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Abstract. In this article, we look at the NP-hard problem of determining the minimum 
independent domination metric dimension of graphs. A vertex set 𝐵 of a connected graph 𝐺ሺ𝑉,𝐸ሻ 
resolves 𝐺 if every vertex of 𝐺 is uniquely recognized by its vector of distances to the vertices in 𝐵. If there are no neighboring vertices in a resolving set 𝐵 of 𝐺, then 𝐵 is independent. Every 
vertex of 𝐺 that does not belong to 𝐵 must be a neighbor of at least one vertex in 𝐵 for a resolving 
set to be dominant. The metric dimension of 𝐺, independent metric dimension of 𝐺, and 
independent dominant metric dimension of 𝐺 are, respectively, the cardinality of the smallest 
resolving set of 𝐺, the minimal independent resolving set, and the minimal independent 
domination resolving set. We propose the first attempt to use a binary version of the Rat Swarm 
Optimizer Algorithm (BRSOA) to heuristically calculate the smallest independent dominant 
resolving set of graphs. The search agent of BRSOA are binary-encoded and used to identify 
which one of the vertices of the graph belongs to the independent domination resolving set. The 
feasibility is enforced by repairing search agent such that an additional vertex created from vertices 
of 𝐺 is added to 𝐵, and this repairing process is repeated until 𝐵 becomes the independent 
domination resolving set. Using theoretically computed graph findings and comparisons to 
competing methods, the proposed BRSOA is put to the test. BRSOA surpasses the binary Grey 
Wolf Optimizer (BGWO), the binary Particle Swarm Optimizer (BPSO), the binary Whale 
Optimizer (BWOA), the binary Gravitational Search Algorithm (BGSA), and the binary Moth-
Flame Optimization (BMFO), according to computational results and their analysis.  
Keywords: optimization, metaheuristics, swarm-intelligence, rat swarm optimizer. 

1. Introduction 

Independent graph dominance numbers have recently been introduced in [1]. Robot navigation 
[2-4], network discovery and verification [5], localization of wireless sensor networks [6], 
combinatorial optimization [7], and applications to pharmaceutical chemistry [8] are only a few 
areas where metric dimension is used. Domination theory is applied in wireless communication 
networks [9], electrical networks [10], Backbone based routing [11], or spine based routing 
[12, 13] and chemical structures [14]. The independent domination set with the minimum 
cardinality is a logical choice for usage in any network type for information transmission. 

2. Problem description  

Let 𝑑ሺ𝑢, 𝑣ሻ be the shortest path between two vertices 𝑢, 𝑣 ∈ 𝑉ሺ𝐺ሻ in the connected graph  𝐺 ൌ ሺ𝑉,𝐸ሻ. If the representation 𝑟ሺ𝑣|𝐵ሻ ൌ ሺ𝑑ሺ𝑣, 𝑥ଵሻ,𝑑ሺ𝑣, 𝑥ଶሻ, . . . ,𝑑ሺ𝑣, 𝑥௞ሻሻ is unique for every 𝑣 ∈ 𝑉ሺ𝐺ሻ, then the ordered vertex set 𝐵 ൌ ሼ𝑥ଵ, 𝑥ଶ, . . . , 𝑥௞ሽ ⊆ 𝑉ሺ𝐺ሻ is a resolving set of 𝐺. If every 
vertex of 𝑉\𝐵 has at least one neighbor that belongs to 𝐵, then 𝐵 is a dominating resolving set of 𝐺. A dominating resolving set 𝐵 is independent if no two vertices in 𝐵 are adjacent. 

Let 𝐶𝑎𝑟𝑑ሺ𝑋ሻ stand for the cardinality of a set 𝑋. The metric dimension of 𝐺, denoted as 
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𝑑𝑖𝑚(𝐺), the domination metric dimension of 𝐺, denoted as 𝐷𝑑𝑖𝑚(𝐺), and the independent 
domination metric dimension of 𝐺, denoted as 𝛾௜௥(𝐺), are as follows: 

– 𝑑𝑖𝑚(𝐺) = 𝑚𝑖𝑛{𝐶𝑎𝑟𝑑(𝐵): 𝐵 is a resolving set of 𝐺}, 
– 𝐷𝑑𝑖𝑚(𝐺) = 𝑚𝑖𝑛{𝐶𝑎𝑟𝑑(𝐵): 𝐵 is a domination resolving set of 𝐺}, 
– 𝛾௜௥(𝐺) = 𝑚𝑖𝑛{𝐶𝑎𝑟𝑑(𝐵): 𝐵 is an independent dominating resolving set of 𝐺}. 
Example 2.1. The set 𝐵 = {𝑣ଶ,𝑣ସ, 𝑣଺} is a minimal resolving set for the friendship graph 𝐹௥ళ 

given in Fig. 1, and hence 𝑑𝑖𝑚(𝐹௥ళ) = 3. Here, 𝐵 is also a minimal domination resolving set since 
every vertex of 𝑉 ⧵ 𝐵 has at least one neighbor that belongs to 𝐵. For example, 𝑣ଷ is adjacent to 𝑣ଵ and 𝑣ଶ. Also, 𝑣ହ adjacent to 𝑣ଵ and 𝑣ସ. In the same regard, 𝑣଻ adjacent to 𝑣ଵ and 𝑣଺. Also, 𝑣ଵ 
adjacent to 𝑣ଶ, 𝑣ଷ, 𝑣ସ, 𝑣ହ, 𝑣଺ and 𝑣଻, and so 𝐷𝑑𝑖𝑚(𝐹௥ళ) = 3. On the other hand, 𝐵 is also 
independent domination resolving set of 𝐹௥ళ. The set 𝐵 = {𝑣ଶ,𝑣ସ, 𝑣଺} is a minimal independent 
domination resolving set of 𝐹௥ళ, so 𝛾௜௥  (𝐹௥ళ) = 3.  

 
Fig. 1. Friendship graph 𝐹௥ళ 

Three elements are combined in the independent domination metric dimension problem: 
independent, dominance, and metric dimension of graphs. Integer programming is used to discuss 
the difficulty of determining the metric dimension of a graph 𝐺 [8]. Let 𝐷 = [𝑑௜௝] be the distance 
matrix of 𝐺, 𝑑௜௝ = 𝑑(𝑣௜ , 𝑣௝) for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. For 𝑥௜ ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑛, the function 𝐹 is 
defined by 𝐹(𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡) = 𝑥ଵ + 𝑥ଶ +··· +𝑥௡. 

Minimizing 𝐹 subject to the ቀ𝑛2ቁ constraints ห𝑑௜ଵ − 𝑑௝ଵห𝑥ଵ + ห𝑑௜ଶ − 𝑑௝ଶห𝑥ଶ + ⋯+ ห𝑑௜௡ −𝑑௝௡ห𝑥௡ > 0 is equivalent to finding a basis in the sense that if 𝑥ଵᇱ , 𝑥ଶᇱ , … , 𝑥௡ᇱ  is a set of values for 
which 𝐹 reaches its minimum, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Then 𝐵 = {𝑣௜ , 𝑥௜ᇱ = 1} is a basis for 𝐺 and 
conversely, if 𝐵 = {𝑣௜ଵ,𝑣௜ଶ, … , 𝑣௜௡} is a basis for 𝐺 and if we define: 𝑥௦ᇱ = ൜1,      𝑠 = 𝑖௝ , 𝑗,     (1 ≤ 𝑗 ≤ 𝑘),0,   otherwise,                          
then 𝐹(𝑥ଵᇱ ,𝑥ଶᇱ , … , 𝑥௡ᇱ ) is a minimum subject to the given constraints. 

Both the metric dimension problem and the dominant set problem are NP-complete [15, 16]. 
As a result, the independent domination metric dimension 𝛾௜௥(𝐺) is a typical NP-complete 
problem that involves determining if 𝛾௜௥(𝐺) ≤ 𝐾 for a given graph 𝐺 and input 𝐾. The remaining 
part of the paper is structured as follows: A literature review is presented in Section 3. In Section 4, 
the Rat Swarm Optimizer Algorithm is introduced. The BRSOA for calculating the independent 
domination metric dimension is provided in Section 5. Results of calculations are reported in 
Section 6. Section 7 presents the conclusion and recommendations for future work. 

3. Literature review 

For a number of graphs in the literature, the metric dimension, domination metric dimension, 
and independent domination metric dimension are all theoretically specified. Following is a brief 
summary of the key recently discovered theoretical metric dimension results [17-25]. The metric 
dimension of subdivisions of several graphs, including the Lilly graph, the Tadpole graph, and the 
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special trees star tree, bistar tree, and coconut tree is determined theoretically in [17], the bary 
centric subdivision of Möbius ladders and the generalized Petersen multigraphs in [18], trapezoid 
network, 𝑍 − (𝑃௡) network, open ladder network, tortoise network in [19], French windmill graph 
and Dutch windmill graph in [20], total graph of path power three and four in [21], two types of 
bicyclic graphs in [22], Mobius Ladder in [23], power of paths and complement of paths in [24], 
and Kayak Paddles graph and Cycles with chord in [25]. 

Theoretically, the independent metric dimensions are identified in [26, 27]. Cartesian product 
and corona of graphs are determined in [26], finite projective planes, finite biplanes in [27] and 
Titanium dioxide nanotube in [28]. The independent domination metric dimensions of the path 
graph, cycle graph, friendship graph, helm graph, and fan graph are determined theoretically in 
[1]. In [29, 30], the dominant metric dimension is found theoretically. The Path graph, cycle graph, 
star graph, complete graph, and complete bipartite graph are determined in [29], the corona 
product graph of 𝐺 and 𝐻 is studied whenever 𝐻 is a path graph, and the cycle graph, complete 
bipartite graph, complete graph, and star graph are determined in [30]. The connected domination 
metric dimensions of the complete graph, path graph, and cycle graph are determined theoretically 
in [31]. To compute the metric dimension problem heuristically, however, only a small number of 
algorithms have been presented [32-34]. For determining the metric dimension of numerous 
classes of graph instances, such as pseudo-Boolean, crew scheduling, and graph coloring, a genetic 
algorithm has been proposed in [32]. A limited number of distinct individuals with the same 
objective value, the binary representation, frozen gene mutation, and the caching technique were 
all used. Infeasible individuals are changed by the addition of the required nodes in order to 
become feasible. In [33], Particle Swarm Optimization is used for determining the metric 
dimension where an infeasible particle is mended by adding some vertices until the particle 
becomes feasible and a real-valued vector of vertices is converted to a binary-valued vector using 
a linear function. The Particle Swarm Optimization is tested by computing the metric dimension 
of hypercube graphs. In order to enhance the current upper bounds in [34], a variable 
neighborhood search method has been suggested for tackling metric dimension and minimal 
doubly resolving set problems. The metric dimension problem and the minimal doubly resolving 
set problem are divided into a series of sub problems with an auxiliary objective function as the 
foundation for the variable neighborhood search method. Additionally, the equivalent new integer 
linear programming formulations for both problems are suggested. The connected domination 
metric dimension problem is resolved here by encoding and adapting the operations of the 
equilibrium optimization algorithm. Using theoretically computed graph results, the proposed 
binary equilibrium optimization algorithm is put to the test and contrasted with competing 
techniques. Also see more details in the literature [35-38], and some future notions may be applied 
to some applications like [39-41]. In the binary forms of the metaheuristics, a transfer function 
plays a crucial role, according to Mirjalili and Lewis in [42]. It has a major effect on both the 
balance between exploration and exploitation and the avoidance of local optima. In 2013, Sharafi 
et al. [43] altered the definition of the velocity vector to the probability of mutation in each cat 
dimension, introduced a transfer function to the tracking mode of the cat swarm algorithm, and 
converted the continuous cat swarm algorithm into a discrete binary cat swarm algorithm. A binary 
variant of the bat technique, which is likewise a probability value that uses a transfer function to 
convert velocity data to updated positions, was proposed by Mirjalili et al. [44] in 2014. A discrete 
binary bat method (BINBA) was proposed by Sabba and Chikhi [45] in the same year to solve 
binary space optimization problems. 

4. Rat swarm optimizer (RSO) algorithm 

4.1. Inspiration 

Long-tailed, medium-sized rodents with different sizes and weights include rats. Black rats 
and brown rats are the two main species of rat. In the family of rats, male rats are referred to as 
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bucks and female rats as does. In general, rats are naturally socially intelligent. They train one 
another and engage in a variety of sports, including boxing, chasing, jumping, and tumbling. Rats 
are social, territorial creatures that coexist in households with both males and females. Rats are 
frequently quite aggressive in their behavior, which may cause the demise of some animals. This 
work's primary motive for pursuing and fighting with prey is this aggressive behavior. Rat chasing 
and hunting behaviors are mathematically modeled in this study in order to create the RSO 
algorithm and carry out optimization. 

4.2. Mathematical model and optimization algorithm 

This section explains the chasing and fighting behaviors of rats. The suggested RSO algorithm 
is then described. 

4.2.1. Chasing the prey 

Rats are typically sociable creatures that hunt their prey in packs using social agonistic 
behavior. The position of the prey must be known by the optimal search agent in order to 
mathematically define this behavior. With regard to the best search agent found thus far, the other 
search agents can update their places. In this mechanism, the following equations are proposed: 𝑃ሬ⃗ = 𝐴.𝑃ሬ⃗௜(𝑥) + 𝐶. ቀ𝑃ሬ⃗௥(𝑥) − 𝑃ሬ⃗௜(𝑥)ቁ, (1)

where 𝑃ሬ⃗௜(𝑥) is the best optimal solution and 𝑃ሬ⃗௥(𝑥) defines the placements of the rats. But here's 
how the 𝐴 and 𝐶 parameters are determined: 𝐴 = 𝑅 − 𝑥 × ൬ 𝑅𝑀𝑎𝑥ூ௧௘௥௔௧௜௢௡൰, (2)

where 𝑥 = 0,1,2, . . . ,𝑀𝑎𝑥ூ௧௘௥௔௧௜௢௡, and: 𝐶 = 2. 𝑟𝑎𝑛𝑑 (∙). (3)

Thus, 𝑅 and 𝐶 are independent random variables with ranges of [1, 5] and [0, 2], respectively. 
Over the course of iterations, the parameters 𝐴 and 𝐶 lead to better exploration and exploitation. 

4.2.2. Fighting with prey  

The following equation has been developed to quantitatively define the interaction of rats with 
prey: 𝑃ሬ⃗௜(𝑥 + 1) = ห𝑃ሬ⃗௥(𝑥) − 𝑃ሬ⃗ ห, (4)

where the revised next position of the rat is defined by 𝑃ሬ⃗௜(𝑥 + 1). It changes other solutions’ 
positions and saves the best solution and comparing search agents based on which one is the best. 
The parameters can be changed to obtain a different number of locations relative to the current 
position, as indicated in Eqs. (2) and (3). But this idea can also be expanded in an 𝑛-dimensional 
setting. As a result, the altered value of parameters 𝐴 and 𝐶 ensures exploration and exploitation. 
The best response is saved using the fewest operators via the suggested RSO technique.  

5. Binary rat swarm optimizer algorithm for independent dominant metric dimension  

Because it maintains a population of solutions and explores a wide region to find the optimum 
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global solution, the Rat Swarm Optimizer Algorithm can solve difficult optimization problems 
with several locally optimal solutions. This benefit enables a binary variant of the approach to be 
applied to the dominant independent metric dimension problem. Using position vectors located 
within the continuous real domain, search agents can navigate the search space in the continuous 
form of RSOA. By using an 𝑆-shaped transfer function to turn the continuous variable RSOA into 
a binary one, we may convert it to binary values. Position changes in discrete binary search space 
necessitate flipping between 0 and 1. The initialization phase makes use of the subsequent 
equation. Transfer function merits particular consideration and investigation since it plays a 
significant role in the discrete RSO algorithm: 𝑂𝑏𝑖𝑛𝑎𝑟𝑦௜௝ = ൜1,      𝑟𝑎𝑛𝑑(∙) > 0.5,0,      else,                    (5)

where 𝑟𝑎𝑛𝑑(∙) refers to a random number between 0 and 1. To convert continuous values to 
binary ones, a transfer function is used. The sigmoid function (𝑆) is applied as follows in this 
study: 𝑆 = 11 + 𝑒ିଵ଴௫೏ , (6)

where 𝑆 is the function output and 𝑥ௗ denotes the continuous-valued location at dimension 𝑑. To 
create a binary value, use the equation below: 𝑆𝐴𝑏𝑖𝑛𝑎𝑟𝑦௜௝ = ൜1,    𝑟𝑎𝑛𝑑(∙) < 𝑆,0,    otherwise.     (7)

Table 1. Parameter setting with search agents 30 for all algorithms  
Algorithms Parameter name Value 

BRSOA 

Number of generations 
Control parameter (𝑅) 
Constant parameter 𝐶 

Number of runs 

1000 
[1, 5] 
[0, 2] 

20 

BWOA 
𝑎ଵ 𝑎ଶ 

Number of runs 

Decreasing from 2 to 0 
Decreasing from –1 to –2 

20 

BPSO 

𝐶ଵ 𝐶ଶ 
Inertia weight (𝑤) 
Number of runs 

Increasing linearly from 0.5 to 2.5 
Decreasing linearly from 2.5 to 0.5 

0.8 
20 

BGSA Gravitational constant 
Alpha coefficient 

100 
20 

BGWO Control parameter (𝑎⃗) [2, 0] 

BMFO 
Convergence constant 

Logarithmic spiral 
Number of runs 

[−1, −2] 
0.75 
20 

The proposed algorithm deals with the dominant independent resolving set problem as an 
optimization problem where it searches for the best solution, so each search agent can be 
represented as a one-dimensional vector 𝑆𝐴𝑏𝑖𝑛𝑎𝑟𝑦௜௝ = (𝑆𝐴௜ଵ, 𝑆𝐴௜ଶ, . . . , 𝑆𝐴௜௝), for which 𝑆𝐴 𝑏𝑖𝑛𝑎𝑟𝑦௜௝ is a binary-valued position vector if the 𝑗-th element of the vector has a value of 1, it 
means that vertex 𝑗 belongs to 𝐵. If every 𝑣 ∈ 𝑉(𝐺) has a distinct representation 𝑟(𝑣|𝐵), then 𝐵 
is an independent dominant resolving set. The value of a binary-valued position vector is produced 
by computing the value of the 𝑆-shaped transfer function. In the BRSOA algorithm, when a search 
agent is not feasible as an independent dominant resolving set, that search agent is repaired by 
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adding a vertex from 𝑉\𝐵. This repair is applied until that object becomes an independent 
dominant resolving set.  

The algorithm represents each solution (individual) in the population as a string of binary in 
which 1 means that the independent dominant resolving set will be chosen, then the  corresponding 
value will be “1”, and if the independent dominant resolving set is not selected, then the 
corresponding value will be “0”. The pseudo-code in Algorithm 1. 

Table 2. Algorithm 1: Pseudo-code of BRSOA 
Input: The rat population 𝑃௜  (𝑖 = 1,2, … ,𝑛) 
Output: The optimal solution agent 
1: Procedure RSOA 
2: Initialize the parameters 𝐴, 𝐶 and 𝑅 
3: Evaluate the initial population and select the one with the best fitness value. 
4: 𝑃௥(𝑥) ← The best search agent 
5:    while (𝑥 ≤ 𝑀𝑎𝑥ூ௧௘௥௔௧௜௢௡) do 
6:        for each search agent do  
7: Update the position of current search agent using Eq. (4)  
8: Convert each 𝑆𝐴పሬሬሬሬሬሬ⃗  into binary using the S-shaped transfer function in 𝑆𝐴𝑏𝑖𝑛𝑎𝑟𝑦௜௝ 
9: Calculate the fitness of each 𝑆𝐴𝑏𝑖𝑛𝑎𝑟𝑦௜௝ 
10: Update the new position of the search agent using Eq. (7) 
11:      end for 
12: Update parameters 𝐴, 𝐶 and 𝑅 
13: Verify if any search agents exist that extend beyond the specified search space, and then modify them 
14: Evaluate the fitness of each search agent 
15: Update 𝑃௥  if a better solution becomes available than the previously optimal option 
16: Convert each 𝑆𝐴పሬሬሬሬሬሬ⃗  into binary using the S-shaped transfer function in 𝑆𝐴𝑏𝑖𝑛𝑎𝑟𝑦௜௝ 
17: Calculate the fitness of each 𝑆𝐴𝑏𝑖𝑛𝑎𝑟𝑦௜௝ 
18: Update the new position of the search agent using Eq. (7)  
19: Compare the fitness values of each search agent and choose the best candidate 
20: Set 𝑥 = 𝑥 + 1  
21: end while  
22: return search agent with best fitness value 
23: end procedure 

5.1. Experimental results 

This section uses theoretically generated graph findings to evaluate the proposed BRSOA. On 
a path graph, a cycle graph, a fan graph, a ladder graph and a circular ladder graph, the proposed 
BRSOA is compared to the BWOA, BPSO, BGSA, BGWO and BMFO. The code was 
implemented in MATLAB 2021b, and the algorithm tests and comparisons were carried out using 
a Windows 10 Ultimate 64-bit operating system with an Intel Core i7 running at 16 GB of RAM, 
a 1TBHDD + 1TBSSD hard drive. Table 1 displays the parameter setting values.  

All algorithms have been run 20 times for each graph and the results are summarized in 
Tables 3-6. The tables are organized as follows: The first three columns contain the number of 
nodes 𝑁, the number of edges 𝑀, the independent domination resolving number 𝛾௖௥, the CPU time 
(𝑡) used to indicate the exactly independent domination resolving number and iteration: The 
average number of iterations for finishing the algorithms to achieve the best solution, respectively. 

It should be noted, based on Table 3, that when computing connected domination resolving 
number for path graph  𝑃௡, 4 ≤ 𝑛 ≤ 19, then the BRSOA has reached an optimal solution. 
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Table 3. Comparison between BRSOA, BWOA, BPSO, BGSA, BGWO and BMFO for computing 
connected domination resolving number for path graph  𝑃௡, 4 ≤ 𝑛 ≤ 19 𝑁 𝑀  𝛾௜௥  𝑡 (sec)  

Iteration 

BRSOA BWOA BPSO BGSA BGWO BMFO 

4 3 
2 

16.3 
1 

2 
52.7 

2 

2 
36.4 

1 

2 
24.5  

1 

2 
29.2   

1 

2 
46.7  

1  

5 4 
𝛾௜௥ 𝑡 (sec) 

Iteration 

3 
35.8 

2 

3 
87.3 

8 

3 
51.9 

5 

3 
31.2 

3 

3 
49.1 

4 

3 
73.5 

6 

6 5 
𝛾௜௥ 𝑡 (sec)  

Iteration 

3 
58.4 

5 

3 
132.9 

22 

3 
86.1 
13 

3 
72.8 

9 

3 
83.4 
11 

3 
109.6 

18 

7 6 
𝛾௜௥ 𝑡 (sec)  

Iteration 

4 
83.7 

7 

4 
175.2 

35 

4 
155.9 

25 

4 
126.9 

16 

4 
68.3 
19 

4 
148.1 

26 

8 7 
𝛾௜௥ 𝑡 (sec)  

Iteration 

4 
105.2 

10 

4 
258.3 

47 

4 
236.3 

42 

4 
178.1 

28 

4 
194.9 

32 

4 
215.4 

53 

9 8 
𝛾௜௥ 𝑡 (sec)  

Iteration 

5 
121.8 

17 

5 
389.5 

69 

5 
311.6 

50 

5 
202.8 

35 

5 
243.1 

41 

5 
298.3 

59 

10 9 
𝛾௜௥ 𝑡 (sec)  

Iteration 

5 
156.4 

31 

5 
478.1 

78 

5 
382.2 

36 

5 
274.5 

29 

5 
299.3 

56 

5 
385.9 

45 

11 10 
𝛾௜௥ 𝑡 (sec)  

Iteration 

6 
194.2 

22 

6 
535.7 

93 

6 
447.8 

48 

6 
351.4 

56 

6 
367.9 

75 

6 
457.4 

63 

12 11 
𝛾௜௥ 𝑡 (sec)  

Iteration 

6 
229.1 

27 

6 
589.2 

71 

6 
513.1 

39 

6 
415.9 

64 

6 
406.5 

47 

6 
529.3 

82 

13 12 
𝛾௜௥ 𝑡 (sec)  

Iteration 

7 
283.4 

35 

7 
711.9 
105 

7 
599.5 

31 

7 
501.3 

82 

7 
484.2 

63 

7 
591.7 

59 

14 13 
𝛾௜௥ 𝑡 (sec)  

Iteration 

7 
372.9 

45 

7 
794.4 

93 

7 
678.4 

58 

7 
604.8 

69 

7 
567.9 
108 

7 
673.5 

74 

15 14 
𝛾௜௥ 𝑡 (sec)  

Iteration 

8 
307.2 

41 

8 
881.7 

62 

8 
794.5 

84 

8 
647.3 

95 

8 
685.2 

81 

8 
757.9 
103 

16 15 
𝛾௜௥ 𝑡 (sec)  

Iteration 

8 
356.6 

29 

8 
1013.5 

118 

8 
937.4 

95 

8 
705.9 

49 

8 
779.1 

54 

8 
869.5 

73 

17 16 
𝛾௜௥ 𝑡 (sec)  

Iteration 

9 
328.5 

16 

9 
1183.9 

78 

9 
1021.8 

110 

9 
802.4 

56 

9 
895.3 

64 

9 
957.3 

81 

18 17 
𝛾௜௥ 𝑡 (sec)  

Iteration 

9 
411.8 

34 

9 
1357.2 

103 

9 
1109.3 

62 

9 
896.7 

78 

9 
961.5 

89 

9 
1034.6 

88 

19 18 
𝛾௜௥ 𝑡 (sec)  

Iteration 

10 
443.3 

25 

10 
1562.4 

99 

10 
1239.7 

76 

10 
975.3 

62 

10 
1198.4 

70 

10 
1156.1 

91 
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Table 4. Comparison between BRSOA, BWOA, BPSO, BGSA, BGWO and BMFO  
for computing connected domination resolving number for cycle graph 𝐶௡, 4 ≤ 𝑛 ≤ 15,  

BRSOA has reached an optimal solution 𝑁 𝑀  𝛾௜௥ 𝑡 (sec)  
Iteration 

BRSOA BWOA BPSO BGSA BGWO BMFO 

4 4 
2 

25.4 
1 

2 
61.8 

3 

2 
42.7 

2 

2 
32.9 

1 

2 
37.2 

1 

2 
43.5 

2 

5 5 
𝛾௜௥ 𝑡 (sec)  

Iteration 

2 
34.8 

1 

2 
79.3 

7 

2 
56.2 

3 

2 
48.2 

2 

2 
54.9 

2 

2 
63.6 

3 

6 6 
𝛾௜௥ 𝑡 (sec)  

Iteration 

3 
61.7 

3 

3 
104.8 

19 

3 
73.8 

8 

3 
59.7 

6 

3 
68.3 

9 

3 
81.4 
13 

7 7 
𝛾௜௥ 𝑡 (sec)  

Iteration 

3 
80.9 

6 

3 
135.6 

42 

3 
97.5 
17 

3 
91.3 
15 

3 
87.1 
23 

3 
108.7 

34 

8 8 
𝛾௜௥ 𝑡 (sec)  

Iteration 

4 
104.2 

14 

4 
176.9 

56 

4 
91.7 
31 

4 
118.2 

24 

4 
128.6 

38 

4 
137.9 

48 

9 9 
𝛾௜௥ 𝑡 (sec)  

Iteration 

4 
129.1 

11 

4 
211.2 

73 

4 
116.4 

45 

4 
173.9 

36 

4 
159.4 

24 

4 
172.1 

53 

10 10 
𝛾௜௥ 𝑡 (sec)  

Iteration 

5 
146.3 

26 

5 
267.9 
109 

5 
174.8 

82 

5 
198.4 

61 

5 
182.1 

49 

5 
207.2 

74 

11 11 
𝛾௜௥ 𝑡 (sec)  

Iteration 

5 
188.9 

37 

5 
341.6 

81 

5 
229.4 

89 

5 
224.3 

75 

5 
216.1 

56 

5 
283.9 
103 

12 12 
𝛾௜௥ 𝑡 (sec)  

Iteration 

6 
207.5 

24 

6 
419.2 
134 

6 
367.8 

52 

6 
268.1 

69 

6 
289.4 

48 

6 
342.6 

82 

13 13 
𝛾௜௥ 𝑡 (sec)  

Iteration 

6 
173.9 

32 

6 
485.7 
159 

6 
442.9 

78 

6 
309.7 

83 

6 
351.9 

72 

6 
407.2 
113 

14 14 
𝛾௜௥ 𝑡 (sec)  

Iteration 

7 
228.6 

21 

7 
562.1 
183 

7 
499.5 

93 

7 
375.2 

56 

7 
412.5 

54 

7 
488.1 

66 

15 15 
𝛾௜௥ 𝑡 (sec)  

Iteration 

7 
294.1 

17 

7 
739.8 
201 

7 
617.3 

72 

7 
476.8 

54 

7 
532.5 

69 

7 
761.4 

75 

Table 5. Comparison between BRSOA, BWOA, BPSO, BGSA, BGWO and BMFO  
for computing connected domination resolving number for friendship graph  𝐹௥೙ , 3 ≤ 𝑛 ≤ 25, BRSOA has reached an optimal solution 𝑁 𝑀  𝛾௜௥ 𝑡 (sec)  

Iteration 

BRSOA BWOA BPSO BGSA BGWO BMFO 
3 3 1 

11.9 
1 

1 
29.6 

2 

1 
18.2 

1 

1 
16.3 

1 

1 
22.4 

1 

1 
32.8 

2 
5 6 𝛾௜௥ 𝑡 (sec)  

Iteration 

2 
16.8 

1 

2 
47.9 

7 

2 
35.8 

4 

2 
28.4 

3 

2 
31.9 

2 

2 
46.7 

5 
7 9 𝛾௜௥ 𝑡 (sec)  

Iteration 

3 
34.5 

6 

3 
83.1 
25 

3 
72.7 
16 

3 
46.2 

7 

3 
57.8 
13 

3 
89.5 
11 
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9 12 𝛾௜௥ 𝑡 (sec)  
Iteration 

4 
56.7 

9 

4 
139.8 

44 

4 
96.8 
35 

4 
71.5 
16 

4 
81.9 
21 

4 
127.4 

32 
11 15 𝛾௜௥ 𝑡 (sec)  

Iteration 

5 
95.4 
16 

5 
215.3 

59 

5 
83.9 
28 

5 
107.9 

25 

5 
111.3 

38 

5 
185.9 

44 
13 18 𝛾௜௥ 𝑡 (sec)  

Iteration 

6 
143.6 

28 

6 
294.1 

39 

6 
154.7 

49 

6 
185.6 

42 

6 
125.4 

30 

6 
248.7 

73 
15 21 𝛾௜௥ 𝑡 (sec)  

Iteration 

7 
197.1 

43 

7 
376.9 

64 

7 
236.3 

73 

7 
248.4 

32 

7 
221.8 

49 

7 
367.3 

57 
17 24 𝛾௜௥ 𝑡 (sec)  

Iteration 

8 
262.7 

36 

8 
456.3 

75 

8 
298.2 
109 

8 
293.7 

58 

8 
306.7 

74 

8 
433.9 

86 
19 27 𝛾௜௥ 𝑡 (sec)  

Iteration 

9 
311.3 

21 

9 
563.9 
117 

9 
374.8 

64 

9 
389.5 

70 

9 
412.5 

85 

9 
524.8 
104 

21 30 𝛾௜௥ 𝑡 (sec)  
Iteration 

10 
352.9 

28 

10 
657.4 
159 

10 
458.9 

86 

10 
479.3 

55 

10 
464.9 

78 

10 
561.2 
123 

23 33 𝛾௜௥ 𝑡 (sec)  
Iteration 

11 
388.7 

19 

11 
689.5 
208 

11 
534.2 

78 

11 
515.7 

67 

11 
527.2 

61 

11 
598.5 

82 
25 36 𝛾௜௥ 𝑡 (sec)  

Iteration 

12 
296.2 

14 

12 
774.8 
186 

12 
592.8 

91 

12 
588.4 

45 

12 
596.3 

82 

12 
634.3 

97 

Table 6. Comparison between BRSOA, BWOA, BPSO, BGSA, BGWO and BMFO  
for computing connected domination resolving number for triangular snake graph 𝑇௡, 3 ≤ 𝑛 ≤ 31,  

BRSOA has reached an optimal solution.  𝑁 𝑀  𝛾௜௥ 𝑡 (sec)  
Iteration 

BRSOA BWOA BPSO BGSA BGWO BMFO 

3 3 
1 

10.5 
1 

1 
26.3 

4 

1 
20.8 

2 

1 
19.6 

1 

1 
27.3 

1 

1 
25.2 

3 

5 6 
𝛾௜௥ 𝑡 (sec)  

Iteration 

2 
18.2 

1 

2 
63.7 

9 

2 
46.2 

3 

2 
28.4 

2 

2 
31.9 

3 

2 
46.7 

6 

7 9 
𝛾௜௥ 𝑡 (sec)  

Iteration 

3 
41.4 

5 

3 
99.3 
31 

3 
87.2 
15 

3 
58.9 
10 

3 
74.1 

8 

3 
95.4 
19 

9 12 
𝛾௜௥ 𝑡 (sec)  

Iteration 

4 
59.8 
12 

4 
161.7 

38 

4 
103.5 

25 

4 
41.6 
18 

4 
91.2 
21 

4 
117.5 

32 

11 15 
𝛾௜௥ 𝑡 (sec)  

Iteration 

5 
76.3 
16 

5 
208.1 

45 

5 
174.2 

41 

5 
89.3 
27 

5 
124.9 

38 

5 
154.6 

50 

13 18 
𝛾௜௥ 𝑡 (sec)  

Iteration 

6 
105.9 

11 

6 
246.3 

71 

6 
211.9 

62 

6 
137.6 

44 

6 
192.8 

56 

6 
204.5 

78 

15 21 
𝛾௜௥ 𝑡 (sec)  

Iteration 

7 
189.3 

37 

7 
297.5 

93 

7 
287.1 

51 

7 
201.8 

49 

7 
274.9 

74 

7 
297.3 

86 

17 24 
𝛾௜௥ 𝑡 (sec)  

Iteration 

8 
256.4 

24 

8 
406.2 

59 

8 
358.3 

45 

8 
287.9 

76 

8 
326.2 

60 

8 
382.9 
147 
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19 27 
𝛾௜௥ 𝑡 (sec)  

Iteration 

9 
317.8 

40 

9 
485.9 
133 

9 
402.4 

49 

9 
346.3 

83 

9 
398.7 

67 

9 
459.3 

95 

21 30 
𝛾௜௥ 𝑡 (sec)  

Iteration 

10 
383.6 

19 

10 
517.4 
106 

10 
467.2 
208 

10 
398.2 

53 

10 
456.8 
104 

10 
562.4 
203 

23 33 
𝛾௜௥ 𝑡 (sec)  

Iteration 

11 
437.9 

13 

11 
593.5 
181 

11 
538.9 
169 

11 
443.9 

62 

11 
523.5 

77 

11 
623.8 
122 

25 36 
𝛾௜௥ 𝑡 (sec)  

Iteration 

12 
393.2 

15 

12 
649.2 

93 

12 
592.6 
103 

12 
562.8 
116 

12 
587.2 
159 

12 
692.3 
181 

27 39 
𝛾௜௥ 𝑡 (sec)  

Iteration 

13 
431.8 

29 

13 
737.5 

84 

13 
678.2 
178 

13 
642.7 

96 

13 
675.9 
113 

13 
728.9 

79 

29 42 
𝛾௜௥ 𝑡 (sec)  

Iteration 

14 
490.3 

21 

14 
821.9 
138 

14 
731.7 
217 

14 
703.5 

71 

14 
765.8 

85 

14 
784.1 
193 

31 45 
𝛾௜௥ 𝑡 (sec)  

Iteration 

15 
356.9 

14 

15 
879.3 
186 

15 
812.6 
204 

15 
786.9 

82 

15 
807.6 

99 

15 
843.7 
161 

6. Comparison 

To further demonstrate the excellence of proposed BRSOA, we choose BWOA, BPSO, BGSA, 
BGWO and BMFO algorithms to conduct experiments under the same conditions and compared 
the results. The results on graphs are shown in Tables 3-6, which indicate that proposed BRSOA 
algorithm, outperforms other algorithms on graphs, reaching 443.3 sec in BRSOA, 1562.4 sec in 
BWOA, 1239.7 sec in BPSO, 975.3 sec in BGSA, 1198.4 sec in BGWO, 1156.1 sec in BMFO for 
path graph and 294.3 sec in BRSOA, 739.8 sec in BWOA, 617.3 sec in BPSO, 476.8 sec in BGSA, 
532.5 sec in BGWO and 761.4 sec in BMFO for cycle graph and 296.2 sec in BRSOA, 774.8 sec 
in BWOA, 592.8 sec in BPSO, 588.4 sec in BGSA, 596.3sec in BGWO, and 634.3 sec in BMFO 
for friendship graph and 356.9 sec in BRSOA, 879.3 sec in BWOA, 812.6 sec in BPSO, 786.9 sec 
in BGSA, 807.6 sec in BGWO and 843.7 sec in BMFO for triangular snake graph. It proves the 
correctness and superiority of proposed BRSOA. Figs. 2, 3, 4 and 5 show the superiority of the 
proposed BRSOA on the BWOA, BPSO, BGSA, BGWO and BMFO according to the independent 
domination resolving number. 

 
Fig. 2. The superiority of BRSOA on the BWOA, BPSO, BGSA, BGWO and BMFO 
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Fig. 3. The superiority of BRSOA on the BWOA, BPSO, BGSA, BGWO and BMFO 

 
Fig. 4. The superiority of BRSOA on the BWOA, BPSO, BGSA, BGWO and BMFO 

 
Fig. 5. The superiority of BRSOA on the BWOA, BPSO, BGSA, BGWO and BMFO 

7. Conclusions 

In this paper, a binary variant of the basic Rat Swarm Optimizer Algorithm (BRSOA) is 
adapted for determining the minimum independent domination resolving set of graphs and 
compared to BWOA, BPSO, BGSA, BGWO and BMFO. Comparisons were performed on the 
graphs: path graph, cycle graph, friendship graph and triangular snake graph. Experimental results 
and their analysis  confirmed the superiority of the proposed BRSOA for solving the independent 
domination metric dimension problem. For further work in the future, we plan to compute other 
variants of metric dimension by other metaheuristic algorithms and compare them with 
competitive algorithms. 
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