Implementation of lookup tables for different optimization strategies of semi-active car suspension system

Aurimas Čerškus¹, Nikolaj Šešok², Vytautas Bučinskas³

Department of Mechatronics, Robotics and Digital Manufacturing, Vilnius Gediminas Technical University, Vilnius, Lithuania

³Corresponding author

E-mail: ¹aurimas.cerskus@yilniustech.lt, ²nikolaj.sesok@yilniustech.lt, ³vytautas.bucinskas@yilniustech.lt

Received 26 November 2024; accepted 4 February 2025; published online 5 April 2025 DOI https://doi.org/10.21595/jve.2025.24689

Copyright © 2025 Aurimas Čerškus, et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Road irregularities and various vehicle loads influence comfort and safety levels. Owing to these changes, the driver cannot quickly and easily find the best driving parameters. Control of damping in a semi-active suspension adjusts the damping process in the vehicle to minimize the acceleration of the crew. This ensures comfort for them, influencing the level of fatigue of the driver and safe driving. A theoretical analysis was implemented using a mathematical full-car model in Simulink/MATLAB. We performed a simulation of a vehicle with all passengers passing various artificially generated road profiles at different velocities. We optimized the damping coefficient for the maximum comfort level using one, two, or four damping values, implementing different optimization strategies. The obtained research results were finalized by the conclusions.

Keywords: semi-active suspension, vehicle damping, optimization, ride comfort, optimization strategy.

1. Introduction

One of the key systems in a vehicle is the suspension, which helps to maintain uninterrupted and good touch of the tires with the road and assures driving safety and ride comfort irrespective of the quality of the road surface or weather conditions [1]-[3]. The suspension can be passive, fully active, or semi-active. Typically, passive suspension systems have limited isolation or motion control. The crew is best isolated from low-frequency vibrations when damping is high. However, high damping reduces high-frequency absorption. Conversely, when the damping is low, the damper offers sufficient high-frequency absorption and poor low-frequency isolation. D. Karnopp [4] stated that for ride comfort, the suspension should isolate the body from high-frequency road inputs. However, at lower frequencies, the body and wheel should closely follow the vertical input from the road. This is related to vehicle handling. Thus, the increased damping in the suspension system deteriorates comfort but improves safety. The intuitive relationship between comfort and safety is discrepant [1], [5], [6], and it is not viable to improve both at the same time. Meanwhile, the authors [7], [8] showed that the dependence of modified comfort and safety indicators on some damping ranges of damping increases and decreases consistently. Another possible solution to this compromise is the semi-active hydropneumatic spring-damper system proposed by P.S. Els et al. [1], in the form of a four-state system, or an active suspension system, or improving driver comfort by optimizing the seat [9]. Various systems have been discussed in references [3], [5], [10]-[12], and their strengths, weaknesses, relative performance, and equipment requirements have been identified. Active suspension systems can improve the performance of suspension systems at wide frequencies compared to passive suspension systems [13]. A semi-active suspension system combines the advantages of other types of suspensions. It can smoothly change damping, be effective nearly as effective as a fully active suspension [14], and is preferred due to its inherent characteristics such as low energy consumption, especially in vehicles where available power is limited. Semi-active suspensions have attracted considerable attention because their controllable parameters can be adjusted in real-time [15], [16].

One of the steps in designing a suspension system is the evaluation of the dynamic vehicle model. Well-known quarter-car models [10], [17], [18], which exhibit two degrees of freedom (two DOFs), are used to evaluate the decoupling vibrations that occur for an entire vehicle. However, the main disadvantage of quarter-car models is the omission of vibration propagation between all vehicle quarter parts and the fact that the wheelbase filtering effect cannot be captured and would overestimate the bounce acceleration responses of the sprung mass. Some applications require the use of half-car (four DOFs) models [19], [20]. These models can be justified in the case of the symmetrical construction of a vehicle or symmetrical road-induced kinematic excitation. Although it simplifies the analysis of the vehicle dynamics, the half-car model describes only the pitch or roll dynamics of the vehicle. Full-car models [21], [22] with seven DOFs describe a three-dimensional frame with four wheels. In the full-car model, the vertical dynamics of the four wheels as well as the heave, pitch, and roll dynamics of the vehicle body are mapped. Unlike a quarter-car model, a full-car model is a complex model that can register a detailed vehicle's dynamics of vertical motion. Full-car models with a higher number of DOFs are used not only to evaluate more complex vehicle dynamics [24], but also to evaluate the impact of vibrations on the driver or passengers [24]-[32]. The authors considered only the driver, all passengers, or different seating combinations using models of different complexities. However, the masses applied to the entire crew were the same in all the cases.

The other steps are to choose the type, structure, and control of the suspension, metrics of safety or comfort of the ride, and the objective function for optimization. The different emphasis is on ride comfort and handling stability under different road conditions and driving styles. The characteristics of suspensions also need to change according to the driving style and road conditions during driving [1], [33]-[35]. When ride comfort is a priority, a semi-active suspension system with a variable damper can be effective, similar to an active system [11], [12], [17], [36]. Notwithstanding, the variable damper in a semi-active suspension system has significant restrictions when it is necessary to control the height and posture movement of the vehicle. This problem can be solved by using variable stiffness in a semi-active suspension system [37]-[39]. Thus, some authors have applied variable dampers and variable stiffness [40]-[44]. Therefore, semi-active systems are very helpful in improving ride quality and vehicle-handling capacities. Many different control strategies [45]-[50] have been developed to identify control signals by measuring various parameters. These can be based on linear or non-linear models [51]-[54]. The classical strategies for semi-active vibration control are sky-hooks or ground-hooks. Modern and intelligent controllers can use optimal control [55], [56], model predictive control [57], fuzzy-logic control [18], [58], or based on road statistical properties, that is, optimal damping ratio control [59]. Furthermore, the behavior of semi-active systems was improved by implementing a preview strategy [60], [61]. Consequently, information is needed on road conditions.

Researchers have conducted numerous investigations on models or methods of road recognition. Various methods and equipment required for the measurement of road properties were reviewed in [62]-[64]. Meanwhile, not expensive response-based road profile identification methods were reviewed in [65]. Other possibilities could be advances in semi-active suspension design, such as vehicle-to-vehicle or vehicle-to-infrastructure communication, vehicle localization with real-time access to cloud information.

The procedures for the objective evaluation of ride quality are defined in the standard ISO 2631-1:1997 [66]. G. Guastadisegni et al. [67] listed and discussed available metrics for the objective evaluation of vehicle ride quality, and reviewed how available studies have associated metrics with road profiles and manoeuvres. There is a primary difference between the indicators for evaluating ride comfort and those for road holding. When assessing ride comfort, the selection of metrics is affected by the properties of the road profile. Ride comfort metrics are mainly based on the vertical accelerations recorded over time in different positions of the vehicle, and its root

mean square (RMS) value is also the main indicator for long-type road profiles. When evaluating the quality of driving, especially for high-performance passenger cars, it is also necessary to consider the indicators of road holding capability. Thus, can be chosen not only as one indicator but also as a combination of them [68]. Similar to the modified objective function introduced by Z. Lozia [7], [69], it has weighting factors within the range of [0, 1] for comfort and safety indicators. In line with common practice, three criteria can be adopted to assess the correctness of the selection of the suspension damping coefficient: 1) minimization of the measure of vehicle occupants' discomfort, 2) minimization of the safety hazard, and 3) limitation of the working displacements of the suspension system. S. A. Abu Bakar et al. [70] stated that the selected damping value should provide the maximum overall percentage of performance improvement.

We are continuing to research and develop the control of our semi-active suspension system [71] using information obtained from a segment of the driven road profile [72], [73]. The vehicle control block will receive the road characteristics and information about the vehicle load and will set the damper damping values to minimize the vibration of the vehicle body and crew. For this purpose, we need a gridded matrix of the required optimal damping values related to the characteristics of the road at certain fixed values of speed and masses of the crew. In one of our previous papers [74], we showed that only a few points needed for the entire matrix can be found in the literature and presented the results of damping optimization for a driver with various mass locations.

This study provides a relationship between the optimized damping values for a full-car model with 12 DOFs and the detected road characteristics (waviness values w_1, w_2) for a wide range of road profiles travelling through them at various speeds. Here, to minimize the number of possible choice, we focus on the case in which the damping coefficient is optimized for the maximum level of comfort with different fixed crew mass. In addition, the same value of damping, two different or different damping values for all wheels, is used and optimized for the driver, for the driver and front passenger, for the driver and rear left passenger, and for the entire crew.

2. Methods

2.1. Road profiles

Real experiments require the measurement of the road profile. Different direct, non-contact measurements or system response-based estimations can be used. For simulation, it was possible to use a measured real road profile or a generated artificial profile with the prescribed parameters. An artificial random road profile can be generated through the implementation of 1) linear filtering, 2) superposition of harmonics (sinusoidal approximation), and 3) inverse fast Fourier transform of discretized power spectral density (PSD) [75]. We also used one of the most commonly implemented methods [76]-[78] for superposition of harmonics. Longitudinal road profiles were generated using the original MATLABTM code, implementing the method of superposition of harmonics in the spatial domain according to Eqs. (1-2):

$$z(x) = \sum_{i=1}^{N = (\Omega_U - \Omega_L)/\Delta\Omega} Z_i \cos(\Omega_i x + \varphi_i),$$

$$Z_i = \sqrt{2G_d(\Omega_i)\Delta\Omega},$$
(1)

$$Z_i = \sqrt{2G_d(\Omega_i)\Delta\Omega_i},\tag{2}$$

where Z_i , $\Omega_i = \Omega_L + (i-1)\Delta\Omega$, φ_i are respectively amplitude, angular spatial frequency and uniformly distributed phase angle of ith harmonic; Ω_U , Ω_L , $\Delta\Omega$ are respectively upper or lower angular spatial frequencies in the PSD spectrum and the width of each frequency band; $G_d(\Omega_i)$ is displacement PSD at the angular spatial frequency Ω_i ; N is number of harmonics (we used 1000). The ISO 8608 standard recommends the lower and upper limits of the angular spatial frequencies $(=2\pi n)$ equal to $2\pi \times 0.01$ rad/m and $2\pi \times 10$ rad/m for general on-road measurements, respectively [79]. In order to generate different road profiles that match the real roads more closely, we replaced the linear fitting of $G_d(\Omega)$ proposed by ISO [79] to two split fittings offered by P. Andrén [80] in Eq. (2) and modified it by reducing the amplitude of frequencies higher than Ω_2 and lower than $0.04 \times 2\pi$ rad/m:

$$G_{d}(\Omega) = \begin{cases} G_{d}(\Omega_{0})\Omega^{-1}, & \Omega \leq 0.04 \times 2\pi \text{ rad/m,} \\ G_{d}(\Omega_{0})\Omega^{-w_{1}}, & 0.04 \times 2\pi \text{ rad/m} \leq \Omega \leq \Omega_{2}, \\ G_{d}(\Omega_{0})\Omega^{-w_{2}}, & \Omega_{1} \leq \Omega \leq \Omega_{2}, \\ G_{d}(\Omega_{0})\Omega^{-w_{3}=5}, & \Omega_{2} \leq \Omega, \end{cases}$$
(3)

where w_i is waviness; $\Omega_0 = 1$ rad/m, $\Omega_1 = 0.21 \times 2\pi$ rad/m and $\Omega_2 = 1.22 \times 2\pi$ rad/m. These values of reference, lower, and higher break frequencies, respectively, produced a minimal error for the Swedish road network [80]. In addition, Welch-type window functions have been used to minimize the appearance of sudden shifts in connections between profile segments, with 10 exponential values [81]. The left-hand wheels passed the profile generated in this way, while for the right-hand wheels it was modified by randomly increasing or decreasing it values up to 20 %. An identical random number sequence was used to generate each profile for comparison.

2.2. Dynamic model

The dynamic response of Range Rover Evoque to road irregularities was analyzed using a full-car model with 12 DOFs [82]: seven DOFs for the vehicle body [21] and five DOFs for vertical displacements along the Z-axis of the crew and baggage box masses. In other words, our model included 10 masses (car body, four wheels, driver, three passengers, and baggage box) and two moments of inertia about the X and Y axes and was constructed using Lagrange's equation of the second type in generalized coordinates. These equations were solved analytically, and after differentiation the final system was obtained, which consists of 12 equations presented in this way:

$$a_{ii}\ddot{q}_{i} + b_{i1}\dot{q}_{1} + b_{i2}\dot{q}_{2} + \dots + b_{in}\dot{q}_{n} + c_{i1}q_{1} + c_{i2}q_{2} + \dots + c_{in}q_{n}$$

$$= d_{i1}\eta_{1} + d_{i2}\eta_{2} + d_{i3}\eta_{3} + d_{i4}\eta_{4} + d_{i1}^{*}\dot{\eta}_{1} + d_{i2}^{*}\dot{\eta}_{2} + d_{i3}^{*}\dot{\eta}_{3} + d_{i4}^{*}\dot{\eta}_{4},$$

$$(4)$$

where a, b, c, d and d^* (with corresponding indexes) are coefficients of equations derived from matrices of stiffness, dissipation, and inertia; q_i is a generalized coordinate applied to the formation of the equation system; n is the number of generalized coordinates or DOFs; and η_1 , η_2 , η_3 , η_4 are coordinates along which the car system is kinetically excited. More information about our model and its derivation can be found in [82]. The road profiles generated as above were used as input. When passing the corresponding profiles, the front and rear wheels were excited by road irregularities located at a distance equal to the distance between the axle centers.

The same ($h_{sF1} = h_{sF2} = h_{sR1} = h_{sR2}$), two different values for the front and rear ($h_{sF1} = h_{sF2}$, $h_{sR1} = h_{sR2}$), or all different damping coefficients (h_{sF1} , h_{sF2} , h_{sR1} , h_{sR2}) for all wheels, which define the behavior of the suspension, were optimized as parameters (marked as 1P, 2P, and 4P, respectively) to reach the minimal RMS value of the vertical acceleration of the crew. In other words, the suspension system was adjusted for the maximum driver, for the driver and front passenger, for the driver and rear left passenger, and for the entire crew comfort. The mathematical solution of Eq. (4) and the optimization process were processed using Simulink/MATLABTM software and its response optimization, using the Gradient Descent method. The response optimization tool was configured to optimize the damping coefficients as parameters to find the minimum final value of the RMS of the vertical acceleration passing through the entire road profile. The objective function was constructed using the RMS value of the vertical acceleration for the driver, or their sum for the driver and front passenger, for the driver and rear left passenger, and for the entire crew, respectively, with default weighting value 1. All elements of the suspension system, tire stiffness, and damping were assumed to be linear [53]. During

optimization, the damping coefficient can vary from a minimum of 1000 Ns/m to a maximum of 15000 Ns/m. The masses of the crew were chosen as 100 kg, 80 kg, 60 kg, and 40 kg for the driver, front passenger, rear right passenger, and rear left passenger, respectively. The other parameters were the same as those used in Ref. [82].

3. Results and discussion

Initially, we generated road profiles with waviness w_1 values of 1, 2, 4, and 6; w_2 values of 0.5, 1, 2, and 3; and value of displacement PSD for ISO road class B $G_d(\Omega_0) = 4 \times 10^{-6}$ m³ [79]. The length of the longitudinal road profile was 200 m. It is twice as much as needed to accommodate the ISO 8608 standard recommended the lower limits of the spatial frequency equal to 0.01 cycle/m. Using our dynamic full-car model, we had been simulating a vehicle passing these profiles at speeds v = 20, 50, 70, 90, and 130 km/h. When optimized for the driver and the same damping for all wheels, the values of the damping coefficient of the optimized suspension for the generated profiles and various speeds are shown in Table 1 and in Tables A1-A3, respectively, when optimized for the driver and front passenger, for the driver and rear left passenger, or for the whole crew.

Table 1. Dependence of the damping on vehicle speed and road waviness (Cases: one coefficient (1P), optimization for driver $\binom{1}{0}\binom{0}{0}$)

(Cuses: one coefficient (11), optimization for driver (00))							
	Damping coefficients, Ns/m						
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h		
$w_1 = 1; w_2 = 0.5$	1172	1242	1292	1216	1408		
$w_1 = 2; w_2 = 0.5$	1169	1287	1605	1563	1771		
$w_1 = 4; w_2 = 0.5$	1163	1506	2693	3053	2778		
$w_1 = 6; w_2 = 0.5$	1152	2092	4991	6164	4127		
$w_1 = 1; w_2 = 1$	1365	1448	1433	1279	1429		
$w_1 = 2; w_2 = 1$	1360	1511	1786	1655	1793		
$w_1 = 4; w_2 = 1$	1350	1800	2966	3207	2793		
$w_1 = 6; w_2 = 1$	1334	2503	5476	6323	4131		
$w_1 = 1; w_2 = 2$	1893	1926	1710	1396	1458		
$w_1 = 2; w_2 = 2$	1878	2030	2121	1818	1818		
$w_1 = 4; w_2 = 2$	1848	2462	3487	3452	2810		
$w_1 = 6; w_2 = 2$	1807	3443	6426	6578	4142		
$w_1 = 1; w_2 = 3$	2776	2462	1947	1487	1476		
$w_1 = 2; w_2 = 3$	2726	2620	2418	1936	1835		
$w_1 = 4; w_2 = 3$	2637	3211	3964	3630	2821		
$w_1 = 6; w_2 = 3$	2545	4570	7330	6749	4148		

The use of one damping value for all wheels in the full-car model was similar to the use of the quarter-car model. Nevertheless, the advantage is that we can optimize for different combinations of passenger positions and also consider pitch and roll dynamics and the influence of separate wheels. The dependencies of the optimized damping coefficient on the waviness w_1 , w_2 and speed are the same as those observed to optimize suspensions with various locations of masses [74]. The optimal damping values increased when both waviness indices increased, except when the speed was equal to 20 km/h and w_1 increased. The highest damping values occurred when $w_1 = 6$ and the speed was 70 km/h or 90 km/h. Higher damping values are required to increase w_2 at a fixed w_1 , and this difference changes from thousands to tens with increasing speed. When fixed w_2 , the damping differences owing to the change in w_1 increased with increasing speed and reached a maximum at speeds of 70 km/h or 90 km/h. However, higher damping is also required when the optimization purpose is for the driver with the rear left passenger or whole crew compared to the optimization for the driver or for the driver with the front passenger. This is because rear suspensions require higher damping (see below).

Table 2. Dependence of the damping on vehicle speed and road waviness (Cases: two different coefficient for front and rear (2P), respectively, top and bottom values,

optimization for driver and rear left passenger $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

орини.	Damping coefficients, Ns/m					
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h	
1 0.5	1100	1173	1000	1000	1228	
$w_1 = 1; w_2 = 0.5$	2444	2164	3426	2770	2570	
2 0.5	1103	1157	1000	1134	1579	
$w_1 = 2; w_2 = 0.5$	2404	2746	4976	4610	2786	
4 0.5	1106	1102	1092	1542	2497	
$w_1 = 4; w_2 = 0.5$	2335	5165	10022	8163	3451	
(0.5	1108	1000	1491	3908	3698	
$w_1 = 6; w_2 = 0.5$	2251	12291	15000	11078	3833	
1 1	1248	1361	1002	1050	1233	
$w_1 = 1; w_2 = 1$	3117	2702	4029	3193	2740	
2 1	1253	1330	1096	1177	1583	
$w_1 = 2; w_2 = 1$	3067	3536	5713	5091	2949	
4 1	1257	1243	1230	1664	2506	
$w_1 = 4; w_2 = 1$	2942	6680	10460	8287	3513	
6 1	1258	1120	1829	4196	3699	
$w_1 = 6; w_2 = 1$	2839	14389	15000	11168	3847	
1 2	1622	1790	1216	1114	1236	
$w_1 = 1; w_2 = 2$	4842	3991	4948	3871	2948	
w = 2· w = 2	1631	1732	1310	1268	1593	
$w_1 = 2; w_2 = 2$	4768	5223	6675	5619	3135	
$w_1 = 4; w_2 = 2$	1632	1588	1554	1874	2517	
$w_1 - 4, w_2 - 2$	4555	9283	10918	8428	3580	
w - 6: w - 2	1629	1482	2616	4621	3706	
$w_1 = 6; w_2 = 2$	4254	15000	15000	11279	3857	
w - 1: w - 2	2208	2278	1399	1169	1237	
$w_1 = 1; w_2 = 3$	6880	5115	5525	4284	3060	
w - 2: w - 2	2197	2181	1526	1349	1598	
$w_1 = 2; w_2 = 3$	6731	6521	7199	5931	3213	
$W = A \cdot W = 2$	2206	1981	1877	2027	2526	
$w_1 = 4; w_2 = 3$	6528	10891	11132	8506	3608	
w = 6: w = 3	2182	1924	3457	4894	3711	
$w_1 = 6; w_2 = 3$	6080	15000	15000	11323	3863	

A more realistic case in a vehicle is when different damping values are used for the front and rear suspensions. Such optimized results are presented in Table 2, optimizing for driver and rear left passenger or Tables A4-A6 optimizing for driver, driver and front passenger, and for the entire crew, respectively. Other results of more complex cases where all damping are different are shown in Table 3 optimizing for the whole crew or Tables A7-A9 optimizing for the driver, for the driver and front passenger, and for the driver and rear left passenger, respectively. The above-mentioned tendencies of dependencies of optimized damping are observed in cases with two and four different damping values with few peculiarities. Rear suspensions require higher damping values than front suspensions because of their larger share of total mass. The rear damping values do not increase but decrease with increasing waviness, but only if optimized for the driver or driver and front passenger (see Tables A4, A5, A7, A8). The highest damping values when $w_1 = 6$ shifted to a lower speed range (50 km/h or 70 km/h). There are situations where the limit damping values are reached, especially a lot of times when the speed is 50 km/h and 70 km/h and optimized for the driver or driver and front passenger. Here, one can observe the tendency that lower damping is required when the optimization purpose is the driver with rear left passenger or whole crew, compared with the optimization for the driver or for the driver with the front passenger (opposite to one damping value).

Table 3. Dependence of the damping on vehicle speed and road waviness (Cases: four different coefficients (4P) (top left is front left and bottom right

is rear right), optimization for driver and all passengers $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

	Damping coefficients, Ns/m						
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h		
1 0.5	1000 1068	1085 1123	1000 1000	1000 1000	1000 1319		
$w_1 = 1; w_2 = 0.5$	2400 3186	2213 2750	3539 4444	3004 3823	2282 4357		
2 0.5	1000 1071	1033 1124	1000 1000	1000 1000	1000 1915		
$w_1 = 2; w_2 = 0.5$	2365 3146	2804 3645	5226 6592	5054 6373	2202 5508		
4 0.5	1000 1076	1000 1040	1000 1000	1472 1183	1000 3581		
$w_1 = 4; w_2 = 0.5$	2294 3070	5694 6886	10129 11948	8304 8967	1940 6740		
6 0.5	1000 1081	1000 1000	1314 1150	4725 1509	1789 5115		
$w_1 = 6; w_2 = 0.5$	2199 2966	13678 14830	15000 15000	10442 11128	2337 6190		
$w_1 = 1; w_2 = 1$	1056 1243	1238 1316	1000 1000	1000 1000	1000 1325		
$w_1 - 1, w_2 - 1$	3087 4002	2852 3416	4336 5170	3598 4416	2420 4545		
$w_1 = 2; w_2 = 1$	1058 1246	1196 1290	1000 1000	1000 1082	1000 1943		
$w_1 = 2; w_2 = 1$	3027 3941	3804 4532	6188 7450	5523 6794	2278 5639		
$w_1 = 4; w_2 = 1$	1067 1247	1092 1188	1106 1008	1594 1285	1000 3607		
$w_1 - 4, w_2 - 1$	2938 3814	7719 8625	10690 12226	8451 8933	1942 6764		
$w_1 = 6; w_2 = 1$	1071 1254	1000 1065	1596 1366	2512 5861	1815 5097		
$w_1 - 0, w_2 - 1$	2806 3675	15000 15000	15000 15000	12267 9470	2362 6198		
$w_1 = 1; w_2 = 2$	1460 1575	1616 1784	1088 1109	1000 1013	1000 1322		
$w_1 - 1, w_2 - 2$	4894 5536	4567 4636	5577 6167	4514 5277	2621 4765		
$w_1 = 2; w_2 = 2$	1456 1576	1550 1720	1158 1161	1106 1154	1000 1974		
$w_1 - z, w_2 - z$	4763 5417	6015 6112	7352 8209	6139 7139	2374 5777		
$w_1 = 4; w_2 = 2$	1458 1580	1391 1554	1379 1325	1799 1501	1000 3634		
$w_1 = 4, w_2 = 2$	4583 5191	10687 10722	11269 11988	8637 8852	1945 6795		
$w_1 = 6; w_2 = 2$	1463 1592	1356 1427	2323 2024	3128 5959	1843 5097		
$w_1 = 0, w_2 = 2$	4374 4980	15000 15000	15000 15000	12296 9603	2390 6197		
$w_1 = 1; w_2 = 3$	2023 2243	2002 2410	1267 1298	1000 1124	1000 1321		
$w_1 = 1, w_2 = 3$	7139 7116	6168 5347	6307 6544	4959 5720	2740 4869		
$w_1 = 2; w_2 = 3$	2033 2247	1914 2299	1366 1387	1200 1229	1000 1991		
$w_1 - 2, w_2 - 3$	6886 6925	7820 6932	7998 8376	6476 7276	2427 5842		
$w_1 = 4; w_2 = 3$	2036 2215	1714 2054	1671 1690	1948 1704	1000 3647		
$w_1 - \tau$, $w_2 - 3$	6604 6612	12652 11419	11734 11679	8750 8791	1947 6809		
$w_1 = 6; w_2 = 3$	1997 2234	1809 1842	3156 2836	3529 6145	1860 5089		
$w_1 - 0, w_2 - 3$	6333 6281	15000 15000	15000 15000	12338 9680	2406 6197		

More actual information is how all these changes influence ride comfort (in our case, the RMS of the vertical acceleration). We compared the RMS values on different sides of view to answer the question of what is the most suitable for ensuring the best ride comfort for all crews. First, we compared the percentage changes in the RMS value of vertical acceleration (for all four positions and the sum) relative to the reference of the corresponding RMS values of vertical acceleration for the corresponding speed and road profile when optimized for the driver. It was calculated as follows (using this equation, positive values indicate a percentage increase, whereas negative values indicate a percentage decrease):

$$\%change = \frac{value - reference}{reference} \times 100.$$
 (5)

The maximum decrease and increase in the percentage change for the cases with one, two, or four damping coefficients and different optimizations are shown in Table 4 relative to the reference of the corresponding RMS values of vertical acceleration for the corresponding speed and road profile when optimized for the driver with the same number of damping values. The dependences of these reference values of the sum of the RMS value of the vertical accelerations

of the entire crew on the w_1 and w_2 waviness of the road profile when the vehicle speed is 20 km/h, 50 km/h, 70 km/h, 90 km/h, or 130 km/h are shown in Fig. 1 (or in Figs. A1-A4 for separate passengers). These dependencies of the reference values have the same common tendencies, and it is obvious that they have slightly different values. From the point of view of the optimization purpose relative to the optimization for the driver (Table 4), the sum of the RMS values decreased for all road profiles and speed values only if the optimization purpose was the entire crew using one, two, or four damping values as parameters (maximum down to -15 % or -0.58 m/s^2). However, for example, the percentage change of -13.7 % corresponds to -0.89 m/s^2 or -0.55 m/s² difference, or -7.36 % to -0.77 m/s². In general, there is no correlation between the values of percentage change and the values of difference (compare the results in Table 4 and Table A10 or Table A11 and Table A12), and the minimum and maximum values of difference and percentage change appear in different situations. A comparison of the dependences of the percentage change and difference on the road profile and speed for the two cases with the sum of the RMS is shown in Fig. 2. Only the zero values (blue lines in Fig. 2) were in the same location. Although the sum of the RMS values decreased for all road profiles and speed values when the optimization purpose was the entire crew using four damping values, a detailed analysis of the full data showed that the improvement in comfort is observed only for two or three passengers simultaneously, and it is one point $(w_1 = 1, w_2 = 1, v = 70 \text{ km/h})$, where it improves for the driver. It is known from previous work [33], [74] that when changing the optimization purpose from only the driver to other purposes, we increase the comfort level for others but decrease it for the driver.

Table 4. The maximum percentage change in the RMS value of vertical acceleration (for the four positions and the sum) relative to the reference of the corresponding RMS values of vertical acceleration for the corresponding speed and road profile when optimized for the driver with the same number of damping values. FL – front left (driver), FR – front right passenger,

RL – rear left passenger, RR – rear right passenger

Damping				Percentag	e change, %					
values	Optimized for		$RMS(a_{FL})$	$RMS(a_{FR})$	$RMS(a_{RR})$	$RMS(a_{RL})$	ΣRMS			
	$\binom{1}{0}\binom{0}{0}$		as reference							
	$\binom{1}{0} \frac{1}{0}$	min	0.00	-0.69	-0.90	-0.89	-0.51			
	(00)	max	0.26	0.00	2.55	2.28	1.08			
1P	$\binom{1\ 0}{1\ 0}$	min	0.02	-0.24	-19.9	-18.7	-6.88			
	(10)	max	9.06	8.31	-0.03	-0.04	0.09			
	$\binom{1}{1} \frac{1}{1}$	min	0.01	-0.36	-20.7	-19.5	-6.90			
		max	10.1	9.20	0.14	0.10	-0.00			
	$\binom{1\ 0}{0\ 0}$			as re	ference					
	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$	min	-0.69	-2.55	-8.66	-8.21	-5.39			
		max	0.52	0.00	1.73	1.98	0.81			
2P	$\binom{1\ 0}{1\ 0}$ $\frac{\min}{\max}$	min	-0.24	-0.06	-33.7	-34.4	-14.9			
			14.1	12.6	-0.18	-0.28	0.09			
	$\binom{1}{1} \frac{1}{1}$	min	-0.30	-0.15	-33.2	-33.9	-15.1			
		max	14.1	12.0	0.02	-0.04	-0.01			
	$\binom{1\ 0}{0\ 0}$	as reference								
	(11)	min	-1.05	-24.2	-15.6	-7.58	-7.36			
	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$	max	11.9	0.06	23.2	11.0	3.95			
4P	$\binom{1\ 0}{1\ 0}$	min	-0.01	-17.5	-29.9	-35.8	-13.7			
	(1ŏ)	max	27.9	31.7	16.6	-1.13	4.76			
	$\binom{1}{1} \binom{1}{1}$	min	-0.00	-18.5	-31.7	-32.8	-13.7			
	(11)	max	10.5	10.7	4.92	3.64	-0.00			

The dependence of the difference in the RMS value of the vertical acceleration of the separate passengers on the w_1 and w_2 waviness of the road profile and vehicle speed is shown in Fig. 3 for the case optimized for the entire crew with four damping values relative to the reference when

optimized for the driver with four damping values. In all calculated situations, there are only a few situations where comfort is improved for the entire crew (see Table 5) compared to optimization for the driver. Most of them occur when we change the optimization purpose from the driver to the driver with the front-right passenger. The highest increases in comfort for separate passengers are from 30 % to 36 % for rear passengers when optimized for the driver and rear left passenger or for the entire crew with two or four damping values (RMS values decrease in the range from -0.35 m/s^2 to -1 m/s^2).

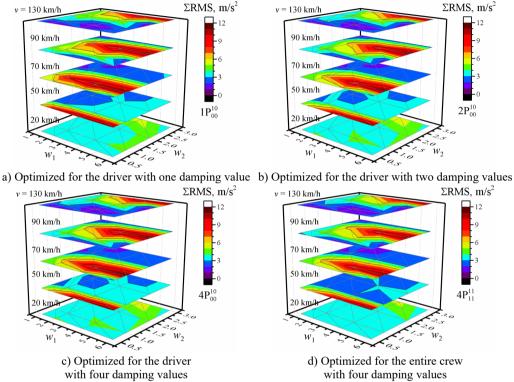
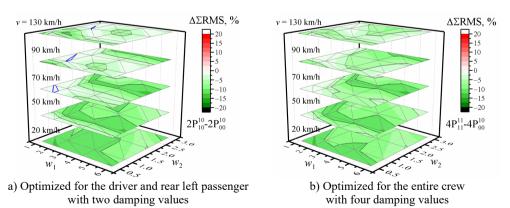



Fig. 1. Dependence of the sum of the RMS values of the vertical accelerations of the entire crew on the w_1 and w_2 waviness of the road profile and the vehicle speed v.

The black dotted line shows the major tick value

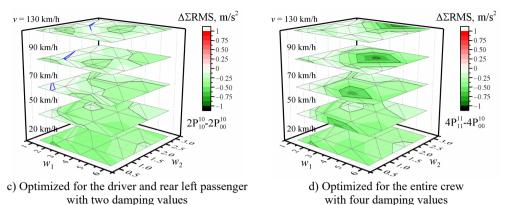


Fig. 2. Dependence of the percentage change (a, b) / difference (c, d) in the sum of the RMS values of vertical accelerations of the entire crew on the w_1 and w_2 waviness of the road profile and the vehicle speed v relative to the reference of the corresponding sum of the RMS values of vertical accelerations for the corresponding speed and road profile when optimized for the driver, respectively, with two or four damping values. The black dotted line shows the major tick value. The solid blue line is zero

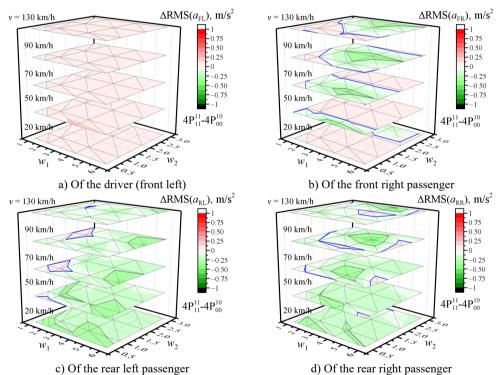


Fig. 3. Dependence of the difference in the RMS value of the vertical acceleration (a, b, c, d) on the w_1 and w_2 waviness of the road profile and the vehicle speed v when optimized for the entire crew with four damping values relative to the reference of the corresponding RMS values of vertical accelerations for the corresponding speed and road profile when optimized for the driver with four damping values. The black dotted line shows the major tick value. The solid blue line is zero

The comparison results relative to the optimization for the entire crew with four damping values are presented in Table 6. Here, we show the average percentage change over all profiles and velocities. From these results, we can state that the optimization for the entire crew with only four damping values is not the best choice for all passengers in all cases. Negligible changes in

the increase and decrease in the sum of the RMS were obtained when optimized for the driver and rear left passenger or the entire crew with two damping values compared with the case of the entire crew with four damping values (see Table A11). These three cases had nearly the same average sum of the RMS averaged over all profiles and velocities.

Table 5. Points where comfort increases for the entire crew relative to the reference
when optimized for the driver with the same number of damping values

when optimized for the driver with the same number of damping value							
Cases	w_1	W_2	v, km/h	$\Delta\Sigma$ RMS, m/s ²	$\Delta\Sigma$ RMS, %		
	1	2	50	-0.00011	-0.0033		
$4P_{00}^{11} - 4P_{00}^{10}$	1	3	50	-0.140	-3.9		
$4P_{00} - 4P_{00}$	6	2	70	-0.00014	-0.0049		
	1	0.5	90	-0.137	-4.3		
$2P_{11}^{11} - 2P_{00}^{10}$	6	2	130	-0.014	-1.7		
$2P_{10}^{10} - 2P_{00}^{10}$	6	2	130	-0.014	-1.7		
	1	2	20	-0.147	-3.7		
	6	3	20	-0.017	-0.48		
	1	3	50	-0.14	-4.1		
$2P_{00}^{11} - 2P_{00}^{10}$	2	3	50	-0.21	-5.4		
$2P_{00} - 2P_{00}$	1	3	70	-0.00032	-0.01		
	1	0.5	90	-0.14	-4.4		
	2	0.5	130	-0.0006	-0.078		
	6	2	130	-0.0026	-0.3		

Fig. 4 shows the dependence of the difference in the RMS value of the vertical accelerations on the waviness w_1 and w_2 of the road profile and the vehicle speed when optimized for the entire crew with four damping values relative to the reference of the corresponding RMS values of the vertical accelerations for the corresponding speed and road profile when optimized for the entire crew with two damping values. It can be seen that only for the driver is better optimization with four damping values. This could be explained by the fact that, when optimized for the entire crew with four damping values, we sometimes reached the limit values. We believe that better comfort results will be obtained if during optimization 1) we would check the minimal value separately for all passengers; 2) we would change not only damping, but also stiffness, or would use asymmetric suspensions or non-linear models; and 3) we would limit the highest values of acceleration. The comfort level is very low when the magnitude of the total values of the overall vibration ranges from 1.25 m/s² to 2.5 m/s² and extremely uncomfortable when they are even greater [66]. When the acceleration value is still high even after optimization, we could also additionally recommend reducing the speed. Therefore, by combining information from vehicle sensors about speed, masses with their location and information stored in a microcomputer or cloud about optimal damping, vertical acceleration, and road information, we can control damping and recommend or reduce driving speed [83], [84]. Using real-time data, the required damping value could be interpolated from 3D lookup tables of optimized damping coefficients calculated at our fixed values of speed v and waviness indices w_1 , w_2 by applying different optimization strategies.

Comparing our four optimization tasks, we can conclude that optimization for the driver and for the driver and front-right passenger gives similar results with one damping value. However, the percentage change increases with an increasing number of damping values. When comparing the optimization for the driver and rear-left passenger and for the entire crew, one has nearly similar values, except for the case with four damping values, where the larger changes are. This could be related to the higher comfort level of the crew. Finally, we could recommend to use one damping value when the speed of calculation is required for a short time (e.g., detected bump on the road). Add more regimes, for example, 'taxi,' when optimized for the driver because he rides all day and the passengers only ride for a short time, or 'trip' when optimized for the entire crew.

Table 6. The average over all profiles and velocities of percentage change in the RMS value of vertical acceleration (for all four positions and the sum) relative to the reference of the corresponding RMS values of vertical acceleration for the corresponding speed and road profile when optimized for the entire crew $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ with four damping values (4P). FL – front left (driver),

		r right passenger

Dommino volvos		Average of percentage change, %							
Damping values	Optimized for	$RMS(a_{FL})$	$RMS(a_{FR})$	$RMS(a_{RR})$	$RMS(a_{RL})$	ΣRMS			
	$\binom{1}{0} \binom{0}{0}$	16.1	12.3	12.1	7.08	11.7			
1P	$\binom{1}{0} \binom{1}{0}$	16.2	12.1	12.6	7.56	11.9			
11	$\binom{1\ 0}{1\ 0}$	19.6	15.8	3.55	-0.82	9.10			
	$\binom{1}{1} \binom{1}{1}$	19.9	15.9	3.41	-0.95	9.09			
	$\binom{1}{0} \binom{0}{0}$	-1.44	-4.89	20.0	19.0	6.95			
2P	$\binom{1}{0} \binom{1}{0}$	-1.38	-5.18	19.5	18.6	6.64			
21	$\binom{1\ 0}{1\ 0}$	3.83	-0.05	-0.56	-2.65	0.01			
	$\binom{1}{1} \binom{1}{1}$	3.40	-0.84	-0.15	-2.08	-0.06			
	$\binom{1\ 0}{0\ 0}$	-4.09	0.51	17.6	18.0	7.01			
4P	$\binom{1}{0} \binom{1}{0}$	-2.34	-4.76	18.8	18.8	6.50			
41	$\binom{1\ 0}{1\ 0}$	2.13	5.42	3.35	-4.10	1.49			
	$\binom{1}{1}\binom{1}{1}$		A	s reference					

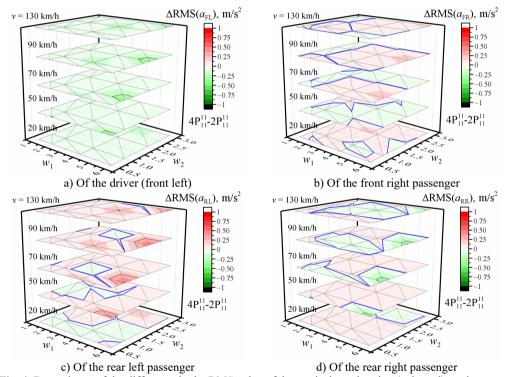


Fig. 4. Dependence of the difference in the RMS value of the vertical acceleration (a, b, c, d) on the w_1 and w_2 waviness of the road profile and the vehicle speed v when optimized for the entire crew with four damping values relative to the reference of the corresponding RMS values of vertical accelerations for the corresponding speed and road profile when optimized for the entire crew with two damping values. The black dotted line shows the major tick value. The solid blue line is zero

4. Conclusions

The relationship between the detected road waviness values and optimized damping

coefficient can be used to control the damping of the suspension system and recommend or reduce the driving speed. The required optimized damping value could be interpolated from a 3D gridded matrix of damping coefficients calculated at certain fixed values of speed and waviness indices when optimized with the same, two different for the front and rear, or all different damping coefficients for all wheels and using different optimization strategies. Our simulation results showed that higher damping is required when the optimization purpose is for the driver with the rear left passenger or the entire crew compared to the optimization for the driver or for the driver with the front passenger. In addition, optimization by changing only two or four different damping coefficients in the suspension system is not sufficient because there are too many cases where it reaches limit values.

From the point of view of the optimization purpose relative to the optimization for the driver, the sum of the RMS values decreases for all road profiles and speed values only if the optimization purpose is the entire crew using one, two, or four damping values as parameters (maximum down to -15 %). Comparing the optimization for the driver and rear-left passenger and for the entire crew, we obtained similar values, except for the case with four damping values, where larger changes were observed. However, the optimization for the entire crew with four damping values is not the best choice for all situations. Furthermore, we could recommend two regimes like 'taxi' and 'trip' where the comfort level is optimized for the driver or the entire crew, respectively.

For future improvement, we believe that better results will be obtained if 1) we would change not only damping but also stiffness or would use asymmetric suspensions or nonlinear models; 2) we would check the minimal value separately for all passengers during optimization; and 3) we would control the highest values of acceleration reducing speed.

Acknowledgements

The authors have not disclosed any funding.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author contributions

Aurimas Čerškus: conceptualization, methodology, validation, formal analysis, investigation, data curation, writing-original draft preparation, writing-review and editing. Nikolaj Šešok: methodology, software, validation, investigation, resources, visualization. Vytautas Bučinskas: conceptualization, writing-review and editing, supervision

Conflict of interest

The authors declare that they have no conflict of interest.

References

- [1] P. S. Els, N. J. Theron, P. E. Uys, and M. J. Thoresson, "The ride comfort vs. handling compromise for off-road vehicles," *Journal of Terramechanics*, Vol. 44, No. 4, pp. 303–317, Oct. 2007, https://doi.org/10.1016/j.jterra.2007.05.001
- [2] J. Zhu, W. Zhang, and M. X. Wu, "Evaluation of ride comfort and driving safety for moving vehicles on slender coastal bridges," *Journal of Vibration and Acoustics*, Vol. 140, No. 5, p. 05101, Oct. 2018, https://doi.org/10.1115/1.4039569
- [3] T. Li, Vehicle/Tire/Road Dynamics: Handling, Ride, and NVH. Elsevier, 2022.
- [4] D. Karnopp, "Active damping in road vehicle suspension systems," *Vehicle System Dynamics*, Vol. 12, No. 6, pp. 291–311, Jul. 2007, https://doi.org/10.1080/00423118308968758

- [5] R. S. Sharp and D. A. Crolla, "Road vehicle suspension system design a review," *Vehicle System Dynamics*, Vol. 16, No. 3, pp. 167–192, Jan. 1987, https://doi.org/10.1080/00423118708968877
- [6] D. Fischer and R. Isermann, "Mechatronic semi-active and active vehicle suspensions," *Control Engineering Practice*, Vol. 12, No. 11, pp. 1353–1367, Nov. 2004, https://doi.org/10.1016/j.conengprac.2003.08.003
- [7] Z. Lozia, "The use of a linear quarter-car model to optimize the damping in a passive automotive suspension system a follow-on from many authors' works of the recent 40 years," *The Archives of Automotive Engineering Archivum Motoryzacji*, Vol. 71, No. 1, pp. 39–71, Mar. 2016, https://doi.org/10.14669/am.vol71.art3
- [8] J. Goszczak, G. Mitukiewicz, B. Radzymiński, A. Werner, T. Szydłowski, and D. Batory, "The study of damping control in semi-active car suspension," *Journal of Vibroengineering*, Vol. 22, No. 4, pp. 933–944, Jun. 2020, https://doi.org/10.21595/jve.2020.20578
- [9] S. Tengler and K. Warwas, "Driver comfort improvement by a selection of optimal springing of a seat," Czasopismo Techniczne, Vol. 5, pp. 217–235, Jan. 2017, https://doi.org/10.4467/2353737xct.17.083.6440
- [10] J. K. Nkrumah, K. S. Amedorme, B. Ziblim, and D. I. Offei, "Review of suspension control and simulation of passive, semi-active and active suspension systems using quarter vehicle model," American Scientific Research Journal for Engineering, Technology, and Sciences, Vol. 90, No. 1, pp. 144–160, Oct. 2022.
- [11] P. Barak, "Passive versus active and semi-active suspension from theory to application in north American industry," SAE Technical Paper 922140, Sep. 1992.
- [12] I. Ballo, "Comparison of the properties of active and semiactive suspension," *Vehicle System Dynamics*, Vol. 45, No. 11, pp. 1065–1073, Nov. 2007, https://doi.org/10.1080/00423110701191575
- [13] G. Z. Yao, F. F. Yap, G. Chen, W. H. Li, and S. H. Yeo, "MR damper and its application for semi-active control of vehicle suspension system," *Mechatronics*, Vol. 12, No. 7, pp. 963–973, Sep. 2002, https://doi.org/10.1016/s0957-4158(01)00032-0
- [14] D. Karnopp, M. J. Crosby, and R. A. Harwood, "Vibration control using semi-active force generators," *Journal of Engineering for Industry*, Vol. 96, No. 2, pp. 619–626, May 1974, https://doi.org/10.1115/1.3438373
- [15] J. Śwevers, C. Lauwerys, B. Vandersmissen, M. Maes, K. Reybrouck, and P. Sas, "A model-free control structure for the on-line tuning of the semi-active suspension of a passenger car," *Mechanical Systems and Signal Processing*, Vol. 21, No. 3, pp. 1422–1436, Apr. 2007, https://doi.org/10.1016/j.ymssp.2006.05.005
- [16] D. Savaresi, F. Favalli, S. Formentin, and S. M. Savaresi, "On-line damping estimation in road vehicle semi-active suspension systems," *IFAC-PapersOnLine*, Vol. 52, No. 5, pp. 679–684, Jan. 2019, https://doi.org/10.1016/j.ifacol.2019.09.108
- [17] S. Lajqi and S. Pehan, "Designs and optimizations of active and semi-active non-linear suspension systems for a terrain vehicle," *Strojniški vestnik Journal of Mechanical Engineering*, Vol. 58, No. 12, pp. 732–743, Dec. 2012, https://doi.org/10.5545/sv-jme.2012.776
- [18] N. Zhang and Q. Zhao, "Fuzzy sliding mode controller design for semi-active seat suspension with neuro-inverse dynamics approximation for MR damper," *Journal of Vibroengineering*, Vol. 19, No. 5, pp. 3488–3511, Aug. 2017, https://doi.org/10.21595/jve.2017.17654
- [19] L. Z. Ben, F. Hasbullah, and F. W. Faris, "A comparative ride performance of passive, semi-active and active suspension systems for off-road vehicles using half car model," *International Journal of Heavy Vehicle Systems*, Vol. 21, No. 1, p. 26, Jan. 2014, https://doi.org/10.1504/ijhvs.2014.057827
- [20] P. Krauze, "Comparison of control strategies in a semi-active suspension system of the experimental ATV," *Journal of Low Frequency Noise, Vibration and Active Control*, Vol. 32, No. 1-2, pp. 67–80, Mar. 2013, https://doi.org/10.1260/0263-0923.32.1-2.67
- [21] E. M. Elbeheiry and D. C. Karnopp, "Optimization of active and passive suspensions based on a full car model," *International Congress and Exposition*, Vol. 104, pp. 1900–1911, Feb. 1995, https://doi.org/10.4271/951063
- [22] J. Qiao, Y. Choi, and F. Yang, "PSO optimum control strategy of 7 degrees of freedom semi-active suspensions," *Journal of Mechanical Engineering, Automation and Control Systems*, Vol. 2, No. 2, pp. 98–108, Dec. 2021, https://doi.org/10.21595/jmeacs.2021.22164
- [23] S. Chen, H. Chen, and D. Negrut, "Implementation of MPC-based path tracking for autonomous vehicles considering three vehicle dynamics models with different fidelities," *Automotive Innovation*, Vol. 3, No. 4, pp. 386–399, Dec. 2020, https://doi.org/10.1007/s42154-020-00118-w

- [24] S. H. Zareh, A. Sarrafan, A. A. A. Khayyat, and A. Zabihollah, "Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magnetorheological dampers," *Journal of Mechanical Science and Technology*, Vol. 26, No. 2, pp. 323–334, Apr. 2012, https://doi.org/10.1007/s12206-011-1007-6
- [25] S. H. Zareh, M. Abbasi, H. Mahdavi, and K. G. Osgouie, "Semi-active vibration control of an eleven degrees of freedom suspension system using neuro inverse model of magnetorheological dampers," *Journal of Mechanical Science and Technology*, Vol. 26, No. 8, pp. 2459–2467, Aug. 2012, https://doi.org/10.1007/s12206-012-0628-8
- [26] S. Kopylov, Z. Chen, and M. A. A. Abdelkareem, "Implementation of an electromagnetic regenerative tuned mass damper in a vehicle suspension system," *IEEE Access*, Vol. 8, pp. 110153–110163, Jan. 2020, https://doi.org/10.1109/access.2020.3002275
- [27] G. G. Fossati, L. F. F. Miguel, and W. J. P. Casas, "Multi-objective optimization of the suspension system parameters of a full vehicle model," *Optimization and Engineering*, Vol. 20, No. 1, pp. 151–177, Sep. 2018, https://doi.org/10.1007/s11081-018-9403-8
- [28] D. Joshi and A. Deb, "Effect of sitting occupancy on lateral dynamics and trajectory of a passenger car," in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 6, Aug. 2015, https://doi.org/10.1115/detc2015-47528
- [29] A. Deb and D. Joshi, "A study on ride comfort assessment of multiple occupants using lumped parameter analysis," in *SAE 2012 World Congress and Exhibition*, Apr. 2012, https://doi.org/10.4271/2012-01-0053
- [30] H. Du, W. Li, and N. Zhang, "Semi-active control of an integrated full-car suspension with seat suspension and driver body model using ER dampers," *International Journal of Vehicle Design*, Vol. 63, No. 2/3, p. 159, Jan. 2013, https://doi.org/10.1504/ijvd.2013.056133
- [31] V. Guruguntla and M. Lal, "Multi-body modelling and ride comfort analysis of a seated occupant under whole-body vibration," *Journal of Vibration and Control*, Vol. 29, No. 13-14, pp. 3078–3095, May 2022, https://doi.org/10.1177/10775463221091089
- [32] D. Joshi, A. Deb, and C. Chou, "A study on combined effects of road roughness, vehicle velocity and sitting occupancies on multi-occupant vehicle ride comfort assessment," WCXTM 17: SAE World Congress Experience, Mar. 2017, https://doi.org/10.4271/2017-01-0409
- [33] P. E. Uys, P. S. Els, and M. Thoresson, "Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds," *Journal of Terramechanics*, Vol. 44, No. 2, pp. 163–175, Apr. 2007, https://doi.org/10.1016/j.jterra.2006.05.002
- [34] A. J. Nieto, A. L. Morales, J. M. Chicharro, and P. Pintado, "An adaptive pneumatic suspension system for improving ride comfort and handling," *Journal of Vibration and Control*, Vol. 22, No. 6, pp. 1492–1503, Jun. 2014, https://doi.org/10.1177/1077546314539717
- [35] A. L. Morales, A. J. Nieto, J. M. Chicharro, and P. Pintado, "A semi-active vehicle suspension based on pneumatic springs and magnetorheological dampers," *Journal of Vibration and Control*, Vol. 24, No. 4, pp. 808–821, Jun. 2016, https://doi.org/10.1177/1077546316653004
- [36] A. Hać, "Optimal linear preview control of active vehicle suspension," Vehicle System Dynamics, Vol. 21, No. 1, pp. 167–195, Jan. 1992, https://doi.org/10.1080/00423119208969008
- [37] I. Youn and A. Hać, "Semi-active suspensions with adaptive capability," *Journal of Sound and Vibration*, Vol. 180, No. 3, pp. 475–492, Feb. 1995, https://doi.org/10.1006/jsvi.1995.0091
- [38] T.-H. Wu and C.-C. Lan, "A wide-range variable stiffness mechanism for semi-active vibration systems," *Journal of Sound and Vibration*, Vol. 363, pp. 18–32, Feb. 2016, https://doi.org/10.1016/j.jsv.2015.10.024
- [39] R. Tchamna, M. Lee, and I. Youn, "Attitude control of full vehicle using variable stiffness suspension control," *Optimal Control Applications and Methods*, Vol. 36, No. 6, pp. 936–952, Nov. 2014, https://doi.org/10.1002/oca.2149
- [40] C. Spelta et al., "Performance analysis of semi-active suspensions with control of variable damping and stiffness," *Vehicle System Dynamics*, Vol. 49, No. 1-2, pp. 237–256, Feb. 2011, https://doi.org/10.1080/00423110903410526
- [41] V. Goga and M. Kľúčik, "Optimization of vehicle suspension parameters with use of evolutionary computation," *Procedia Engineering*, Vol. 48, pp. 174–179, Jan. 2012, https://doi.org/10.1016/j.proeng.2012.09.502
- [42] R. Jayachandran and S. Krishnapillai, "Modeling and optimization of passive and semi-active suspension systems for passenger cars to improve ride comfort and isolate engine vibration," *Journal*

- of Vibration and Control, Vol. 19, No. 10, pp. 1471–1479, May 2012, https://doi.org/10.1177/1077546312445199
- [43] H. Huang, S. Sun, S. Chen, and W. Li, "Numerical and experimental studies on a new variable stiffness and damping magnetorheological fluid damper," *Journal of Intelligent Material Systems and Structures*, Vol. 30, No. 11, pp. 1639–1652, Apr. 2019, https://doi.org/10.1177/1045389x19844003
- [44] J. Kumar and G. Bhushan, "Dynamic analysis of quarter car model with semi-active suspension based on combination of magneto-rheological materials," *International Journal of Dynamics and Control*, Vol. 11, No. 2, pp. 482–490, Aug. 2022, https://doi.org/10.1007/s40435-022-01024-1
- [45] A. Soliman and M. Kaldas, "Semi-active suspension systems from research to mass-market A review," *Journal of Low Frequency Noise, Vibration and Active Control*, Vol. 40, No. 2, pp. 1005–1023, Oct. 2019, https://doi.org/10.1177/1461348419876392
- [46] S. M. Savaresi, C. Poussot-Vassal, C. Spelta, O. Sename, and L. Dugard, Semi-Active Suspension Control Design for Vehicles. Elsevier, 2010, https://doi.org/10.1016/c2009-0-63839-3
- [47] P. Brezas, M. C. Smith, and W. Hoult, "A clipped-optimal control algorithm for semi-active vehicle suspensions: Theory and experimental evaluation," *Automatica*, Vol. 53, pp. 188–194, Mar. 2015, https://doi.org/10.1016/j.automatica.2014.12.026
- [48] E. Guglielmino, T. Sireteanu, C. W. Stammers, G. Gheorghe, and M. Giuclea, "Semi-active control algorithms," in *Semi-active Suspension Control*, London: Springer London, 2024, pp. 65–97, https://doi.org/10.1007/978-1-84800-231-9_4
- [49] C. Lin, W. Liu, and H. Ren, "State estimation based on unscented Kalman filter for semi-active suspension systems," *Journal of Vibroengineering*, Vol. 18, No. 1, pp. 446–457, Feb. 2016.
- [50] S. Ni and V. Nguyen, "Performance of semi-active cab suspension system with different control methods," *Journal of Mechatronics and Artificial Intelligence in Engineering*, Vol. 4, No. 1, pp. 8–17, Jun. 2023, https://doi.org/10.21595/jmai.2022.23019
- [51] C. Lauwerys, J. Swevers, and P. Sas, "Robust linear control of an active suspension on a quarter car test-rig," *Control Engineering Practice*, Vol. 13, No. 5, pp. 577–586, May 2005, https://doi.org/10.1016/j.conengprac.2004.04.018
- [52] R. Hirao, K. Kasuya, and N. Ichimaru, "A semi-active suspension system using ride control based on bi-linear optimal control theory and handling control considering roll feeling," SAE 2015 World Congress and Exhibition, Apr. 2015, https://doi.org/10.4271/2015-01-1501
- [53] I. Ahmad and A. Khan, "A comparative analysis of linear and nonlinear semi-active suspension system," *Mehran University Research Journal of Engineering and Technology*, Vol. 37, No. 2, pp. 233–240, Apr. 2018, https://doi.org/10.22581/muet1982.1802.01
- [54] A. G. Mohite and A. C. Mitra, "Development of linear and non-linear vehicle suspension model," *Materials Today: Proceedings*, Vol. 5, No. 2, pp. 4317–4326, Jan. 2018, https://doi.org/10.1016/j.matpr.2017.11.697
- [55] D. N. L. Horton and D. A. Crolla, "Theoretical analysis of a semi active suspension fitted to an off-road vehicle," *Vehicle System Dynamics*, Vol. 15, No. 6, pp. 351–372, Jul. 2007, https://doi.org/10.1080/00423118608968860
- [56] E. Palomares, J. C. Bellido, A. L. Morales, A. J. Nieto, J. M. Chicharro, and P. Pintado, "Pointwise-constrained optimal control of a semiactive vehicle suspension," *Optimal Control Applications and Methods*, Vol. 42, No. 1, pp. 216–235, Sep. 2020, https://doi.org/10.1002/oca.2671
- [57] A. Giua, M. Melas, C. Seatzu, and G. Usai, "Design of a predictive semiactive suspension system," Vehicle System Dynamics, Vol. 41, No. 4, pp. 277–300, Apr. 2004, https://doi.org/10.1080/00423110412331315169
- [58] G. Li, Z. Ruan, R. Gu, and G. Hu, "Fuzzy sliding mode control of vehicle magnetorheological semiactive air suspension," *Applied Sciences*, Vol. 11, No. 22, p. 10925, Nov. 2021, https://doi.org/10.3390/app112210925
- [59] L. L. Zhao, C. C. Zhou, and Y. W. Yu, "A research on optimal damping ratio control strategy for semi-active suspension system," *Automot. Eng.*, Vol. 40, No. 2018, pp. 41–47, 2018.
- [60] A. Hac' and I. Youn, "Optimal semi-active suspension with preview based on a quarter car model," *Journal of Vibration and Acoustics*, Vol. 114, No. 1, pp. 84–92, Jan. 1992, https://doi.org/10.1115/1.2930239
- [61] J. Theunissen, A. Tota, P. Gruber, M. Dhaens, and A. Sorniotti, "Preview-based techniques for vehicle suspension control: a state-of-the-art review," *Annual Reviews in Control*, Vol. 51, pp. 206–235, Jan. 2021, https://doi.org/10.1016/j.arcontrol.2021.03.010

- [62] M. W. Sayers, T. D. Gillespie, and C. A. V. Queiroz, International Road Roughness Experiment: a Basis for Establishing a Standard Scale for Road Roughness Measurements. Washington, D.C.: World Bank, 1986.
- [63] M. W. Sayers and S. M. Karamihas, *The Little Book of Profiling-Basic Information about Measuring and Interpreting Road Profile*. New York, NY, USA: Regent of the University of Michigan, 1998.
- [64] G. Loprencipe and G. Cantisani, "Unified analysis of road pavement profiles for evaluation of surface characteristics," *Modern Applied Science*, Vol. 7, No. 8, pp. 1–14, Jul. 2013, https://doi.org/10.5539/mas.v7n8p1
- [65] T. Nguyen, B. Lechner, and Y. D. Wong, "Response-based methods to measure road surface irregularity: a state-of-the-art review," *European Transport Research Review*, Vol. 11, No. 1, p. 43, Oct. 2019, https://doi.org/10.1186/s12544-019-0380-6
- [66] "Mechanical vibration and shock Evaluation of human exposure to whole-body vibration Part 1: General requirements," International Organization for Standardization, ISO 2631-1:1997, Jan. 1997.
- [67] G. Guastadisegni et al., "Ride analysis tools for passenger cars: objective and subjective evaluation techniques and correlation processes a review," *Vehicle System Dynamics*, Vol. 62, No. 7, pp. 1876–1902, Jul. 2024, https://doi.org/10.1080/00423114.2023.2259024
- [68] G. Papaioannou and D. Koulocheris, "An approach for minimizing the number of objective functions in the optimization of vehicle suspension systems," *Journal of Sound and Vibration*, Vol. 435, pp. 149–169, Nov. 2018, https://doi.org/10.1016/j.jsv.2018.08.009
- [69] Z. Lozia and P. Zdanowicz, "Optimization of damping in the passive automotive suspension system with using two quarter-car models," in *IOP Conference Series: Materials Science and Engineering*, Vol. 148, No. 1, p. 012014, Sep. 2016, https://doi.org/10.1088/1757-899x/148/1/012014
- [70] S. A. Abu Bakar, P. M. Samin, H. Jamaluddin, R. A. Rahman, and S. Sulaiman, "Semi active suspension system performance under random road profile excitations," in *International Conference on Computer, Communications, and Control Technology (I4CT)*, pp. 93–97, Apr. 2015, https://doi.org/10.1109/i4ct.2015.7219544
- [71] T. Lenkutis, D. Viržonis, A. Čerškus, A. Dzedzickis, N. Šešok, and V. Bučinskas, "An automotive ferrofluidic electromagnetic system for energy harvesting and adaptive damping," *Sensors*, Vol. 22, No. 3, p. 1195, Feb. 2022, https://doi.org/10.3390/s22031195
- [72] T. Lenkutis et al., "Extraction of information from a PSD for the control of vehicle suspension," in *Automation 2021: Recent Achievements in Automation, Robotics and Measurement Techniques*, pp. 146–153, Apr. 2021, https://doi.org/10.1007/978-3-030-74893-7 15
- [73] A. Čerškus, T. Lenkutis, N. Šešok, A. Dzedzickis, D. Viržonis, and V. Bučinskas, "Identification of road profile parameters from vehicle suspension dynamics for control of damping," *Symmetry*, Vol. 13, No. 7, p. 1149, Jun. 2021, https://doi.org/10.3390/sym13071149
- [74] A. Čerškus, V. Ušinskis, N. Šešok, I. Iljin, and V. Bučinskas, "Optimization of damping in a semiactive car suspension system with various locations of masses," *Applied Sciences*, Vol. 13, No. 9, p. 5371, Apr. 2023, https://doi.org/10.3390/app13095371
- [75] Z. Yonglin and Z. Jiafan, "Numerical simulation of stochastic road process using white noise filtration," *Mechanical Systems and Signal Processing*, Vol. 20, No. 2, pp. 363–372, Feb. 2006, https://doi.org/10.1016/j.ymssp.2005.01.009
- [76] M. Shinozuka and C.-M. Jan, "Digital simulation of random processes and its applications," *Journal of Sound and Vibration*, Vol. 25, No. 1, pp. 111–128, Nov. 1972, https://doi.org/10.1016/0022-460x(72)90600-1
- [77] M. Agostinacchio, D. Ciampa, and S. Olita, "The vibrations induced by surface irregularities in road pavements a Matlab® approach," *European Transport Research Review*, Vol. 6, No. 3, pp. 267–275, Dec. 2013, https://doi.org/10.1007/s12544-013-0127-8
- [78] C. S. Dharankar, M. K. Hada, and S. Chandel, "Numerical generation of road profile through spectral description for simulation of vehicle suspension," *Journal of the Brazilian Society of Mechanical Sciences and Engineering*, Vol. 39, No. 6, pp. 1957–1967, Aug. 2016, https://doi.org/10.1007/s40430-016-0615-6
- [79] "Mechanical vibration. Road surface profiles. Reporting of measured data," BSI British Standards, London, ISO 8608:2016(en), Mar. 2022.
- [80] P. Andren, "Power spectral density approximations of longitudinal road profiles," *International Journal of Vehicle Design*, Vol. 40, No. 1/2/3, pp. 2–14, Jan. 2006, https://doi.org/10.1504/ijvd.2006.008450

- [81] T. Lenkutis, A. Čerškus, N. Šešok, A. Dzedzickis, and V. Bučinskas, "Road surface profile synthesis: assessment of suitability for simulation," *Symmetry*, Vol. 13, No. 1, p. 68, Dec. 2020, https://doi.org/10.3390/sym13010068
- [82] V. Bucinskas, P. Mitrouchev, E. Sutinys, N. Sesok, I. Iljin, and I. Morkvenaite-Vilkonciene, "Evaluation of comfort level and harvested energy in the vehicle using controlled damping," *Energies*, Vol. 10, No. 11, p. 1742, Oct. 2017, https://doi.org/10.3390/en10111742
- [83] J. Wu, H. Zhou, Z. Liu, and M. Gu, "Ride comfort optimization via speed planning and preview semiactive suspension control for autonomous vehicles on uneven roads," *IEEE Transactions on Vehicular Technology*, Vol. 69, No. 8, pp. 8343–8355, Aug. 2020, https://doi.org/10.1109/tvt.2020.2996681
- [84] H. Basargan, A. Mihály, P. Gáspár, and O. Sename, "Cloud-based adaptive semi-active suspension control for improving driving comfort and road holding," *IFAC-PapersOnLine*, Vol. 55, No. 14, pp. 89–94, Jan. 2022, https://doi.org/10.1016/j.ifacol.2022.07.588

Appendix

Table A1. Dependence of the damping on vehicle speed and road waviness

(Cases: one coefficient (1P), optimization for driver and front passenger $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$)

		Damping coefficients, Ns/m						
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h			
$w_1 = 1; w_2 = 0.5$	1133	1176	1220	1131	1271			
$w_1 = 2; w_2 = 0.5$	1130	1213	1517	1443	1621			
$w_1 = 4; w_2 = 0.5$	1124	1411	2584	2902	2640			
$w_1 = 6; w_2 = 0.5$	1114	1967	4914	6122	4033			
$w_1 = 1; w_2 = 1$	1333	1385	1369	1198	1299			
$w_1 = 2; w_2 = 1$	1328	1441	1707	1550	1652			
$w_1 = 4$; $w_2 = 1$	1317	1717	2887	3099	2665			
$w_1 = 6; w_2 = 1$	1301	2421	5444	6330	4050			
$w_1 = 1; w_2 = 2$	1884	1902	1679	1326	1335			
$w_1 = 2; w_2 = 2$	1867	2003	2094	1741	1691			
$w_1 = 4; w_2 = 2$	1836	2437	3479	3416	2688			
$w_1 = 6; w_2 = 2$	1795	3447	6472	6657	4068			
$w_1 = 1; w_2 = 3$	2817	2501	1960	1438	1355			
$w_1 = 2; w_2 = 3$	2768	2652	2436	1892	1713			
$w_1 = 4; w_2 = 3$	2672	3265	4025	3644	2705			
$w_1 = 6; w_2 = 3$	2570	4703	7454	6872	4076			

Table A2. Dependence of the damping on vehicle speed and road waviness (Cases: one coefficient (1P), optimization for driver and rear left passenger $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$)

,	Damping coefficients, Ns/m						
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h		
$w_1 = 1; w_2 = 0.5$	1407	1400	1801	1386	1525		
$w_1 = 2; w_2 = 0.5$	1399	1516	2311	1940	1809		
$w_1 = 4$; $w_2 = 0.5$	1381	2012	4156	4563	2680		
$w_1 = 6; w_2 = 0.5$	1353	3121	8478	9344	3744		
$w_1 = 1; w_2 = 1$	1698	1644	2010	1462	1547		
$w_1 = 2; w_2 = 1$	1685	1804	2574	2078	1830		
$w_1 = 4; w_2 = 1$	1654	2451	4596	4770	2702		
$w_1 = 6; w_2 = 1$	1615	3823	9204	9485	3753		
$w_1 = 1; w_2 = 2$	2517	2270	2401	1602	1568		
$w_1 = 2; w_2 = 2$	2476	2529	3061	2301	1862		
$w_1 = 4; w_2 = 2$	2412	3459	5400	5075	2725		
$w_1 = 6; w_2 = 2$	2317	5549	10501	9672	3763		
$w_1 = 1; w_2 = 3$	3869	2996	2732	1716	1583		
$w_1 = 2; w_2 = 3$	3772	3350	3472	2456	1878		
$w_1 = 4; w_2 = 3$	3597	4638	6097	5253	2736		
$w_1 = 6; w_2 = 3$	3377	7787	11634	9791	3767		

Table A3. Dependence of the damping on vehicle speed and road waviness (Cases: one coefficient (1P), optimization for driver and all passengers $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$)

	Damping coefficients, Ns/m						
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h		
$w_1 = 1; w_2 = 0.5$	1380	1335	1789	1332	1430		
$w_1 = 2$; $w_2 = 0.5$	1371	1448	2312	1890	1707		
$w_1 = 4$; $w_2 = 0.5$	1352	1945	4241	4612	2609		
$w_1 = 6; w_2 = 0.5$	1324	3073	8755	9495	3736		
$w_1 = 1; w_2 = 1$	1679	1586	2016	1415	1452		
$w_1 = 2; w_2 = 1$	1664	1751	2603	2043	1734		
$w_1 = 4$; $w_2 = 1$	1638	2411	4715	4842	2635		
$w_1 = 6; w_2 = 1$	1595	3824	9471	9643	3749		
$w_1 = 1; w_2 = 2$	2533	2254	2439	1577	1478		
$w_1 = 2; w_2 = 2$	2492	2525	3129	2295	1764		
$w_1 = 4; w_2 = 2$	2424	3500	5552	5163	2664		
$w_1 = 6; w_2 = 2$	2329	5721	10748	9825	3763		
$w_1 = 1; w_2 = 3$	3952	3043	2795	1711	1492		
$w_1 = 2; w_2 = 3$	3845	3424	3567	2480	1782		
$w_1 = 4; w_2 = 3$	3673	4777	6283	5370	2679		
$w_1 = 6; w_2 = 3$	3459	8191	11890	9947	3770		

Table A4. Dependence of the damping on vehicle speed and road waviness (Cases: two different coefficients for front and rear (2P) respectively top and bottom values, optimization for driver $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$)

ont and rear (21) resp	Damping coefficients, Ns/m						
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h		
waviness	1000	1000	1000	1000	1000		
$w_1 = 1; w_2 = 0.5$	7762	15000	15000	14998	14998		
	1000	1000	1000	1000	1327		
$w_1 = 2; w_2 = 0.5$	7765	15000	15000	14990	12304		
	1000	1000	1000	1378	2328		
$w_1 = 4; w_2 = 0.5$	7732	15000	15000	9035	8714		
	1000	1000	1181	2828	3488		
$w_1 = 6; w_2 = 0.5$	8704	15000	14512	8349	6656		
	1046	1000	1000	1000	1000		
$w_1 = 1; w_2 = 1$	7544	15000	15000	14998	14998		
	1033	1000	1000	1000	1390		
$w_1 = 2; w_2 = 1$	7721	15000	15000	14989	14881		
	1037	1000	1000	1489	2354		
$w_1 = 4; w_2 = 1$	7438	15000	15000	8960	8947		
	1039	1000	1392	3087	3494		
$w_1 = 6; w_2 = 1$	7418	15000	14104	8440	6660		
1 2	1448	1301	1000	1000	1000		
$w_1 = 1; w_2 = 2$	6674	15000	15000	14999	14999		
2 2	1448	1286	1000	1000	1402		
$w_1 = 2; w_2 = 2$	7047	15000	15000	14989	12340		
4 2	1449	1276	1193	1680	2381		
$w_1 = 4; w_2 = 2$	6850	15000	15000	8928	8900		
(2	1449	1327	1877	3496	3506		
$w_1 = 6; w_2 = 2$	6560	15000	13976	8570	6656		
1 2	2015	1623	1000	1000	1000		
$w_1 = 1; w_2 = 3$	7869	15000	15000	14999	14999		
2 2	1989	1610	1108	1098	1425		
$w_1 = 2; w_2 = 3$	7840	15000	15000	12138	12143		
w = 4. w = 2	2007	1604	1451	1827	2393		
$w_1 = 4; w_2 = 3$	7279	15000	15000	8900	8875		
w = 6. w = 2	2048	1691	2458	3762	3512		
$w_1 = 6; w_2 = 3$	8854	15000	13961	8624	6665		

Table A5. Dependence of the damping on vehicle speed and road waviness (Cases: two different coefficients for front and rear (2P) respectively,

top and bottom values, optimization for driver and front passenger $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$

	Damping coefficients, Ns/m							
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h			
1 0.5	1000	1000	1000	1000	1000			
$w_1 = 1; w_2 = 0.5$	7930	15000	15000	14994	14990			
$w_1 = 2; w_2 = 0.5$	1000	1000	1000	1000	1128			
$W_1 = 2; W_2 = 0.3$	7915	15000	15000	11799	11804			
4 0.5	1000	1000	1000	1179	2074			
$w_1 = 4; w_2 = 0.5$	7882	15000	15000	9404	8514			
6 0.5	1000	1000	1015	2378	3251			
$w_1 = 6; w_2 = 0.5$	8500	15000	15000	8524	6682			
1 1	1000	1000	1000	1000	1000			
$w_1 = 1; w_2 = 1$	7653	15000	15000	14995	14991			
2 1	1000	1000	1000	1000	1157			
$w_1 = 2; w_2 = 1$	7589	15000	15000	11912	11908			
4 1	1000	1000	1000	1282	2104			
$w_1 = 4; w_2 = 1$	7560	15000	15000	9312	8521			
6 1	1000	1000	1190	2697	3266			
$w_1 = 6; w_2 = 1$	7469	15000	14996	8582	6687			
$w_1 = 1; w_2 = 2$	1386	1262	1000	1000	1000			
$w_1 - 1, w_2 - 2$	7217	15000	15000	14995	14991			
$w_1 = 2; w_2 = 2$	1387	1248	1000	1000	1199			
$w_1 - 2, w_2 - 2$	7119	15000	15000	12126	11785			
$w_1 = 4; w_2 = 2$	1387	1241	1080	1482	2145			
$w_1 - 4, w_2 - 2$	6936	15000	15000	9182	8527			
$w_1 = 6; w_2 = 2$	1389	1290	1666	3234	3284			
$w_1 - 0, w_2 - 2$	6676	15000	14249	8713	6692			
$w_1 = 1; w_2 = 3$	1996	1612	1000	1000	1000			
$w_1 - 1, w_2 - 3$	7994	15000	15000	14995	14990			
$w_1 = 2; w_2 = 3$	1980	1603	1000	1000	1222			
$w_1 - 2, w_2 - 3$	7693	15000	15000	12225	11769			
$w_1 = 4; w_2 = 3$	1973	1603	1325	1649	2168			
$w_1 - 4, w_2 - 3$	7335	15000	15000	9122	8542			
$w_1 = 6; w_2 = 3$	2001	1689	2286	3620	3294			
$vv_1 - 0, vv_2 - 3$	8519	15000	14140	8808	6695			

Table A6. Dependence of the damping on vehicle speed and road waviness (Cases: two different coefficients for front and rear (2P) respectively, top and bottom values, optimization for driver and all passengers $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$)

1	Damping coefficients, Ns/m								
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h				
1 0.5	1000	1100	1000	1000	1095				
$w_1 = 1; w_2 = 0.5$	2610	2254	3627	2901	2721				
w - 2· w - 0.5	1000	1080	1000	1021	1399				
$w_1 = 2; w_2 = 0.5$	2572	2880	5240	4950	3054				
4 0.5	1003	1000	1000	1344	2291				
$w_1 = 4; w_2 = 0.5$	2510	5480	10355	8520	3828				
6 0.5	1010	1000	1278	3443	3496				
$w_1 = 6; w_2 = 0.5$	2410	12714	15000	11287	4159				
1 1	1173	1280	1000	1000	1096				
$w_1 = 1; w_2 = 1$	3303	2822	4249	3362	2896				
2 1	1175	1247	1000	1083	1411				
$w_1 = 2; w_2 = 1$	3246	3711	6026	5370	3207				
4 1	1179	1161	1116	1456	2303				
$w_1 = 4; w_2 = 1$	3145	7036	10745	8600	3892				

6 1	1184	1020	1569	3811	3505
$w_1 = 6; w_2 = 1$	3022	15000	15000	11382	4169
1 2	1552	1734	1151	1043	1096
$w_1 = 1; w_2 = 2$	5010	4126	5151	4059	3108
2 2	1554	1671	1226	1172	1424
$w_1 = 2; w_2 = 2$	4907	5392	6892	5879	3393
w = 4: w = 2	1558	1522	1420	1682	2327
$w_1 = 4; w_2 = 2$	4716	9540	11134	8689	3957
6 2	1560	1417	2393	4370	3521
$w_1 = 6; w_2 = 2$	4499	15000	15000	11513	4182
1 2	2166	2279	1346	1109	1096
$w_1 = 1; w_2 = 3$	7032	5184	5679	4462	3226
$w_1 = 2; w_2 = 3$	2157	2180	1453	1257	1432
$w_1 - 2, w_2 - 3$	6901	6624	7370	6146	3488
$w = 4 \cdot w = 3$	2152	1971	1763	1864	2338
$w_1 = 4; w_2 = 3$	6508	10995	11326	8737	3991
w = 6: w = 2	2149	1902	3334	4725	3525
$w_1 = 6; w_2 = 3$	6167	15000	15000	11565	4191

Table A7. Dependence of the damping on vehicle speed and road waviness (Cases: four different coefficients (4P), optimization for driver $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$)

(Cases: four different coefficients (4P), optimization for driver $\begin{pmatrix} \hat{a} & \hat{o} \end{pmatrix}$)										
		Damping coefficients, Ns/m								
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h					
1 0.5	1000 1000	1000 1000	1000 1000	1000 1000	1000 1000					
$w_1 = 1; w_2 = 0.5$	5920 9043	15000 15000	14995 15000	14990 15000	14981 15000					
2 0.5	1000 1000	1000 1000	1000 1000	1000 1000	1000 1393					
$w_1 = 2; w_2 = 0.5$	5832 8980	15000 15000	14992 15000	14979 15000	6561 15000					
4 0.5	1000 1000	1000 1000	1000 1000	1372 1049	1000 2380					
$w_1 = 4; w_2 = 0.5$	5752 8923	15000 15000	14990 15000	8051 10219	1000 8777					
(0.5	1000 1000	1000 1000	1000 2789	1697 15000	1000 4573					
$w_1 = 6; w_2 = 0.5$	5722 8846	15000 15000	15000 11099	12283 5452	1000 6777					
1 1	1000 1000	1000 1000	1000 1000	1000 1000	1000 1000					
$w_1 = 1; w_2 = 1$	5572 8781	15000 15000	14997 15000	14994 15000	14985 15000					
2 1	1000 1000	1000 1000	1000 1000	1000 1000	1000 1405					
$w_1 = 2; w_2 = 1$	5524 8714	15000 15000	14995 15000	14982 15000	6604 15000					
4 1	1000 1000	1000 1000	1000 1000	1607 1000	1000 2381					
$w_1 = 4; w_2 = 1$	5402 8617	15000 15000	14991 15000	8406 9806	1000 8771					
(1	1000 1000	1000 1044	1000 5239	2020 14706	1000 4583					
$w_1 = 6; w_2 = 1$	5337 8501	15000 15000	15000 9236	12602 5129	1000 6775					
1 2	1544 1000	1499 1000	1000 1000	1000 1000	1000 1000					
$w_1 = 1; w_2 = 2$	5964 8015	15000 15000	15000 15000	14999 15000	10976 15000					
2 2	1571 1000	1461 1000	1000 1000	1001 1000	1000 1417					
$w_1 = 2; w_2 = 2$	6275 7743	15000 15000	14998 15000	14986 15000	6417 14997					
4 2	1562 1000	1383 1095	1278 1000	1949 1037	1000 2382					
$w_1 = 4; w_2 = 2$	5987 7620	15000 15000	13388 15000	8872 9144	1000 8783					
(2	1588 1000	1392 1223	1000 9881	2574 13786	1000 4583					
$w_1 = 6; w_2 = 2$	5474 6784	15000 15000	15000 7718	13227 4617	1000 6778					
1 2	2203 1852	1875 1613	1099 1000	1000 1000	1000 1000					
$w_1 = 1; w_2 = 3$	8627 6846	15000 9893	14856 15000	14861 14998	11083 15000					
2 2	2049 2042	1875 1421	1258 1000	1126 1000	1000 1451					
$w_1 = 2; w_2 = 3$	9941 6678	15000 11609	15000 15000	11260 12905	5948 13804					
4 2	2169 1947	1859 1275	1703 1000	2143 1329	1000 2381					
$w_1 = 4; w_2 = 3$	10867 7772	15000 14057	14839 15000	9490 8520	1000 8781					
(2	1989 2315	1962 1284	1277 12990	2940 13473	1000 4586					
$w_1 = 6; w_2 = 3$	7725 5906	15000 15000	15000 6847	13696 4315	1000 6777					

Table A8. Dependence of the damping on vehicle speed and road waviness (Cases: four different coefficients (4P), optimization for driver and front passenger $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$)

(Cases: four different coefficients (4P), optimization for driver and front passenger $\begin{pmatrix} \hat{0} & \hat{0} \end{pmatrix}$) Damping coefficients, Ns/m										
***	20.1 //			Í	1201 //					
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h					
$w_1 = 1; w_2 = 0.5$	1000 1000	1000 1000	1000 1000	1000 1000	1000 1000					
	7402 9033	15000 15000	14999 15000	14994 15000	14980 15000					
$w_1 = 2; w_2 = 0.5$	1000 1000	1000 1000	1000 1000	1000 1000	1252 1000					
$w_1 - z, w_2 - 0.5$	7375 8993	15000 15000	14999 15000	14985 14997	10826 13208					
$w_1 = 4; w_2 = 0.5$	1000 1000	1000 1000	1000 1000	1390 1000	1000 3159					
$w_1 - 4, w_2 - 0.3$	7349 8881	14950 15000	14949 15000	9356 9538	5259 10889					
6 0.5	1000 1000	1000 1000	1105 1000	4528 1000	1922 4548					
$w_1 = 6; w_2 = 0.5$	7288 8800	15000 15000	14998 15000	8290 9684	4478 8243					
1 1	1000 1000	1000 1000	1000 1000	1000 1000	1000 1000					
$w_1 = 1; w_2 = 1$	7148 8550	15000 15000	15000 15000	14994 15000	14980 15000					
2 1	1000 1000	1000 1000	1000 1000	1000 1000	1308 1000					
$w_1 = 2; w_2 = 1$	7069 8549	15000 15000	15000 15000	11546 12628	10920 13081					
4 1	1000 1000	1000 1000	1000 1000	1559 1000	1000 3188					
$w_1 = 4; w_2 = 1$	7053 8403	15000 15000	15000 15000	9367 9456	5258 10889					
	1000 1000	1000 1000	1397 1000	4778 1198	1993 4512					
$w_1 = 6; w_2 = 1$	6967 8291	15000 15000	14442 15000	8234 9836	4565 8232					
1 2	1329 1442	1145 1381	1000 1000	1000 1000	1000 1000					
$w_1 = 1; w_2 = 2$	6534 7463	15000 15000	15000 15000	14993 15000	14978 15000					
2 2	1327 1461	1139 1359	1000 1000	1000 1000	1372 1000					
$w_1 = 2; w_2 = 2$	6632 7714	15000 15000	15000 15000	11614 12920	11118 13035					
4 2	1330 1443	1139 1342	1035 1114	1644 1307	1029 3212					
$w_1 = 4; w_2 = 2$	6504 7517	15000 15000	15000 15000	9120 9361	5341 10902					
()	1331 1450	1218 1365	2048 1319	4965 1762	2067 4484					
$w_1 = 6; w_2 = 2$	6261 7241	15000 15000	13741 14979	8173 9855	4653 8209					
1 2	1861 2102	1403 1829	1000 1000	1000 1000	1000 1000					
$w_1 = 1; w_2 = 3$	7298 7727	15000 15000	15000 15000	14991 15000	12103 15000					
2 2	1941 2004	1396 1810	1000 1048	1000 1000	1398 1012					
$w_1 = 2; w_2 = 3$	7027 8421	15000 15000	15000 15000	11654 12937	11354 13070					
4 2	1847 2165	1410 1803	1266 1386	1742 1539	1192 3101					
$w_1 = 4; w_2 = 3$	6716 7906	15000 15000	15000 15000	8983 9320	5667 10791					
	1867 2079	1541 1841	2993 1676	5001 2301	2108 4459					
$w_1 = 6; w_2 = 3$	6540 7219	15000 15000	13255 15000	8220 9790	4697 8189					

Table A9. Dependence of the damping on vehicle speed and road waviness

(Cases: four different coefficients (4P), optimization for driver and rear left passenger $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$)

	Damping coefficients, Ns/m							
Waviness	20 km/h	50 km/h	70 km/h	90 km/h	130 km/h			
1, 0.5	1000 1440	1081 1204	1000 1000	1000 1000	1000 1613			
$w_1 = 1; w_2 = 0.5$	1865 3680	1805 4548	2140 6597	2195 5003	1825 5059			
$w_1 = 2; w_2 = 0.5$	1000 1451	1020 1209	1000 1000	1000 1241	1000 2042			
$w_1 - 2, w_2 - 0.3$	1835 3612	2023 5721	3285 8194	3603 6431	1849 5399			
$w_1 = 4$; $w_2 = 0.5$	1000 1459	1000 1185	1000 2622	1369 2125	1567 3537			
$w_1 - 4, w_2 - 0.3$	1789 3503	3387 8658	9720 10350	8781 7462	1985 4510			
$w_1 = 6; w_2 = 0.5$	1000 1478	1000 1076	1000 6314	2173 8717	3169 5336			
$w_1 - 0, w_2 - 0.3$	1713 3342	9987 15000	15000 10692	15000 6648	3375 3610			
$w_1 = 1; w_2 = 1$	1000 1699	1184 1550	1000 1498	1000 1104	1000 1533			
$w_1 - 1, w_2 - 1$	2513 4130	2136 4613	2705 6284	2573 5190	1900 5117			
$w_1 = 2; w_2 = 1$	1000 1712	1143 1529	1000 1751	1000 1365	1000 2001			
$w_1 - 2, w_2 - 1$	2446 4060	2620 5786	4326 7792	4197 6587	1906 5482			
w - 4. w - 1	1000 1736	1003 1478	1000 3664	1516 2390	1701 3406			
$w_1 = 4; w_2 = 1$	2383 3907	5339 9422	11530 9846	9215 7222	2163 4427			
w = 6, w = 1	1000 1759	1000 1362	1000 7334	2419 8832	3278 5174			
$w_1 = 6; w_2 = 1$	2279 3732	13006 15000	15000 10297	15000 6559	3531 3576			

	1369 2168	1363 2797	1000 2390	1000 1267	1000 1404
$w_1 = 1; w_2 = 2$	4710 4836	3867 4575	4274 5898	3213 5260	2035 5290
2, 2	1363 2176	1290 2722	1000 2892	1000 1542	1000 1921
$w_1 = 2; w_2 = 2$	4565 4775	5131 5739	6395 7023	4984 6723	2002 5609
4 2	1367 2165	1102 2601	1000 5550	1832 2731	1910 3159
$w_1 = 4; w_2 = 2$	4457 4626	9722 9013	14280 8744	9828 6837	2477 4325
6, 2	1370 2285	1000 2377	1000 9551	2819 8911	3363 5011
$w_1 = 6; w_2 = 2$	4173 4106	15000 14460	15000 9790	15000 6425	3672 3565
1, 2	1945 3053	1413 5202	1000 3100	1000 1343	1000 1310
$w_1 = 1; w_2 = 3$	8392 5586	7451 4033	5425 5600	3709 5407	2142 5409
2, 2	1973 2991	1296 5141	1000 3959	1118 1572	1000 1870
$w_1 = 2; w_2 = 3$	8029 5317	8894 5030	7938 6630	5482 6616	2066 5692
w - 4. w - 2	1978 2923	1013 4831	1000 6855	2076 3025	2050 2986
$w_1 = 4; w_2 = 3$	7841 5113	14898 7529	15000 8321	10310 6542	2709 4271
w - 6. w - 2	1947 2918	1123 4008	1158 11724	3117 8997	3399 4959
$w_1 = 6; w_2 = 3$	7296 4564	15000 11802	15000 9393	15000 6350	3720 3549

Table A10. The maximum difference in the RMS value of vertical acceleration (for all four positions and the sum) relative to the reference of the corresponding RMS values of vertical acceleration for the corresponding speed and road profile when optimized for the driver with the same number of damping values. FL – front left (driver), FR – front right passenger,

RL – rear left passenger, RR – rear right passenger

RL – rear left passenger, RR – rear right passenger										
Damping			Difference, m s ⁻²							
values	Optimized for		$RMS(a_{FL})$	$RMS(a_{FR})$	$RMS(a_{RR})$	$RMS(a_{RL})$	Σ RMS			
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$			as re	eference					
	(11)	min	0.0000	-0.0069	-0.0207	-0.0200	-0.0411			
	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$	max	0.0023	0.0000	0.0331	0.0313	0.0089			
1P	(10)	min	0.0002	-0.0034	-0.5118	-0.4867	-0.6403			
	$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$	max	0.1828	0.1754	-0.0004	-0.0003	0.0025			
	(11)	min	4E-5	-0.0052	-0.5335	-0.5069	-0.6421			
	$\binom{1}{1} \binom{1}{1}$	max	0.2040	0.1943	0.0010	0.0008	-5E-5			
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$			as re	eference					
	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$	min	-0.0046	-0.0222	-0.0929	-0.0922	-0.2082			
	(00)	max	0.0056	0.0000	0.0078	0.0118	0.0141			
2P	(10)	min	-0.0005	-0.0001	-0.3619	-0.3865	-0.5774			
	$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$	max	0.1317	0.1607	-0.0014	-0.0021	0.0046			
	(1.1)	min	-0.0007	-0.0010	-0.3566	-0.3793	-0.5841			
	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	max	0.0980	0.1163	0.0002	-0.0005	-0.0003			
	$\binom{1}{0} \binom{0}{0}$			as re	eference					
	(11)	min	-0.0071	-0.4920	-0.5592	-0.3213	-0.7696			
	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$	max	0.2110	0.0003	0.4130	0.1059	0.1292			
4P	(10)	min	-2E-5	-0.3487	-0.2843	-1.0499	-0.5489			
	$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$	max	0.5575	0.2304	0.4905	-0.0028	0.1934			
	(11)	min	-2E-5	-0.4465	-0.5684	-0.4432	-0.8967			
	$\binom{1}{1} \binom{1}{1}$	max	0.1788	0.0709	0.1454	0.0693	-3E-5			

Table A11. The maximum percentage change in the RMS value of vertical acceleration (for the four positions and the sum) relative to the reference of the corresponding RMS values of vertical acceleration for the corresponding speed and road profile when optimized for the entire crew $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ with four damping values (4P). FL – front left (driver), FR – front right passenger, RL – rear left passenger, RR – rear right passenger

	FR – from right passenger, RL – fear left passenger, RR – fear right passenger											
Dampin			Percentage change, %									
g values	Optimized for		RMS (a_{FL}) RMS (a_{FR}) RMS (a_{RR}) RMS (a_{RL}) Σ RMS									
	(1.0)	min	2.34	-7.15	-5.02	-20.2	0.08					
1P	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	max	38.8	38.5	33.4	27.1	33.1					
		min	2.41	-7.20	-4.64	-20.34	-0.01					

	$\binom{1}{0} \binom{1}{0}$	max	38.8	38.5	36.3	27.9	34.0
		min	2.71	-7.08	-5.50	-20.31	-0.19
	$\binom{1}{1} \binom{0}{0}$	max	49.4	48.5	16.1	11.1	25.8
	(1.1)	min	2.48	-7.08	-5.09	-20.36	-0.19
	$\binom{1}{1} \binom{1}{1}$	max	50.6	49.7	16.1	11.1	25.8
	(1.0)	min	-9.48	-15.5	-0.03	-5.12	0.01
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	max	12.4	1.20	46.7	49.4	18.1
	(1.1)	min	-9.48	-16.37	-0.03	-4.84	0.01
2P	$\binom{1}{0} \binom{1}{0}$	max	12.6	0.41	46.4	49.4	16.2
ZP	(10)	min	0.14	-7.68	-5.08	-18.0	-0.39
	$\binom{1\ 0}{1\ 0}$	max	21.3	4.55	12.1	0.78	0.46
	$\binom{1}{1}\binom{1}{1}$	min	-0.01	-9.55	-4.61	-16.7	-0.45
	(11)	max	19.8	3.68	13.4	0.97	0.25
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	min	-9.53	-9.71	-4.69	-3.51	0.00
	(00)	max	0.00	22.6	46.4	48.8	15.9
	(11)	min	-9.48	-12.7	-0.11	-0.02	0.01
$4P \qquad \qquad \frac{\binom{1}{0} \binom{1}{0}}{\binom{1}{0}}$	(00)	max	3.81	-0.06	46.4	48.8	16.1
	$\binom{1\ 0}{1\ 0}$	min	-6.99	-3.93	-1.82	-16.0	-0.29
		max	20.1	30.8	11.6	-0.02	6.32
	$\binom{1}{1}\binom{1}{1}$			as ref	ference		

Table A12. The maximum difference in the RMS value of vertical acceleration (for the four positions and the sum) relative to the reference of the corresponding RMS values of vertical acceleration for the corresponding speed and road profile when optimized for the entire crew $\binom{11}{11}$ with four damping values (4P). FL – front left (driver), FR – front right passenger, RL – rear left passenger, RR – rear right passenger

Damping				differ	ence, m s ⁻²		
values	Optimized for		$RMS(a_{FL})$	$RMS(a_{FR})$	$RMS(a_{RR})$	$RMS(a_{RL})$	ΣRMS
	(10)	min	0.0127	-0.1700	-0.0382	-0.5419	0.0092
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	max	0.4999	0.5686	0.6210	0.5543	2.2440
	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$	min	0.0127	-0.1710	-0.0353	-0.5489	-0.0007
1P	(00)	max	0.5001	0.5680	0.6406	0.5732	2.2820
11	$\binom{1\ 0}{1\ 0}$	min	0.0180	-0.1683	-0.0434	-0.5678	-0.0213
	(10)	max	0.6827	0.7439	0.3083	0.1282	1.6036
	$\binom{1}{1} \frac{1}{1}$	min	0.0190	-0.1684	-0.0522	-0.5683	-0.0213
	(11)	max	0.7039	0.7628	0.3084	0.1281	1.6019
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	min	-0.0629	-0.3433	-0.0003	-0.1952	0.0003
	(ō ō)	max	0.2673	0.0235	0.5970	0.3527	0.5910
	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$	min	-0.0629	-0.3540	-0.0003	-0.1845	0.0003
2P	(00)	max	0.2715	0.0081	0.6039	0.3527	0.5405
21	$\binom{1}{1} \binom{0}{0}$	min	0.0003	-0.1826	-0.0836	-0.5579	-0.0388
	(10)	max	0.3990	0.0897	0.3157	0.0228	0.0272
	$\binom{1}{1} \frac{1}{1}$	min	-0.0002	-0.2270	-0.0822	-0.5180	-0.0444
	(11)	max	0.3653	0.0725	0.3429	0.0244	0.0186
	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	min	-0.1787	-0.0708	-0.1453	-0.0693	3E-05
	(00)	max	2E-05	0.4464	0.5684	0.4432	0.8966
	$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$	min	-0.0629	-0.2185	-0.0033	-0.0001	0.0003
4P	(00)	max	0.0810	-0.0006	0.3103	0.3527	0.5405
	$\binom{1\ 0}{1\ 0}$	min	-0.1420	-0.0933	-0.0112	-0.6067	-0.0151
		max	0.4274	0.3095	0.3451	-1E - 04	0.3619
	$\binom{1}{1} \binom{1}{1}$			as r	eference		

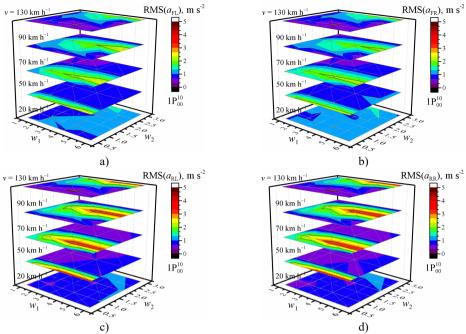
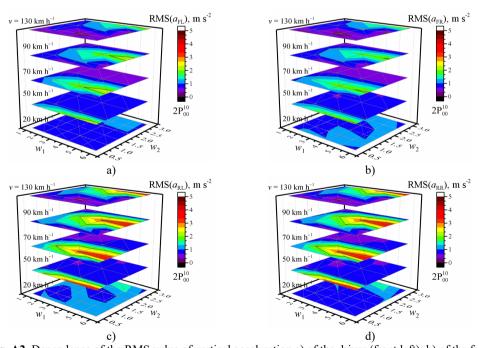



Fig. A1. Dependence of the RMS value of vertical acceleration a) of the driver (front left); b) of the front right passenger; c) of the rear left passenger; and d) of the rear right passenger; on road profile waviness w_1 and w_2 when vehicle speed is 20 km/h, 50 km/h, 70 km/h, 90 km/h or 130 km/h and optimized for the driver with one damping value. The black dotted line shows values of major ticks

Fig. A2. Dependence of the RMS value of vertical acceleration a) of the driver (front left); b) of the front right passenger; c) of the rear left passenger; and d) of the rear right passenger; on road profile waviness w_1 and w_2 when vehicle speed is 20 km/h, 50 km/h, 70 km/h, 90 km/h or 130 km/h and optimized for the driver with two damping values. The black dotted line shows values of major ticks

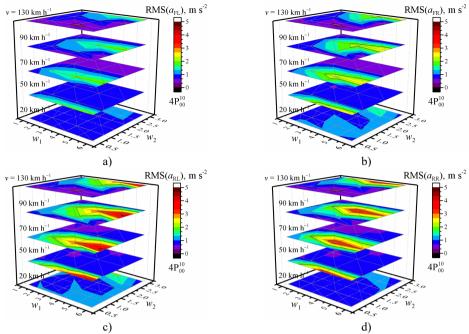


Fig. A3. Dependence of the RMS value of vertical acceleration a) of the driver (front left); b) of the front right passenger; c) of the rear left passenger; and d) of the rear right passenger; on road profile waviness w₁ and w₂ when vehicle speed is 20 km/h, 50 km/h, 70 km/h, 90 km/h or 130 km/h and optimized for the driver with four damping values. The black dotted line shows values of major ticks.

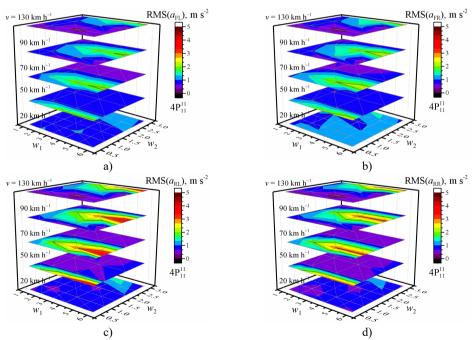


Fig. A4. Dependence of the RMS value of vertical acceleration a) of the driver (front left); b) of the front right passenger; c) of the rear left passenger; and d) of the rear right passenger; on road profile waviness w_1 and w_2 when vehicle speed is 20 km/h, 50 km/h, 70 km/h, 90 km/h or 130 km/h and optimized for the entire crew with four damping values. The black dotted line shows values of major ticks

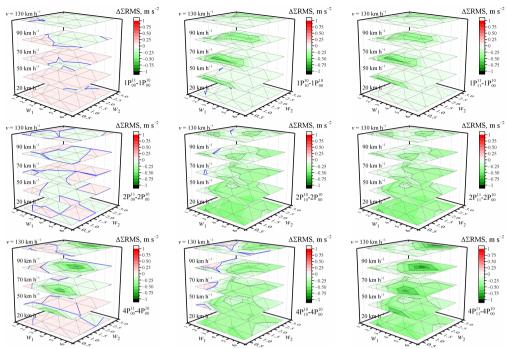
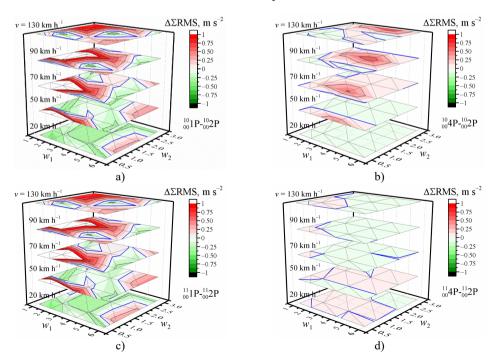



Fig. A5. Dependence of the difference in the sum of the RMS values of vertical accelerations of the entire crew on road profile waviness w_1 and w_2 when vehicle speed is 20 km/h, 50 km/h, 70 km/h, 90 km/h or 130 km/h when optimized for various cases with a), b), c) – one damping value; d), e), f) – two damping values; g), h), i) – four damping values as parameter relative to the reference of the corresponding sum of the RMS values of vertical acceleration for the corresponding speed and road profile when optimized for the driver with the same number of damping values.

The black dotted line shows the values of major ticks. The solid blue line is zero

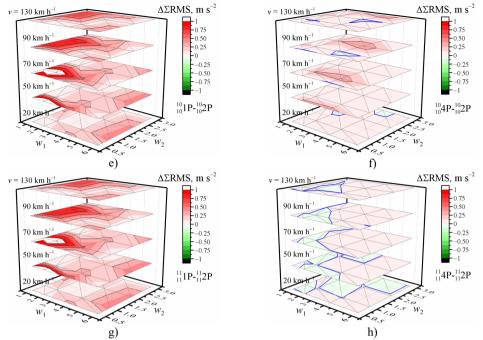


Fig. A6. Dependence of the difference in the sum of the RMS values of vertical accelerations of the entire crew on road profile waviness w_1 and w_2 when vehicle speed is 20 km/h, 50 km/h, 70 km/h, 90 km/h, or 130 km/h when optimized a), b) – for the driver; (c), d) – for the driver and front right passenger; e), f) – for the driver and rear left passenger; g), h) – for the entire crew relative to the reference of the corresponding sum of the RMS values of vertical acceleration for the corresponding speed and road profile when optimized for the same case with two damping values.

The black dotted line shows the values of major ticks. The solid blue line is zero

Aurimas Čerškus received Ph.D. degree in Semiconductor Physics from Semiconductor Physics Institute and Vilnius University, Vilnius, Lithuania, in 2009. Now he works at Vilnius Gediminas Technical University and State research institute Center for Physical Sciences and Technology. His current research interests include dynamics.

Nikolaj Šešok received Ph.D. degree in field of Dynamics from Vilnius Technical University, Vilnius, Lithuania, in 2000. Now he works at Vilnius Gediminas Technical University as an Associate Professor. His current research interests include dynamical properties of mechanical and mechatronic systems.

Vytautas Bučinskas received Ph.D. degree in the field of Theory of Machines and became an Associate Professor in the Department of Machine Engineering, Vilnius Technical University, Vilnius, Lithuania, in 2002. He got the Professor Position in the same Department in 2012. In 2013, the Department of Mechatronics and Robotics was established, and he took steering chair in it. After merging two Departments, he heads Department of Mechatronics, Robotics and Digital manufacturing. His current research interests include design of mechatronic systems, dynamical properties of mechatronic systems, energy harvesting from vibrations.