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Abstract. With the continuous increase of vehicular traffic, the safety caused by bridge crack 
damage is becoming increasingly prominent. Bridge crack analysis and measurement are of great 
significance for promoting road traffic safety. However, existing bridge crack image segmentation 
methods have shortcomings in processing image detail features, resulting in the inability to better 
measure the actual size of bridge cracks. Therefore, to further optimize the calculation method, a 
bridge crack image segmentation method based on improved SOLOv2 is designed to achieve more 
accurate bridge image segmentation. Based on the image segmentation results and combined with 
the skeleton data extraction method, a bridge crack calculation method is designed. From the 
results, the segmentation accuracy for crack images was 92.05 % and 93.57 %, respectively. The 
average mIoU of AM-SOLOv2 method was 0.75, significantly lower than commonly used crack 
image segmentation methods. In addition, the mIoU value variation amplitude of the 
AM-SOLOv2 method was relatively smaller. The crack length and width errors were within 
0.05 mm and 0.06 mm, significantly lower than the comparison method. It indicates that this 
method can achieve more accurate crack image segmentation and calculation. This is beneficial 
for a deeper understanding of the performance degradation and crack damage evolution of bridge 
structures, thereby improving bridge design and construction technology. 
Keywords: SOLOv2, bridge damage, crack measurement, attention mechanism. 

1. Introduction 

As an important transportation infrastructure, bridge safety is closely linked to the safety of 
people's lives and property [1]. In recent years, the traffic load has been continuously increasing. 
Meanwhile, due to the combined effects of various natural and human factors, many bridges have 
suffered various damages, with bridge cracks being the most significant, seriously affecting traffic 
safety. Cracks, as one of the important indicators for evaluating road surface quality, directly affect 
driving safety and the service life of bridges [2-3]. Therefore, the research on bridge damage not 
only helps to identify potential problems, but also ensures people’s travel safety. Meanwhile, it 
can provide a basis for empirical research in disciplines such as structural engineering and civil 
engineering, and promote the development of relevant theories [4-5]. Due to the small size and 
complex distribution of cracks, there are many difficulties in actual measurement. With the 
continuous development of bridge engineering technology, the crack size research has received 
widespread attention. Various advanced measurement technologies, such as image processing 
based crack recognition and measurement technology, laser scanning technology, 3D 
reconstruction technology, etc., are used for bridge crack size measurement, providing important 
data support for bridge safety assessment and maintenance. The Segmenting Objects by Locations 
(SOLOv2) model is mainly applied in instance segmentation, which has been widely applied in 
fields such as robot vision, augmented reality, and virtual reality. It is a target segmentation 
technique based on instance segmentation, which can accurately segment targets in the image in 
real time. Therefore, the study adopts SOLOv2 as the basic model for crack segmentation. Based 
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on its advantages such as precise segmentation ability, efficient processing speed, model 
adaptability, and continuous optimization, SOLOv2 has become an ideal choice for crack 
segmentation tasks. However, the detailed analysis for bridge crack images is insufficient. The 
information extraction ability in crack images is weak, which leads to relatively high calculation 
errors in cracks. Image segmentation technology is widely used in various types of image 
information processing, which has good processing capabilities for image segmentation [6]. 
Therefore, the SOLOv2 is used to segment bridge crack images. Then the Attention Mechanism 
(AM) is introduced to optimize the SOLOv2 method. It is expected to further optimize bridge 
crack measurement through this method, providing support for subsequent bridge repair and 
improvement in bridge construction. The innovative of the research is as follows. Based on the 
SOLOv2 network structure, this study innovatively introduces AM to optimize the feature 
extraction and bridge crack calculation, thereby improving the feature extraction effect and 
calculation accuracy of bridge cracks. 

This study consists of four parts. The first part summarizes existing research on image 
segmentation and bridge damage. The second part constructs a bridge crack image segmentation 
and crack calculation method based on improved SOLOv2. The third part conducts experimental 
analysis on the proposed method to verify the effectiveness in practical applications. The fourth 
part summarizes the research content and points out future research directions. 

2. Related works 

Image segmentation can further optimize image detail analysis and extraction, reducing the 
impact of various complex factors on image information. Many scholars have analyzed and 
applied it from multiple perspectives. For example, to better measure the phenotype of mature 
soybeans, Li S. et al. performed instance segmentation on soybean images to locate and measure 
the length and width of target objects. The results showed that this method could effectively 
measure the relevant data characteristics of soybean crops, reduce labor intensity, and improve 
efficiency [7]. Zheng C. et al. designed a visual algorithm based on RGB images for fruit instance 
segmentation and picking point localization. The algorithm successfully completed the expected 
task, which had strong robustness in various lighting and complex backgrounds [8]. Jiang F. et al. 
proposed a three-stage automatic segmentation framework for sandstone images. Firstly, the input 
sandstone image was pre-segmented into mineral super-pixels. Then instance independent features 
were extracted. Finally, a new weighted fuzzy clustering algorithm was developed to cluster 
mineral super-pixels into different categories to generate complete minerals. The experimental 
results demonstrated the effectiveness of this method, which was significantly better than existing 
segmentation methods [9]. Bai H. et al. applied an instance segmentation network based on You 
Only Look Once version 3 (YOLOv3) and Full Convolutional Network (FCN) to segment all 
movable nanowires in AFM images. Compared with existing methods, it was less affected by 
image complexity, proving that the algorithm had good robustness [10]. On the basis of Mask 
R-CNN instance segmentation, Meng R. et al. used instance segmentation masks to hide private 
information in each object region, achieving background free information hiding for foreground 
objects. This method improved the efficiency of receiver information extraction, which had higher 
security and robustness and further optimized privacy protection [11]. 

The diagnosis research of bridge damage has a direct impact on the safe operation of bridges. 
In recent years, intelligent structural damage diagnosis algorithms based on machine learning have 
achieved great success. Xiao H. et al. proposed a bridge diagnosis algorithm based on deep 
learning. It automatically extracted advanced features from the original signal to meet any damage 
diagnosis target without any time-consuming denoising preprocessing. The results indicated that 
this method was an ideal and effective method for diagnosing damage to bridge structures [12]. 
Fu D. Z. et al. used an impact overload simulation device and structural finite element software 
ANSYS/AUTODYN to study the impact indicators of bridge damage. It could effectively analyze 
the influencing factors of bridge damage [13]. Zhang P. et al. proposed a degradation and 
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mechanism assessment method based on self centered for bridge pier systems, and innovatively 
defined two damage modes: namely elastic damage and brittle damage. A new damage index for 
SC bridge pier system was proposed, which could reasonably reflect key mechanical properties. 
It could accurately evaluate the damage state [14]. Liu J. et al. introduced a hierarchical semantic 
segmentation framework based on computer vision technology to monitor the health status of 
bridges. This framework imposed hierarchical semantic relationships between component 
categories and damage types. The results showed that this method was significantly superior to 
existing baseline methods [15]. Xiao L. et al. developed a crack mesh detection method based on 
Convolutional Neural Network (CNN). Each grid was fed into a CNN for detection. This method 
could avoid fracture phenomena in crack identification, and obtain crack information through 
pixel scanning and calculation [16]. 

In summary, image segmentation technology has been widely applied, which has achieved 
certain research results in various fields such as industrial and agricultural production. Meanwhile, 
many researchers have conducted relatively in-depth analysis on the impact and evaluation of 
bridge damage from various perspectives. However, there are relatively few researches on 
analyzing the actual size of bridge cracks using bridge damage feature images. Meanwhile, due to 
the constantly changing working environment (load, temperature, and noise) in practical bridge 
applications, the performance of structural damage analysis methods is seriously affected. 
Therefore, based on the instance segmentation method, the image of bridge cracks is segmented. 
Then it is used to calculate the size of bridge cracks, hoping to provide useful guidance for the 
management and maintenance of bridge safety. 

2.1. Bridge crack segmentation and measurement method based on SOLOv2 

General image segmentation includes semantic segmentation, instance segmentation and 
panoramic segmentation. Instance segmentation models generally include image input, 
segmentation processing, and result output. To better achieve image segmentation, the SOLOv2 
network is used to segment bridge crack images. Then, the AM is introduced to improve the results 
of SOLOv2 network, to further optimize the performance of bridge image segmentation. Finally, 
the actual size is calculated based on the segmentation results of SOLOv2 images. 

2.2. Construction of segmentation model based on improved SOLOv2 algorithm 

The role of bridges in transportation infrastructure construction is becoming increasingly 
prominent, which also poses higher requirements for bridge inspection and maintenance. Image 
case segmentation is helpful to better analyze the specific changes of crack damage. Case 
segmentation includes object detection and semantic segmentation, which can segment images at 
pixel. The SOLOv2 instance segmentation method is used to analyze bridge crack damage. SOLO 
is a classic instance segmentation network structure that directly implements instance 
segmentation. The core idea is to re-segment the entity segmentation task into two simultaneous 
sub-tasks, namely classification estimation and instance mask generation. Masking is a process 
that adopts a selected image or object to mask the entire or partial image being processed to control 
the area or process of image processing. This occlusion mechanism allows researchers to 
accurately focus on and process areas of interest, ignoring irrelevant parts. In crack recognition, 
masks can effectively extract the area where the crack is located, while shielding the background 
noise of the crack image, thereby extracting key information such as the specific shape, length, 
and width of the crack. Although masks play an important role in crack identification, they also 
have some limitations. The design of masks depends on specific crack characteristics and 
scenarios. If the image quality to be processed is poor, such as noise, blur, or uneven lighting, the 
mask may not be able to effectively extract crack areas or shield background noise. In addition, 
for cracks with complex branches, intersections, or fractures, a single mask may be difficult to 
accurately describe their morphology and characteristics. The above shortcomings will affect the 
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accuracy of crack identification. The integration of masks in deep learning is usually achieved by 
designing specific network structures and algorithms. AM is an important technique in deep 
learning, which allows the model to focus on important parts when processing input. By 
combining masks with AM, the model can consider the mask information when generating 
attention weights. In this way, the model can more accurately locate key areas and perform 
subsequent processing and analysis. The basic network structure is shown in Fig. 1. 

 
Fig. 1. Schematic diagram of SOLO structure 

In Fig. 1, the SOLO network utilizes a fully convolutional network to divide the image into 𝑆 × 𝑆 grids and generate 𝑆ଶ center positions. Among them, 𝐶 represents the number of categories. 𝐻 and 𝑊 represent the height and width of the feature map, respectively. The center coordinates 
of the input image are assigned to one of the cells. Then a feature map of 𝐻 × 𝑆ଶ × 𝑊 is generated. 
When cracks appear on the surface of a bridge due to external forces, the concrete inside will 
generate corresponding stress, resulting in cracks. Therefore, the internal structure of concrete will 
undergo stress changes. The corresponding network size is 𝑆 = 4. Each position of a semantic 
type corresponds to a specific channel in the entity mask branch, which is used to generate a mask 
for the target object. After completing this operation, masks related to the semantic type and 
category form a corresponding mapping relationship. The loss function of SOLO is displayed in 
Eq. (1): 𝐿𝑜𝑠𝑠 = 𝐿௖ + 𝐿௠௔௦௞, (1)

where, 𝐿௖ refers to the traditional image focus loss, which is a loss function based on semantic 
type classification. 𝐿௠௔௦௞ is the loss function in the mask estimation process. SOLOv2 is 
developed based on the SOLO network, which incorporates dynamic mechanisms to optimize the 
network structure. The core idea is to transform the input image segmentation problem into a 
position classification problem, and assign a category to each pixel in the bridge input image based 
on the position and size of the instance to achieve the segmentation goal. The original mask branch 
is decomposed into two parallel branches, namely the mask kernel branch and the mask feature 
branch. The former is used for convolutional kernel learning, while the latter is used for feature 
learning. Finally, the output results of the two branches together obtain the final mask prediction 
[17]. The mask branch structure is shown in Fig. 2. Among them, 𝐷 represents the number of 
parameters, and 𝐸 represents the dimension of mask features. 

In Fig. 2, each grid calculates the probability of the predicted category based on the output of 
the C-dimensional number of categories, providing a separate instance for each grid unit. The 
mask branch and classification branch perform parallel computation. Therefore, each grid unit 
needs to generate a corresponding instance mask. The resulting instance mask library is the 
number of networks. The SOLOv2 network dynamically optimizes mask branches to improve its 
performance. To further improve the accuracy of SOLOv2 in bridge crack segmentation, the AM 
is introduced to improve SOLOv2. The AM can effectively process data resources by filtering 
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invalid information, thereby optimizing the quality and efficiency of the system in information 
processing. Specifically, the spatial AM is combined with the channel AM to optimize SOLOv2. 
Splitting and concatenating modules are used to construct multi-scale features of instance objects. 
Then spatial attention and channel attention are used to extract different scale features [18]. 
Among them, the former is used to calculate the spatial relationship between two pixels. The latter 
is applied to weight the feature information of each feature channel to extract features with 
different scales. In constructing multi-scale feature information, the input image is 𝑋, which is 
divided into multiple parts, represented as 𝑋 = ሼ𝑋|𝑋ଵ,𝑋ଶ, . . . ,𝑋ௌሽ. For each specific part, feature 
extraction is performed. The extracted multi-scale features are concatenated through 
concatenation operation, as shown in Eq. (2): 

ቐ𝑋 = ሼ𝑋|𝑋ଵ,𝑋ଶ, . . . ,𝑋ௌሽ,𝐹௜ = convሺ𝐾௜ ,𝐺௜ሻሺ𝑋௦ሻ,𝐹 = concatሺሾ𝑋ଵ,𝑋ଶ, . . . ,𝑋ௌሿሻ, (2)

where, 𝐹 represents the feature map. 𝐺 refers to the size of the convolutional group. 𝐾 refers to 
the size of the convolution kernel. 𝐹௜ represents the sub feature map of 𝐹. Each segmentation part 
divides all common channels equally. The spatial information of each channel feature can be 
extracted in parallel on multiple feature scales. Each segmentation part uses multi-scale 
convolution kernels to generate spatial resolution and depth of different scales. The size of the 
convolution kernels is determined, as shown in Eq. (3): 𝐺 = 2௄ିଵଶ . (3)

MaskF 
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combination
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Fig. 2. Schematic diagram of mask branch structure 

According to existing research, the group size is set to 1. The structure of the obtained splicing 
part is shown in Fig. 3. 
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In Fig. 3, the input crack image is segmented into multiple different sub blocks, and each sub 
block is convolved to obtain the corresponding feature map, as shown in 𝐹ଵ. . .𝐹௦ in the figure. 
Parallel extraction of spatial information for each channel feature on multiple feature scales yields 
the concatenation result. On the basis of the above process, attention weights are extracted for 
features at different scales. The weight calculation is shown in Eq. (4): 𝑊௜ = 𝑆𝐸ሺ𝐹௜ሻ, (4)

where, 𝑊௜ represents attention weight. 𝑆𝐸 represents module calculation. The obtained attention 
weights are further concatenated to better ensure the attention information fusion, as shown in 
Eq. (5): 𝑊 = 𝑊ଵ ⊕𝑊ଶ ⊕. . .𝑊ௌ, (5)

where, ⊕ represents the feature concatenation operation. The concatenated weights are 
normalized, as shown in Eq. (6): 

𝑁𝑜𝑟𝑉௜ = softmaxሺ𝑊ሻ = 𝑒ௐ೔∑ 𝑒ௐ೔ௌ௜ୀଵ . (6)

The Softmax function is applied to calculate the normalized weight vector, which contains 
spatial position information and attention weights in channel attention. From this, the relationship 
between attention vectors and feature scales is obtained. Based on multi-scale attention vectors 
and corresponding scale features, the channel attention weight features are obtained, as shown in 
Eq. (7): 𝐹௜ᇱ = 𝐹 ∗ 𝑁𝑜𝑟𝑉௜ , (7)

where, ∗ represents the multiplication operation of the channel. 𝐹௜ represents the sub features of 𝐹. The overall feature expression obtained based on the above operation is shown in Eq. (8): 𝑂𝑣𝑒𝑟𝐹 = concatሺሾ𝐹ଵᇱ,𝐹ଶᇱ, . . . ,𝐹௦ᇱሿሻ. (8)

After extracting features at different scales, the channel attention map and spatial attention 
map can be calculated. The channel attention branch is used to generate the optimal output feature. 
The obtained channel attention map is shown in Eq. (9): 

𝑐௜௝ = exp(𝐹௜ ⋅ 𝐹௝)∑ exp(𝐹௜ ⋅ 𝐹௝)஼௜ୀଵ , (9)

where, 𝑐௝௜ represents the impact of the 𝑖th channel on the 𝑗th attention channel. The spatial 
attention branch is mainly used to generate spatial attention by utilizing the spatial relationships 
between different features. The spatial attention map is shown in Eq. (10): 

𝑠௜௝ = exp(𝐹௜ᇱ ⋅ 𝐹௝ᇱᇱ)∑ exp(𝐹௜ᇱ ⋅ 𝐹௝ᇱᇱ)ே௜ୀଵ , (10)

where, 𝐹௜ᇱ and 𝐹௝௜ represent two new feature maps generated by different modified methods. 𝑁 
refers to the pixels in the image. 𝑠௜௝ refers to the impact of the 𝑖-th position on the 𝑗-th position. 
Based on the obtained channel attention map and spatial attention map, the channel dimension 
information is interacted and integrated with other network modules. The final multi-scale feature 
map output by the module is shown in Fig. 4. 
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Fig. 4. Double attention feature extraction 

The double AM is an effective means to improve model performance in the field of deep 
learning by focusing on the input part of the module. It can better understand and use the feature 
information of spatial and channel dimensions, suppress irrelevant features, and identify targets. 
Meanwhile, the dual AM helps the model better cope with background interference, occlusion, 
and other issues, thereby improving the detection accuracy. Therefore, the dual attention method 
is beneficial. Therefore, the improved SOLOv2 image segmentation model based on AM can take 
into account more details and multi-feature crack information when segmenting bridge crack 
images. 

2.3. Bridge crack measurement based on improved SOLOv2 

Common bridge damages include cracks, potholes, and collapses. Cracks are one of the most 
common types of damage to bridge pavement, including longitudinal cracks, transverse cracks, 
and diagonal cracks. Most of them are due to the shrinkage or deformation of the pavement caused 
by temperature changes, resulting in cracks. Furthermore, it may be due to quality issues during 
construction and uneven quality of building materials, which seriously affect driving safety. Based 
on the improved SOLOv2 image instance segmentation model generated in the above research, 
pixel level crack mask images can be obtained. Then, the pixel level mask image of the crack is 
combined with the imaging pixel level resolution to calculate the actual size of the bridge crack 
[19]. Mask image mainly plays the role of occlusion and control in image processing. The selected 
image, shape, or object occludes the processed image (all or part) to control the image processing 
area. Skeleton images connect the edges of an image to form a refined line structure that represents 
the main shape features in the image. Therefore, there is a significant difference between the two. 
The skeleton extraction method is applied to process the bridge crack mask image obtained based 
on the improved SOLOv2 model. A binary image of the crack is obtained. There are significant 
differences between the bridge crack image and the background elements after the crack 
morphology segmentation. The pixels included in the crack feature value are calculated by the 
image pixel coordinate. Then the crack feature value is obtained by solving the size between the 
calibrated individual pixel points [20]. The skeleton extraction method utilizes the geometric 
features of an image to extract a connected region into a pixel size, providing visual results for 
cracks with a single pixel width. The segmented crack image is a discrete pixel matrix of 𝑝 × 𝑞. 
The pixel position corresponding to the crack in the image is (𝑥,𝑦). Based on this, the central 
skeleton of the crack image is obtained, as shown in Eq. (11): 
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𝐶(𝑥) = 𝐿(𝑥ଵ) + 𝑈(𝑥ଶ), (11)

where, 𝐿(𝑥ଵ) represents the pixel coordinate point in the lower boundary of a crack where the 
grayscale value of the image changes from 0 to 255. 𝑈(𝑥ଶ) represents the pixel coordinate point 
in the upper boundary of a crack where the grayscale value of the image changes from 255 to 0. 𝐶(𝑥) represents the center skeleton of the crack, and its position can be represented as  𝐿(𝑥ଵ) + 𝑈(𝑥ଶ). Based on the results of image skeletonization, the actual size of cracks is 
calculated. The relationship between actual cracks and pixel values is obtained using the 
proportion method. The conversion between the two is shown in Eq. (12): 𝜈 = 𝑘𝑤, (12)

where, 𝜈 refers to the actual parameter of the crack, (mm). 𝑘 represents the scaling ratio of cracks 
in the bridge crack image, (mm/pixel). 𝑤 represents the width of crack pixels, (pixel). The 
calibration method is used to calibrate the 𝑘 value. The basic principle is to calculate the ratio 
between the actual size of the object and the size of the imaging pixel, as shown in Eq. (13): 𝑘 = 𝐿𝑙 , (13)

where, 𝐿 refers to the actual length of the measured object, (mm). 𝑙 represents the pixel value 
marked in the image, (pixel). After obtaining the scaling ratio, the length and width can be 
calculated. In the skeleton image of bridge cracks, pixels with a grayscale value changing from 0 
to 255 are the lower boundary pixels of the crack, represented by 𝑈(𝑥) and 𝐿(𝑥). In this skeleton 
image, the number of pixels is 𝑛. The intersection point between the normal and the upper 
boundary of the crack is (𝑥௜ ,𝑦௜), and the intersection point between the normal and the lower 
boundary is (𝑥௜ାଵ,𝑦௜ାଵ). The length of the crack between these two points is shown in Eq. (14): 

⎩⎨
⎧𝐿஽ = ඥ(𝑥௜ − 𝑥௜ାଵ)ଶ + (𝑦௜ ,𝑦௜ାଵ)ଶ,𝐿 = ෍𝐿஽ = ෍ඥ(𝑥௜ − 𝑥௜ାଵ)ଶ + (𝑦௜ − 𝑦௜ାଵ)ଶ,௡ିଵ

௜ୀଵ
௡ିଵ
௜ୀଵ

 (14)

where, 𝐿஽ represents the distance between two adjacent pixels. 𝐿 represents the crack length. 
Generally speaking, the average width of cracks is one of the main indicators for measuring the 
health status of bridge facades. The average width of cracks is the ratio of the total crack pixels to 
the crack skeleton length, as shown in Eq. (15): 𝑊 = 𝑁𝐿 , (15)

where, 𝑊 refers to the average width of the crack. 𝐿 refers to the crack length. 𝑁 represents the 
total number of pixels in the crack area. The basic structure of the image crack is shown in Fig. 5. 
The two red lines in Fig. 5(c) represent the identified crack contours. When calculating, the 
boundary points of the central axis in the crack are determined, excess boundary points are 
removed, and then their width is refined to only one pixel. Then, the determined points are 
sequentially traversed to determine whether the pixel is a black pixel. The above is repeated until 
no pixels are marked for deletion. The refined skeleton image can be obtained, represented by the 
contour shown in Fig. 5(c). 

Fig. 5(a) shows the crack image obtained by SOLOv2 segmentation. Fig. 5(b) is a schematic 
diagram of the crack image after skeleton extraction. Fig. 5(c) is a basic schematic diagram of 
crack calculation. This process clearly presents the bridge crack calculation. 
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Fig. 5. Basic structure of image cracks 

3. Performance analysis of crack segmentation method based on SOLOv2 

To verify the performance of the proposed SOLOv2 method based on double self AM, 
corresponding experiments are designed to analyze the method. Then it is compared with 
commonly used methods to verify its application effects in bridge crack image segmentation. 
Then, the designed bridge crack calculation method is used to calculate the size of sample cracks, 
further optimizing the crack damage calculation method. 

3.1. Performance analysis of bridge image segmentation based on SOLOv2 

The experimental analysis is completed in the Windows 7 64 bit operating system. VS2015 is 
the development environment, developed in C++language. The CPU processor is Inter i3-3220, 
the running memory is 16GB, and the GPUiGeForce RTX2080Ti. The hardware experimental 
platform includes a lighting shooting platform experimental bench, a Basler acA2440-75umLET 
industrial area array camera, a flashing LED light array, and an industrial computer. The dataset 
used in the study includes the public crack dataset CRACK500 and CFD, as well as self captured 
bridge crack images. A total of 5246 bridge crack images were collected in the study. Among 
them, the CRACK500 dataset had a total of 3368 images, which have inconsistent sizes, including 
horizontal cracks, vertical cracks, and mesh cracks. The CFD contained a total of 118 images, all 
of which were 480X320 in size, including both horizontal and vertical cracks. After manual 
selection, removal, and other processing, 5000 images were obtained and divided into a training 
set and a validation set at a ratio of 7:3. At the same time, this dataset contained 2000 images with 
noisy environments. A total of 1760 crack images were collected independently, with varying 
sizes and three types of cracks. The learning rate had direct impacts on the convergence 
performance. Therefore, the study first verified the model performance with different learning 
rate. The TensorBoard in the visualized TensorFlow model was used to record the loss values 
under different learning rate conditions, as displayed in Fig. 6. In Fig. 6, in the testing set, when 
the current learning rates were 0.001, 0.002, and 0.004, the convergence values were 0.52, 0.31, 



BRIDGE CRACK SEGMENTATION AND MEASUREMENT BASED ON SOLOV2 SEGMENTATION MODEL.  
HAIPING DING, SONGYING WU 

10 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

and 0.15, respectively. The loss value of the research method converged first. The convergence 
effect was significantly better than the other two learning conditions. It demonstrated that the 
learning rate of the research method was 0.002. 
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c) The learning rate of 0.004 

Fig. 6. Changes in loss values under different learning rates 

The commonly used image segmentation methods include edge detection algorithm, 
YOLO-based image segmentation method, Region-based CNN (R-CNN), and FCN image 
segmentation methods. Then, the segmentation accuracy of this method in the training and testing 
sets was analyzed. Fig. 7 displays the results. In Fig. 7(a), the highest segmentation accuracy of 
YOLO, R-CNN, FCN, and AM-SOLOv2 were 80.35 %, 83.74 %, 87.21 %, and 92.05 %, 
respectively. In Fig. 7(b), the highest segmentation accuracy of YOLO, R-CNN, FCN, and 
AM-SOLOv2 were 84.24 %, 86.76 %, 89.31 %, and 93.57 %, respectively. This indicated that the 
proposed method has higher accuracy, which has better performance in the training and testing 
sets. 
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Fig. 7. Accuracy comparison of different methods 
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To compare the performance of the proposed model more vividly, the confusion matrix of 
YOLO, R-CNN, FCN, and AM-SOLOv2 in the dataset were plotted using three different crack 
images. The test results are shown in Fig. 8. From Fig. 8, among the four recognition models, the 
YOLO model had the lowest recognition accuracy, with 2 recognition results above 80 points. 
Next was the R-CNN model. The three category recognition results of the FCN model were all 
above 80 points, and the recognition results of AM-SOLOv2 were above 90 points. Therefore, the 
AM-SOLOv2 still performed the best, which can completely and accurately identify the 
corresponding crack categories, with a recognition rate generally above 90 points. In summary, 
the test results once again validate the efficiency and feasibility of the proposed model. 
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Fig. 8. Test results of confusion matrix for three recognition models 
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Fig. 9. Sensitivity and specificity analysis 

The specificity and sensitivity of the research method were analyzed. Te results are shown in 
Fig. 9. In Fig. 9, the sensitivity and specificity values of the YOLO were 0.769 and 0.792, and the 
sensitivity and specificity values the R-CNN were 0.815 and 0.834. For the FCN, the sensitivity 
and specificity values were 0.836 and 0.854. AM-SOLOv2's sensitivity and specificity values 
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were 0.886 and 0.964, respectively. From this perspective, the research method has better 
performance and significantly higher recognition accuracy than its comparison methods. 

The performance of different methods in bridge crack image segmentation was compared. The 
Intersection over Union (mIoU) of cracks obtained by different segmentation methods is shown 
in the Fig. 10. In Fig. 10, there was a significant difference in mIoU values among different 
methods. The average mIoU values for YOLO, R-CNN, FCN, and AM-SOLOv2 methods were 
0.60, 0.59, 0.6.7, and 0.75. In addition, the mIoU value variation amplitude of the AM-SOLOv2 
was relatively small. Overall, the mIoU value performance of the AM-SOLOv2 is significantly 
better than other comparison methods, which has more accurate image segmentation accuracy. 
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Fig. 10. Comparison of mIoU for different methods 

The time consumption of different methods during operation is shown in Fig. 11. In Fig. 11(a), 
the YOLO and R-CNN were 0.6 s and 0.8 s, respectively. In Fig. 11(b), the FCN and AM-SOLOv2 
were 7.1 s and 8.3 s, respectively. The method proposed in the study has significantly lower time 
consumption during operation compared with its comparison methods, resulting in higher 
operational efficiency. 

A noise free environment is a relatively ideal condition. Most of the time, the image acquisition 
process of bridge cracks contains various types of noise. Therefore, to further validate the 
performance of this method, the data images in this dataset were divided into noisy images and 
non noisy images for analysis. The segmentation performance of the two types of images was 
compared. The performance comparison of existing bridge crack image segmentation methods is 
displayed in Table 1. According to Table 1, the proposed method exhibited better Average 
Precision (AP), Mean Average Precision (MAP), and mIoU values in both noisy and non-noisy 
environments. When the image contained a noisy environment, the PA, MPA, and mIoU in the 
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testing set were 0.801, 0.794, and 0.769, respectively. In a non-noisy environment, the PA, MPA, 
and mIoU in the test set were 0.859, 0.914, and 0.864. It can effectively overcome the interference 
of weak noise environment on image segmentation and achieve better image segmentation. 
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Fig. 11. Running time of different methods 

Table 1. Comparison of noisy and non-noisy datasets 

Dataset Segmentation method/evaluation 
indicators 

Image without noise Images with noise 
PA MPA mIoU PA MPA mIoU 

Training 
set 

YOLO 0.684 0.699 0.628 0.655 0.697 0.541 
R-CNN 0.707 0.713 0.685 0.657 0.704 0.597 

FCN 0.739 0.778 0.707 0.758 0.764 0.721 
AM-SOLOv2 0.805 0.837 0.796 0.793 0.702 0.684 

Testing set 

YOLO 0.647 0.691 0.636 0.529 0.553 0.614 
R-CNN 0.659 0.697 0.669 0.587 0.642 0.618 

FCN 0.819 0.821 0.762 0.659 0.756 0.741 
AM-SOLOv2 0.859 0.914 0.864 0.801 0.794 0.769 

The uncertainty of the accuracy of each model is shown in Fig. 12.  
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Fig. 12. The uncertainty in model accuracy and confidence differences 

From Fig. 12(a), the AM-SOLOv2 model had the lowest uncertainty of accuracy, which was 
basically stable at 1.5 %, while the uncertainties of YOLO, R-CNN, and FCN were stable at 3.6 %, 
2.8 %, and 2.7 %, respectively. From this perspective, the uncertainty of the accuracy data 
obtained by the research design method is significantly lower than that of its comparison methods. 
The confidence differences of commonly used models are shown in Fig. 12(b). From Fig. 12(b), 
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the AM-SOLOv2 model was more sensitive to data, and the data under this model reached the 
expected value earlier. Next were FCN, R-CNN, and YOLO, respectively. It indicates that the 
quality of the data obtained is better. 

3.2. Performance analysis of bridge crack measurement based on improved SOLOv2 
segmentation model 

To verify the performance of the crack calculation method based on SOLOv2 image 
segmentation, it was used to calculate different types of bridge cracks. The Precision-Recall curve 
of the calculated results is displayed in Fig. 13. From Fig. 13, the PR values for longitudinal crack, 
transverse crack, and oblique crack were 0.40, 0.56, and 0.68, respectively. This result is better 
than the existing measurement results for different types of cracks. 

 
Fig. 13. Segmentation PR for different types of cracks 

Table 2. Crack errors under different calculation methods 

Crack 
number 

Width (mm) Length (mm) 

Actual 
value 

The proposed 
method Reference [16] Actual 

value 

The proposed 
method Reference [16] 

Calculation 
results Error Calculation 

results Error Calculation 
results Error Calculation 

results Error 

1 1.25 1.29 0.04 1.20 0.05 85.23 85.27 0.04 85.15 0.08 
2 2.01 2.00 0.01 2.10 0.09 131.47 131.50 0.03 131.42 0.05 
3 1.67 1.64 0.03 1.69 0.03 54.66 54.61 0.05 54.59 0.07 
4 0.98 1.03 0.05 1.08 0.10 267.33 267.29 0.04 267.42 0.09 
5 1.65 1.068 0.03 1.57 0.08 108.29 108.31 0.02 108.40 0.09 
6 1.99 1.97 0.02 1.94 0.05 157.36 157.40 0.06 157.25 0.11 
7 2.36 2.341 0.05 2.43 0.07 168.02 168.06 0.04 168.14 0.12 
8 2.09 2.0.7 0.02 2.15 0.06 64.74 64.71 0.03 64.69 0.05 
9 1.43 1.40 0.03 1.51 0.08 294.06 294.03 0.03 294.16 0.10 
10 1.87 1.91 0.04 1.93 0.06 185.73 185.78 0.05 185.68 0.05 
11 2.76 2.78 0.02 2.73 0.03 201.55 201.52 0.03 201.47 0.08 
12 2.34 2.39 0.05 2.27 0.07 134.89 134.87 0.02 134.83 0.06 
13 1.96 1.93 0.03 2.05 0.09 79.63 79.61 0.02 79.58 0.05 
14 1.54 1.56 0.02 1.49 0.05 157.46 157.42 0.04 157.41 0.05 
15 1.22 1.26 0.04 1.18 0.04 194.33 194.29 0.04 194.39 0.06 

A total of 15 crack images were randomly selected for experimental calculations. The proposed 
crack calculation method was compared with the crack calculation method used in reference [16]. 
The crack size error is shown in Table 2. In Table 2, the maximum error width was 0.05 mm, and 
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the maximum error length was 0.06 mm. In the measurement results of the reference [16], the 
maximum error width was 0.09 mm and the maximum error length was 0.12 mm. According to 
the statistical results, the maximum error values of crack length and width calculated by the 
research method were 0.04 mm and 0.06 mm lower, respectively, indicating that the method more 
accurately measures the length and width of bridge cracks. 

4. Discussion 

This research designed a bridge crack image detection and calculation method based on 
SOLOv2. According to the analysis results, Hui T. et al. designed a corresponding detection 
method for crack image detection using Yolov4 tiny. However, experiments showed that the 
extraction ability of this method was weakened in noisy images [21]. By comparison, the average 
mIoU value of the method proposed in the study was 0.75, and the amplitude of mIoU value 
variation was relatively smaller. In the training and testing sets, the segmentation accuracy of 
AM-SOLOv2 was 92.05 % and 93.57 %, respectively. Especially in noisy images, the designed 
method in the testing set had the PA, MPA, and mIoU values of 0.801, 0.794, and 0.769, 
respectively. The method proposed in the study can effectively overcome the interference of weak 
noise environment on image segmentation and achieve better image segmentation. This is because 
the double AM used in the study can effectively suppress the impact of noise. In addition, 
compared with other methods, the designed algorithm has higher accuracy and efficiency in 
feature segmentation of bridge crack images. In terms of bridge crack calculation, the research 
method minimizes the error of crack calculation as much as possible. Compared with reference 
[16], the maximum error values of crack length and width calculated by the research method were 
0.04 mm and 0.06 mm lower, respectively. It indicates that this method can more accurately 
measure the length and width of bridge cracks. The method proposed in the research is more 
accurate in processing crack image features before calculation, which can capture more effective 
detailed crack features to achieve more accurate crack size calculation. 

5. Conclusions 

To meet the current detection needs of bridge cracks, a bridge crack image segmentation model 
based on improved SOLOv2 was constructed. Based on the improved SOLOv2 crack image 
segmentation and skeleton data extraction method, a corresponding bridge crack calculation 
method was designed. From the experimental results, in the testing set and training set, the 
accuracy of this method was 92.05 % and 93.57 %, respectively. When the image contained a 
noisy environment, the PA, MPA, and mIoU of the research method were 0.801, 0.794, and 0.769, 
respectively. In a non-noisy environment, the PA, MPA, and mIoU of the research method were 
0.859, 0.914, and 0.864. The maximum error width and length was 0.05 mm and 0.06 mm, which 
was 0.04 mm and 0.06 mm lower than the comparison method, respectively. Statistical indicator 
analysis showed that the data quality obtained by the research method was significantly higher 
than that of other comparison methods. In summary, the designed bridge crack image 
segmentation method can better achieve image feature segmentation, thereby obtaining more 
accurate bridge crack size, and providing effective data support for the management and 
maintenance of bridges in the later stage. However, there are still shortcomings in the research. 
Bridge cracks are complex and diverse, and there may be similar cracks in the same image. The 
proposed feature segmentation method lacks the ability to distinguish details in bridge crack 
images with high similarity. In future research, detailed feature differentiation can be applied to 
cracks with higher similarity to further optimize the accuracy of crack calculation. 
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