expression formula is shown in Eq. (7): 

ℜ = 𝐴(𝑟 ) = 𝛼 (𝑟 ) = 𝑛𝑛 , (7)

where, ℜ  denotes the gray level after transformation, 𝐴(𝑟 ) denotes the transformation function, 
and 𝑟  denotes the gray level before transformation. 𝑛 denotes the total pixels in the image and 𝛼 (𝑟 ) denotes the GV of a level of the original image. The Laplace correction judges the gray 
level change of the pixel point to be calculated based on the gradient value of the gray level of the 
pixel point calculated with its 8 neighbors, and it has some stability in image rotation. The 
expression formula of the Laplace correction in the domain is shown in Eq. (8): ∇ 𝑔 = 8𝑔(𝑥,𝑦) − 𝑔(𝑥 − 1,𝑦 − 1) − 𝑔(𝑥 − 1,𝑦 + 1) − 𝑓(𝑥 − 1,𝑦) − 𝑔(𝑥 + 1,𝑦)      −𝑔(𝑥,𝑦 − 1) − 𝑔(𝑥,𝑦 + 1) − 𝑔(𝑥 + 1,𝑦 − 1) − 𝑔(𝑥 + 1,𝑦 + 1),  (8)

where, ∇ 𝑔 denotes the Laplace value. According to the Laplace calculated value, the final image 
sharpening value can be further obtained as shown in Eq. (9): 
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𝑙(𝑥,𝑦) = 𝑔(𝑥,𝑦) − ∇ 𝑔,     ∇ 𝑔 < 0,𝑔(𝑥,𝑦) + ∇ 𝑔,     ∇ 𝑔 > 0, (9)

where, 𝑙(𝑥,𝑦) denotes the sharpening result value. Combining the aforementioned, Fig. 2 depicts 
the flow of the CIF algorithm suggested in the study. 

 
Fig. 2. CIF algorithm flowchart 

The effectiveness of industrial camera equipment to capture cracks in AB members is limited 
by a number of factors, and image enhancement is performed by Retinex to filter out the effect of 
light on the pictures. On this basis, image denoising is performed using improved BF and image 
contrast is improved using a hybrid image detail enhancement method of HE and Laplacian. The 
CIF is a combination of several algorithms, which maximizes the retention of the edges of the 
cracks in the building components while feature extraction and preprocessing of the graphic, 
facilitating the subsequent recognition and D-D. 

3.2. Detection method combining CIP algorithm and image classification modeling 

To effectively improve the recognition of ABCC and the accuracy of D-D, the study utilizes 
the traditional digital image processing techniques to construct the IC model, and combines the 
CIP algorithm as well as the two-dimensional code pixel size calibration method to perform CR 
and D-D. Since the traditional image segmentation algorithms are not able to achieve effective 
segmentation of the coarsely extracted cracks, and undifferentiated local thresholding will reduce 
the segmentation efficiency. Therefore, the study utilizes the IC algorithm based on overlapping 
sliding windows to construct the IC model, as shown in Fig. 3. 

 
Fig. 3. Image classification modeling process 

Considering that high resolution images generate many sub-image blocks after sliding window 
image cropping, common CNN algorithms cannot meet the requirement of efficient detection, so 
the lightweight network GhostNet is utilized as the algorithm for CR. GhostNet can obtain feature 
images with more semantics at a smaller cost, and its convolution formula is shown in Eq. (10): 
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𝐶𝑀 = 𝑍, (10)

where, 𝐶  denotes the initial convolution, 𝑀 denotes the convolution kernels in the first part, and 𝑍 denotes the convolution multiplier. Combining the above, the IC model for CR with 
measurement is shown in Fig. 4. 

 
Fig. 4. Crack identification and measurement process 

The crack image coarsely extracted using the CIP algorithm is shown in Fig. 4(a), and the 
recognition result obtained by GhostNet on the cropped sub-image blocks is shown in Fig. 4(b). 
Fig. 4(c) displays the biplot that was produced by segmenting the cracks using Otsu threshold 
segmentation based on this recognition result. The skeleton of the fracture that was discovered by 
further honing the binary map is displayed in Fig. 4(d). Finally, the pixel dimensions of the cracks 
are calculated and converted to the actual physical dimensions to obtain the measured result map 
as shown in Fig. 4(e), and the place where the maximum width of the crack is located is marked. 
Therefore, the flow of the CR and D-D method designed based on the CIP algorithm and IC model 
is shown in Fig. 5. 

 
Fig. 5. Crack identification and defect detection method flow 

The study utilizes Quick Response Code (QR Code) to calibrate the pixel dimensions and 
transforms the pixel dimensions into physical dimensions based on the results of the calibration. 
QR Code can hold more information than traditional barcodes and has high reliability [25-26]. 
The study utilizes QR Code technology for crack size calibration, encoding, recognition and 
localization of QR code through Python open source library and erasing the QR code after 
completing the localization using hydrodynamics based image patching algorithm. According to 
QR Code imaging, when the image plane is parallel to the reference plane, the conversion formula 
of pixel size to physical size is shown in Eq. (11): 
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ℏ = 𝜒𝛾, (11)

where, 𝜒 denotes the actual physical size of the target in mm, ℏ denotes the conversion ratio, and 𝛾 denotes the pixel size of the target in pixel. At the same time, considering the practical industrial 
application environment, the study utilizes the target method for pixel size calibration, and uses 
the customized QR Code label as the reference. And the edge length of each side is calculated 
based on the four corner coordinates of the QR Code, and the average value of the edge length is 
utilized to reduce the bias generated by the shooting tilt. As a result, the imaging method of QR 
Code is shown in Fig. 6. 

 
a) Theoretical parallel 

 
b) Physical inclination 

Fig. 6. Schematic diagram of QR code imaging 

According to the schematic diagram of the four corners and four edges of the QR Code in 
Fig. 6(a) and the calculated coordinates of the four corners, the imaging dimensions of the four 
edges of the QR Code are further calculated by using the Euclidean distance formula, and the 
mathematical formula is shown in Eq. (12): 

⎩⎪⎪⎨
⎪⎪⎧𝛾 = (𝑦 − 𝑦 ) + (𝑥 − 𝑥 ) ,𝛾 = (𝑦 − 𝑦 ) + (𝑥 − 𝑥 ) ,𝛾 = (𝑦 − 𝑦 ) + (𝑥 − 𝑥 ) ,𝛾 = (𝑦 − 𝑦 ) + (𝑥 − 𝑥 ) ,

 (12)

where, 𝜂, 𝜄, 𝜅 and 𝜆 denote the four sides of QR Code, respectively. To minimize the deviation in 
imaging size caused by the offset of the shooting viewpoint, this study calculates the pixel size by 
taking the average value of the four sides of the QR Code, as shown in Eq. (13): 

𝛾 = ∑ 𝛾4 . (13)

In addition, the study used Peak Signal to Noise Ratio (PSNR) and Structural Similarity 
(SSIM) as the image quality evaluation formulas for evaluating the CIP algorithm [27-29]. 
Eq. (14) displays the formula for calculating PSNR: 

⎩⎪⎨
⎪⎧𝑀𝑆𝐸 = 1𝐻𝑊 × 𝑂(𝑖, 𝑗) − 𝑜(𝑖, 𝑗) ,
𝑃𝑆𝑁𝑅 = 10 × lg 255𝑀𝑆𝐸 ,  (14)
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where, 𝑂(𝑖, 𝑗) is the original grayscale image and 𝑜(𝑖, 𝑗) is the image processed by the algorithm 
after adding noise. 𝐻 denotes the height of the image and 𝑊 denotes the width of the image. The 
SSIM calculation formula is shown in Eq. (15): 

𝑆𝑆𝐼𝑀(𝑂, 𝑜) = (2𝑢 𝑢 + 𝐶 )(2𝑣 + 𝐶 )(𝑢 + 𝑢 + 𝐶 )(𝑣 + 𝑣 + 𝐶 ), (15)

where, 𝑢  denotes the mean value of the original grayscale image and 𝑢  denotes the mean value 
of the processed image. 𝑣  and 𝑣  denote the respective variances, 𝑣  denotes the covariance of 
the two images, and 𝐶  denotes the gray level function of the image. 

4. Assembled building construction cracking identification and D-D method validation 

The PSNR and SSIM values of the proposed CIP algorithm are first validated in order to 
confirm the efficacy of the suggested ABCC identification with D-D approach of the study. 
Secondly, the proposed IC model was further validated in terms of accuracy, precision, and recall. 
Finally, crack measurement experiments were conducted using the proposed detection method. 

4.1. CIP algorithm validation 

The entire validation process of the crack identification and defect detection method for 
assembled building components is shown in Fig. 7. The study compared the performance of 
various filtering algorithms using Matlab R2015a software in order to guarantee the dependability 
of the CIP method. Among them, the specific comparison results for Crack 1 are shown in Fig. 8. 

 
Fig. 7. Experimental validation process 

Fig. 8(a) displays the original ABCC image, while Fig. 7(b) illustrates the impact of cracks 
with the inclusion of noise. When Fig. 8(c) and 8(d) are compared, it is evident that the image has 
a lot of noise and that the denoising effect achieved following preprocessing using the 
conventional BF method is not sufficient. Additionally, the end borders of the cracks are not well 
preserved. In order to further confirm the superiority of the CIP algorithm, the study further 
compares the processing results of different filtering algorithms in multi-crack images. This is 
specifically shown in Fig. 9. 

As can be seen from the comparison in Fig. 9, the CIP algorithm is superior in image 
processing of multiple cracks. Overall, the CIP algorithm proposed by the study eliminates a lot 
of noise from the processed image compared with the traditional method, and presents GV close 
to the original image, and is superior in crack edge processing. Meanwhile, the study introduced 
wavelet transform and Block Matching 3D (BM3D) to compare the processing effect. 
Additionally, Table 1 displays the comparison results. 
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a) Original picture of the crack 

 
b) Crack plus noise picture 

 
c) Bilateral filtering 

 
d) CIP 

Fig. 8. Comparison of crack image preprocessing effects 

 
a) Original picture of the crack 

 
b) Crack plus noise picture 

 
c) Bilateral filtering 

 
d) CIP 

Fig. 9. Comparison of the effect of multi-crack image processing 

Table 1. Comparison of the evaluation results of the four methods 
Method PSNR (dB) SSIM 

Bilateral filtering 14.36 0.25 
CIP 30.36 0.80 

Wavelet transform 26.24 0.46 
BM3D 29.65 0.71 

In Table 1, the processed image is better if the measurement indicator’s PSNR value is higher, 
and the noise reduction impact is greater if the SSIM value is closer to 1. Comparing the four 
methods, it can be seen that CIP has the highest PSNR and SSIM values, which indicates that the 
effectiveness of the CIP algorithm is better. The PSNR value of CIP is improved by 111.421 % 
compared to conventional BF. The SSIM value of CIP is increased by 73.913 % and 12.676 % 
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compared to wavelet transform and BM3D algorithms respectively. This indicates that the CIP 
algorithm is able to maintain the image clarity of AB constructed cracks as well as retain the edge 
details of the cracks, while effectively removing the interference of background noise and 
improving the image processing effect, which is conducive to the improvement of the subsequent 
recognition and detection accuracy of the image cracks. 

4.2. Image classification model validation 

An Assembled Building Construction Cracking Dataset (ABCCD) for IC model training and 
evaluation was created utilizing the CIP and overlapping sliding window algorithms in order to 
verify the performance of the suggested IC model. Firstly, the smart phone is used to collect the 
crack images, and the collected crack images are preprocessed, and the images are classified with 
the labels of “crack” and “background”, and finally 20,000 crack images and background images 
are obtained respectively. Finally, 20000 crack images and background images are obtained 
respectively, and the dataset is divided into test set, validation set and training set according to the 
ratio of 1:1:8 for experiments. Fig. 10 displays the variations in the loss values after 50 iterations 
of experimental training. 
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Fig. 10. Loss values and performance variation of image classification models 

The model’s loss value steadily stabilizes at the start of the tenth training cycle, as seen in 
Fig. 10(a), where the model’s loss in the training set changes in a declining pattern as the number 
of training rounds increases. In comparison to the training set, the model’s overall loss value drops 
and its change in loss value is very variable in the validation set. In Fig. 10(b), the recall rate rises 
as the number of training rounds increases and steadily stabilizes at 25 training rounds, whereas 
the precision rate of the model varies less as the number of training rounds increases. In the 
meantime, the study further contrasts the performance of the suggested model with that of the 
already accepted IC model; the comparison's findings are displayed in Fig. 11. 

Fig. 11(a) shows the comparison of the Recipient Operating Characteristics (ROC) curves of 
the three models, with False Positive Rate (FPR) in the horizontal coordinate and True Positive 
Rate (TPR) in the vertical coordinate. The comparison shows that the ROC curve of the model 
proposed in the study has a better TPR score than the other two models, while the curve of the 
CNN is closer to the test curve, which indicates that the FPR of the CNN is higher. In Fig. 11(b), 
with the increase of training rounds, the F1 values of all three models show an increasing trend, 
among which the research-proposed IC model has the highest F1 value, which is as high as 
98.972 % after 50 rounds of training, which is an increase of 27.457 % and 14.482 % than the 
other two models, respectively. It indicates that the IC model proposed in the study is more 
effective than the single algorithm IC in CR and detection, and it has more applications in ABCC 
recognition and D-D. 
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Fig. 11. Performance comparison of different image classification models 

Table 2. Comparison of detection performance and results of different methods 

Method 
AP (%) mAP 

(%) 
Confidence 

level 
Confidence 

interval FPS Test 
set 

Validation 
set 

Training 
set 

CNN 84.85 72.80 71.63 76.43 0.94 (69.11, 83.74) 26.60 
GhostNet 89.34 78.49 87.54 85.12 0.94 (79.31, 94.94) 36.70 

IC 94.87 88.76 93.21 92.28 0.95 (89.12, 95.44) 35.60 

The performance validation results of the three methods on the ABCCD dataset are shown in 
Table 2. Where AP is the average precision, nAP denotes the mean average precision, and FPS 
denotes the number of transmitted frames per second. It can be seen that the mAP value of IC is 
92.28 %, which is 20.74 % and 8.41 % more than the other two models, respectively, which 
indicates that IC has better crack recognition in the ABCCD dataset. Comparing the sensitivity of 
the three methods, it can be seen that the FPS value of IC is 35.60, which is lower than GhostNet 
but increased by 37.97 % than CNN. Therefore, IC is able to recognize the component cracks 
better while ensuring crack recognition. In addition, the confidence level of IC detection is 0.95 
and its confidence interval is (89.12, 95.44), which indicates that the proposed method has some 
feasibility in component crack recognition and detection, and the study utilizes the ABCCD 
dataset for the model performance validation with reliability. 

4.3. Experimental validation of crack measurements 

To verify the validity and practicability of the CR and D-D methods proposed in the study, the 
study conducted crack measurement experiments based on the ABCCD dataset. Firstly, three 
concrete walls of the same type as ABCC were selected as the experimental materials, and the QR 
Code size was set to 25×25 mm2 as shown in Fig. 12. 

 
a) Crack A 

 
b) Crack B 

 
c) Crack C 

Fig. 12. Image of the crack to be detected 

Fig. 12(a), (b) and (c) show three selected concrete wall panel cracks, which are named as 
Crack C, Crack B and Crack A respectively in order, with the same naming sequence of QR Code 
tags. Based on the image of the cracks to be tested in Fig. 12, they were image preprocessed using 
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the CIP algorithm proposed in the study, followed by identification and detection using the IC 
model. The results of the maximum length and width detection of all cracks compared with the 
actual measurements are shown in Table 3. 

Table 3. Crack maximum length and width detection results 

Crack 
number 

Calibration 
ratio 

(mm/pixel) 

Maximum length Maximum width 

Pixel 
Calculated 

value 
(mm) 

Measured 
value 
(mm) 

Absolute 
error 
(mm) 

Relative 
error 
(%) 

Pixel 
Calculated 

value 
(mm) 

Measured 
value 
(mm) 

Absolute 
error 
(mm) 

Relative 
error 
(%) 

Crack 
A 0.019 4319.000 80.331 75.000 5.331 7.108 45.000 0.837 0.800 0.037 4.625 

Crack 
B 0.018 5060.000 89.564 85.000 4.564 5.369 30.000 0.531 0.500 0.031 6.200 

Crack 
C 0.017 6041.000 101.490 95.000 6.490 6.832 28.000 0.470 0.440 0.030 6.818 

In Table 3, the differences between the CR and D-D methods proposed by the study and the 
actual measurements are small, and the relative errors of the maximum length of the three cracks 
are in the range of 4.564 %-6.490 %, while the relative errors of the maximum width are in the 
range of 4.625 %-6.818 %. This indicates that the detection method proposed by the study is more 
reliable and similar to the actual measurement results. Overall, the detection accuracy of the CR 
and D-D methods proposed by the study is better and with less error from the actual, which can 
satisfy the D-D of ABCC and also reduce the limitations of external conditions such as manual 
inspection. In terms of locating the maximum length and width of cracks, the detection method 
proposed by the study is more superior and more accurate in locating the maximum crack point. 

5. Discussion 

The study explored for ABCC and the experimental validation showed that the CIP algorithm 
has superior denoising effect in image processing, and the proposed CR and D-D method has a 
high value of application in AB. The study by N. Safaei et al. also confirmed that denoising crack 
images can improve the recognition accuracy of crack images [30]. And the strategy of 
M. Woźniak and K. Woźniak to localize crack images using QR technique further confirms the 
feasibility of studying the introduction of QR technique in surface CR and D-D method [31]. 
However, it was found that the detection method can only be used for crack identification and 
detection if the planar shot is parallel to the build, but in practice it is not possible to ensure that 
the crack images of each assembled building are in the planar state. Therefore, the effects of 
shadows and noise on concrete surface cracks are still a great challenge for research to explore. 
Relevant scholars have used shadow removal as an orientation for the shadow processing of crack 
images, while for the problem of uneven illumination in the image background, adaptive image 
thresholding with local first-order statistics, histogram equalization, and noise filtering with 
nonlinear diffusion filtering have been used for image processing [32-33]. The above techniques 
might be considered to be applied in the next step of the research. 

It is worth mentioning that background color, concrete structure type, texture, and illumination 
all have an impact on the identification and calibration of concrete cracks. Y. Liu and M. Gao et 
al. found that the concrete structure type affects the accuracy of crack identification on the surface 
in performing concrete crack detection [34]. S. Bang et al. found that the background of the 
captured image as well as the illumination also have an impact on the cracks on the surface of the 
concrete structure image feature extraction [35]. Similarly, in the validation of surface CR and 
D-D method, it was found that the limitations of image background, illumination, texture, and 
component type can have a negative effect on the recognition of concrete cracks, and the specific 
conditions of the captured images should be considered in the image processing. However, the 
study did not further optimize the background color, illumination, etc. in depth during the 
detection process. Therefore, subsequent consideration will be given to designing relevant 
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algorithms to correct the captured images, or utilizing a shooting support platform such as a gimbal 
to deflate the shooting deviation. 

6. Conclusions 

To address the dilemma that visually-assisted surface D-D techniques cannot be directly 
applied to ABCC recognition and D-D, the study proposes a surface CR and D-D method for 
intelligent construction. The validation of the CIP algorithm revealed that the PSNR value of CIP 
increased by 111.421 % and the SSIM value increased by 5.500 compared to the conventional BF. 
After 50 training rounds, the F1 value grew by 27.457 % and 14.482 %, respectively, compared 
to other models, according to the validation of the IC model, which also revealed that the suggested 
model had lower loss values in the training and test sets. Detection method experiments revealed 
that the accuracy of the proposed method in CR of concrete wall panels is superior and its detection 
accuracy is high, with a relative error of less than 10 % from the actual measurement, and an 
absolute error of about 6 mm for the detection of the maximum length of cracks. The results show 
that the proposed CR and D-D methods have high application value in crack detection in AB 
construction, and their detection accuracy is superior compared with traditional manual 
measurement, and they are not limited and interfered by factors such as manual experience, and 
the QR Code pixel localization technique is more ideal for the measurement of cracks. However, 
it is found that the component crack images during the experimental process are limited by the 
shooting angle, background, and illumination, which can lead to a decrease in the recognition 
accuracy of the cracks. In the future, the design of image correction algorithms will be considered, 
and the introduction of shooting equipment such as a gimbal and other support platforms for the 
correction and processing of crack images will be considered, with a view to reducing the 
influence of shadows, background and other factors on ABCC, so as to realize highly efficient 
ABCC detection. 
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