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Abstract. In order to fully extract the fault characteristics of different cavitation fault states of 
centrifugal pumps, reduce the influence of hyperparameter settings on the identification and 
classification results of machine learning algorithms, this paper designs a network model based 
on the rime optimization algorithm (RIME) to improve the stacked denoising autoencoder (SDAE) 
network, which is named as RIME-SDAE. First of all, Singular Value Decomposition (SVD) is 
used to denoise the 𝑋, 𝑌 and 𝑍 signals of the triaxial vibration sensor, and time-domain, 
frequency-domain and time-frequency features are extracted to construct a signal feature set. 
Secondly, the three-dimensional feature indicators are analyzed and selected to be merged into the 
input dataset, and SDAE is trained with the RIME is used to determine the model parameters of 
SDAE synchronously. The feasibility of the proposed method is verified by the signals collected 
in the actual test, and the test results show that the accuracy on the test set reaches more than 98 %.  
Keywords: feature extraction, cavitation fault, rime optimization algorithm, SDAE. 

1. Introduction 

Centrifugal pumps, as a kind of rotating machinery with strong versatility, are widely used in 
various fields because of their advantages of simple structure, low cost and stable performance 
[1-2]. Cavitation as one of the common failures of centrifugal pumps, cavitation phenomenon 
produces air bubbles will lead to the centrifugal pump head, operating efficiency and other 
performance parameters are reduced [3-4]. Because the vibration signal detection is non-invasive, 
it is of great significance to analyze the vibration signal of centrifugal pump cavitation [5], extract 
the characteristics of the vibration signal and carry out fault diagnosis. 

Qing Biao [6] numerically simulated the cavitation inception point of centrifugal pump, and 
then collected noise signals experimentally and extracted the signal characteristics of centrifugal 
pump cavitation inception by empirical mode decomposition algorithm. Cao Yuliang [7] collected 
vibration signals of four kinds of cavitation states under three working conditions of centrifugal 
pump, and trained the constructed deep learning network by using improved frequency doubling 
and time-frequency characteristic matrix. The comparison proves that the deep learning network 
is more effective than BP neural network for cavitation fault detection. However, the network 
model parameters rely on manual calibration, which is subjective, inefficient and unreliable. 

In order to solve the above problems, this paper extracts and screens the multi-domain features 
of triaxial vibration acceleration signals, combines the good learning ability of SDAE optimized 
by RIME for high-dimensional and nonlinear samples, and avoids the blindness and human factors 
in parameter selection, and puts forward a centrifugal pump cavitation fault diagnosis method 
based on the rime optimization algorithm to improve the stacked denoising autoencoder (SDAE) 
network, and finally verifies its effectiveness and reliability through experiments. 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2024.24039&domain=pdf&date_stamp=2024-04-04
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2. Data preparation 

2.1. Data collection 

According to the requirements of the standard “GB3216-2016 rotary power pump hydraulic 
performance acceptance test”, the test bench is built and IS-65-50-160 single-stage centrifugal 
pump is selected for the test. Some of the design parameters of the pump include: rated flow rate 
of 𝑄ௗ ൌ 50m3/h, rotational speed of 𝑛 ൌ 2930 r/min, design head 𝐻 ൌ 38m, and the number of 
vanes 𝑍 ൌ 6. Other equipment on the test stand includes electric motors, torque meters, and data 
acquisition equipment. The schematic diagram of the test system loop is shown in Fig. 1, and the 
data acquisition equipment is shown in Fig. 2. 

 
Fig. 1. Test system loop 

 
Fig. 2. Data acquisition equipment 

After the test pump is started and operated normally, the tank is evacuated and cavitated by 
gradually reducing the pump inlet pressure. Record the relationship between the effective 
cavitation margin (NPSHa) and the head drop during the pumping process, and collect the 
vibration signals from the measurement points of the pump body when the centrifugal pump 
operates under different NPSHa. The position of the vibration sensor and the cavitation 
characteristic curve of the centrifugal pump are shown in Fig. 3 and Fig. 4. 

 
Fig. 3. Position of the vibration sensor  

 
Fig. 4. Cavitation characteristic curve of pump 

As shown in Fig. 4, with the decrease of NPSHa, the pump head firstly decreases slowly, and 
after an inflection point, the head decreases sharply, which can be regarded as the cavitation 
incipient point, corresponding to a 1.5 % decrease in head [8]. At the same time, the engineering 
generally will be declined by 3 % of the point of head as the point of cavitation occurs. Therefore, 
the collection of head down 0 %, 1.5 % and 3 % of the point of the vibration signal, used to 
represent the centrifugal pump is not cavitation, cavitation incipient and severe cavitation state. 

Taking the vibration signal in the Z-direction of the sensor as an example, some of its 
time-domain and frequency-domain plots under different cavitation states are shown in Figs. 5 
and 6. 
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Fig. 5. Time domain graph 

 
Fig. 6. Frequency domain graph 

2.2. Construction of feature vectors 

In order to reveal the fault information contained in vibration signals more accurately and 
comprehensively, multiple data indicators should be extracted from the multi-domain perspective 
to represent the fault information [9]. It is worth mentioning that energy value and sample entropy 
are the characteristics of the first eight IMF components obtained by Ensemble Empirical Mode 
Decomposition, which represent the energy distribution and time complexity of IMF components. 
Let the signal be 𝑥ሺ𝑛ሻ, 𝑛 = 1,2, …𝑁, 𝑁 is the number of data points of the signal. Table 1 lists 14 
commonly used signaling indicators. As shown in Table 1. 

Table 1. Data indicators 
Parameter Expression Parameter Expression 

Mean value Τଵ = 1n෍ x୧୬୧ୀଵ  Root mean 
square value Τଶ = ඨ෍ x୧ଶ୬୧ୀଵ /√n 

Square root 
amplitude Τଷ = ቆ1N෍ ඥ|x୧|୒୧ୀଵ ቇଶ 

Absolute value 
average Τସ = 1n෍ |x୧|୬୧ୀଵ  

Skewness 𝛵ହ = 𝑛ሺ𝑛 − 1ሻሺ𝑛 − 2ሻ෍ ቀ𝑥௜ − 𝜇𝜎 ቁଷ௡௜ୀଵ  Kurtosis 𝛵଺ = 1𝑁෍ 𝑥௜ସே௜ୀଵ  

Variance 𝛵଻ = 1𝑁 − 1෍ ሺ𝑥௜ − 𝑥̅ሻଶே௜ୀଵ  Peak value Τ଼ = maxሼ|x୧|ሽ 
Mean 

frequency Fଵ = 1n෍ y୧୬୧ୀଵ  
Frequency 
standard 
deviation 

Fଶ = ඨ∑ ൫y୧ − f൯̅ଶ୬୧ୀଵ n  

Frequency 
center Fଷ = 1n෍ f୧୬୧ୀଵ  

Root mean 
square 

frequency 
𝐹ସ = ඨ׬ 𝑓ଶ𝑆ሺ𝑓ሻ𝑑𝑓ஶ଴׬ 𝑆ሺ𝑓ሻ𝑑𝑓ஶ଴  

Energy value 𝑇𝐹ଵ = ෍ |𝑦௜|ଶ௡௜ୀଵ  Sample 
entropy 𝑇𝐹ଶ = ln𝐶௠ሺ𝑟ሻ − ln𝐶௠ାଵሺ𝑟ሻ 

Table 1 shows the commonly used signal characteristic indicators, but not all of these signal 
indicators are related to the centrifugal pump cavitation fault, in order to eliminate redundant 
indicators, analyze the changes of each indicator in different cavitation states, and find out the 
indicators that best reflect the changes in the cavitation state of the centrifugal pump for 
subsequent machine learning identification and classification. Taking the sensor 𝑍-direction 
vibration signal as an example, the changes of its time domain, frequency domain and time 
frequency indicators with the development of cavitation are shown in Fig. 7, Fig. 8, Fig. 8 and 
Fig. 10. 

Combined with Figs. 5-10, it can be seen that the centrifugal pump cavitation development 
process, the time domain and frequency domain signal amplitude are increasing, in which the 
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frequency of the frequency domain signal is mainly distributed in the shaft frequency and lobe 
frequency, with the deepening of the degree of cavitation, the frequency distribution is becoming 
more and more centralized and more amplitude increase at high frequency, showing the increase 
in vibration energy. Therefore, the time-domain indicators T2, T3, T4 and T8 reflecting the change 
of vibration amplitude gradually increase with the development of cavitation, while the time-
domain indicators T1, T5, T6 and T7 reflecting the shape of the signal have no significant change; 
the frequency-domain features F1, F2, F3 and F4 reflecting the spectral distribution gradually 
increase with the development of cavitation, reflecting the high-frequency component brought by 
cavitation; the energy value of the IMF component reflecting the vibration energy and complexity 
is similar to that of the sample entropy feature in the first 2 years. Sample entropy features 
gradually increase with cavitation development in the first 2-order components, but the difference 
is not significant in the last 3-order components, indicating that the higher-order components after 
EEMD decomposition can no longer reflect the characteristics of the original signal. Therefore, 
the time-domain indicators T2, T3, T4, T8, the frequency-domain indicators F1, F2, F3, F4, and 
the time-frequency indicators TF11, TF12, TF21, TF22 are selected for the subsequent 
identification of the cavitation state. 

 
Fig. 7. Time domain index 

 
Fig. 8. Frequency domain index 

 

 
Fig. 9. Energy value 

 
Fig. 10. Sample entropy 

3. The basic model 

3.1. Stacked denoising autoencoder 

Self-encoder (AE) is a typical deep learning network including input layer (𝑥), hidden layer 
(ℎ) and output layer (𝑦), which realizes the reconstruction of the input signal by encoding and 
decoding, and realizes the feature extraction of the signal by minimizing the reconstruction error, 
and its structure is shown in Fig. 11. Noise-reducing auto-encoder (DAE) is an improved form of 
AE, which randomly sets the input layer 𝑥 to zero according to a certain ratio p through a certain 
random distribution to obtain a noise-containing data, and then reconstructs the noise-containing 
data and adjusts the model parameters through AE. By stacking several DAEs, the SDAE can be 
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obtained, and its structure is shown in Fig. 12. 

 
Fig. 11. Auto-Encoder network structure 

 
Fig. 12. Training of SDAE 

3.2. Rime optimization algorithm 

The rime optimization algorithm is the latest meta-heuristic algorithm based on natural 
phenomena, inspired by the growth behavior of rime in nature [10]. The process of RIME is as 
follows:  

1. Soft-rime search strategy, which simulates the movement of soft-rime particles in gray ice 
and puts forward a soft-rime search strategy. 

2. Hard-rime puncture mechanism, which is inspired by the piercing phenomenon during the 
growth of rime strong wind. 

3. Positive greedy selection mechanism, this way of working can effectively filter out the bad 
solutions in the population, while introducing suboptimal solutions by changing the choice of 
optimal solutions. 

4. Result analysis 

This paper proposes a new method named RIME-SDAE algorithm. The realization steps of 
the centrifugal pump cavitation fault diagnosis algorithm proposed in this paper are shown in 
Fig. 13. 

 
Fig. 13. Diagnostic process of cavitation fault of centrifugal pump 

After signal denoising of the original vibration signals of the three cavitation states, the 
vibration signals of any one direction are selected for the division of data samples, and the length 
of each sample is positioned at 1000, which goes to a total of 100 samples. The vibration signals 
in other directions are also sampled in the same way, and a total of 300 samples can be obtained. 
The feature set 𝑀𝐼௑ = [𝑇 𝐹 𝑇𝐹]ଷ଴଴∗ଵଶ is obtained by extracting multi-domain indicators of data. 
Where 𝑇 is a 4-dimensional time domain vector, 𝐹 is a 4-dimensional frequency domain vector, 
and 𝑇𝐹 are 4-dimensional time-frequency vectors. Similarly, the characteristics of vibration 
signals in 𝑌 and 𝑍 directions are extracted to get 𝑀𝐼௒ and 𝑀𝐼௓. The three centrifugal pump 
cavitation state feature matrices in three directions are combined and reconstructed into a feature 
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dataset of dimension 300×36. Then, the dataset matrix of size 300×36 is obtained after feature 
extraction, and the training dataset is divided into training dataset and testing dataset in the ratio 
of 7:3. Then, Next, the number of hidden layers of SDAE is set to 3 and training is started, during 
which RIME is used to find the optimal model parameters for SDAE. Involving the counts of 
points in two hidden layers (𝑙ଵ, 𝑙ଶ, 𝑙ଷ), participation rate 𝑎 and iterations 𝑒. The optimal 
parameters for SDAE can be found in Table 2. 

Table 2. Optimized SDAE model parameters 
Parameter Symbol Value 

Counts of neurons in the input layer – 79 
Counts of neurons in the first hidden layer 𝑙ଵ 53 

Counts of neurons in the second hidden layer 𝑙ଶ 50 
Counts of neurons in the third hidden layer 𝑙ଷ 84 

Counts of neurons in output layer – 3 
Counts of DAE – 3 

Participation rate 𝑎 0.8 
Iterations 𝑒 0.6 

The identification accuracy of centrifugal pump cavitation faults can be obtained by using the 
test samples as inputs to the trained RIME-SDAE model. and the classification accuracy of test 
samples is shown in Fig. 14. To show the importance of parameter optimization, the classification 
performance of SDAE with and without parameter optimization is compared. Fig. 15 
demonstrates the average classification accuracy of RIME-SDAE versus standard SDAE over 10 
experiments. 

 
Fig. 14. Correct classification rate of testing set 

 
Fig. 15. Comparison of classification accuracy 

As shown in the Fig. 14, the SDAE optimized by RIME parameters performs well in the test 
set, and the diagnostic accuracy rate reaches 100 %, which verifies the feasibility of this method 
for cavitation fault diagnosis of centrifugal pumps. As can be seen from Fig. 15, RIME-SDAE 
performs better than the parameter-free optimized SDAE in centrifugal pump cavitation fault 
identification. Among them, the average correct rate of ten experiments of RIME-SDAE reaches 
more than 98, which is significantly higher than that of SDAE without parameter optimization, 
indicating that the method proposed in this paper can significantly improve the correct rate of 
centrifugal pump cavitation fault identification. 

5. Conclusions 

In this paper, a cavitation fault diagnosis method based on RIME-SDAE is proposed. By 
comparing the experimental results, it is known that: 

1) Calculating the multi-domain indexes of the 𝑋, 𝑌 and 𝑍 vibration signals of a single triaxial 
acceleration sensor and constructing a feature data set can not only reduce the complexity of 
experiment and signal analysis, but also more comprehensively characterize the inherent 
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characteristics submerged by noise. 
2) Through the fault mechanism analysis to filter out the features that better characterize the 

fault information, reduce the impact of redundant features on the subsequent calculations, and 
improve the computation efficiency. 

3) After optimizing the parameters of SDAE model with RIME algorithm, the accuracy of 
fault classification is improved, and the randomness and arbitrariness of parameter selection of 
traditional deep learning model are avoided. 
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