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Abstract. This paper presents an algorithm that combines a convolutional neural network (CNN) 
with a gated recurrent unit (GRU) to predict the wharf subsidence deformation. First, the digital 
elevation model (DEM) image features of the wharf area were extracted using the CNN, and then 
the patterns of change in wharf settlement were captured using the GRU. Moreover, the wharf in 
the Longtan Port area of Nanjing Port, located in Jiangsu Province, was analyzed. When the CNN 
comprised three convolutional layers and the activation function was set to sigmoid, the prediction 
performance of the proposed algorithm was the best. In both short-term and long-term scenarios, 
the CNN+GRU algorithm had better prediction performance than long short-term memory and 
GRU models.  
Keywords: wharf, subsidence deformation, prediction, deep learning. 

1. Introduction 

With the continuous growth of global trade and improvements in port infrastructure, the 
stability and safety of wharves, as important hubs for cargo distribution, have become key to 
ensuring smooth economic operation [1]. However, during the long-term use of wharves, it is 
prone to subsidence deformation due to various factors, including environmental conditions, load 
changes, and material aging. These factors not only affect the normal operation of the wharf but 
also pose risks to the safety of personnel and goods [2]. Therefore, accurately predicting the degree 
of subsidence deformation in wharves is beneficial for implementing timely maintenance 
measures and extending their service life. Among the various prediction methods, deep learning 
has emerged as a rapidly developing technology that can process large volumes of monitoring data 
to predict wharf subsidence deformation and automatically learn complex relationships between 
wharf structures and environmental factors to enhance the prediction precision [3]. Liu et al. [4] 
proposed a parametric non-uniform tunnel deformation model containing three different modes 
and established a surface settlement prediction model. Hasanipanah et al. [5] put forward a hybrid 
prediction model that combines an artificial neural network (ANN) with particle swarm 
optimization. They found that, compared to the traditional ANN model, their proposed model 
could predict the maximum surface settlement with greater accuracy. Fang et al. [6] derived a 
prediction equation for the land subsidence process by introducing parameter j, which represents 
the longitudinal settlement width coefficient, and its determining formula. Ji et al. [7] proposed a 
physical-data-driven combined strategy for identifying the load of tire-type rail transit vehicles. 
This strategy extracted the temporal-spatial features of signals using a convolutional neural 
network (CNN) and a bidirectional gated recurrent unit (GRU), then predicted the error of an 
extended Kalman filter, and corrected the identification results. Chen et al. [8] developed a novel 
explicit speed-integrated long short-term memory (LSTM) model to improve the representation 
accuracy of non-stationary vibration signals and enhance gearbox fault detection performance. 
The above relevant studies have all conducted research and analysis on land subsidence prediction 
and related prediction algorithms. Some focus on land subsidence models, while others emphasize 
prediction algorithms. In contrast, this article used drones to collect surface images of a wharf and 
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then constructed the digital elevation model (DEM) of the wharf. Then, a CNN algorithm was 
employed to extract features from the DEM, and a GRU was used to capture the time series 
variation law of the DEM to predict the subsidence deformation of the wharf. The differences and 
improvements lie in first quickly obtaining the basic situation of the wharf surface using DEM, 
then using the convolutional structure in CNN to extract the surface settlement characteristics 
from the wharf DEM data, and finally leveraging the advantages of GRU for time series data to 
analyze the non-linear laws of wharf settlement. This paper integrated a CNN with a GRU to 
forecast the subsidence deformation of the wharf. The DEM image features of the wharf area were 
extracted using CNN, and GRU captured the changing patterns of wharf subsidence. Moreover, 
the wharf in the Longtan Port area of Nanjing Port in Jiangsu Province was taken for a case study. 
The contribution of this paper lies in combining intelligent algorithms such as CNN and GRU to 
capture the patterns of wharf ground settlement to more effectively detect the changes in the wharf 
and ensure its safety. The novelty of this paper is the combination of a CNN with a GRU. The 
convolutional structure of the CNN algorithm was used to extract features from the wharf DEM 
data, and then the advantages of GRU for time series data were utilized to identify the patterns of 
changes in wharf ground settlement. 

2. Prediction algorithm of wharf subsidence deformation based on deep learning 

2.1. GRU algorithm in deep learning algorithm 

The basic principle of predicting the degree of wharf subsidence deformation is to predict the 
future data based on the current and historical data [9]. Deep learning algorithms, such as the 
recurrent neural network (RNN), are highly appropriate for analyzing such time series data. The 
GRU is an enhancement of long short-term memory (LSTM) networks. It merges the forgetting 
gate and the input gate into an update gate, thereby reducing the computational burden of the 
algorithm [10], which is beneficial to the rapid early warning of changes in wharf subsidence. The 
forward formula is: 

⎩⎪⎨
⎪⎧𝑧௧ = 𝑓൫𝜔௭ሺℎ௧ିଵ, 𝑥௧ሻ൯,𝑟௧ = 𝑓൫𝜔௥ሺℎ௧ିଵ, 𝑥௧ሻ൯,ℎ௧ᇱ = tanh(𝜔(𝑟௧ × ℎ௧ିଵ, 𝑥௧)),ℎ௧ = (1 − 𝑧௧) × ℎ௧ିଵ + 𝑧௧ × ℎ௧ᇱ , (1)

where 𝑧௧ is the update gate output [11], 𝑟௧ is the reset gate output, 𝜔௭ and 𝜔௥ are the weight in the 
update and reset gates, 𝑥௧ is the current input, 𝑓( ) is the activation function adopted by the update 
and reset gates, ℎ௧ିଵ is the hidden state of the previous moment, ℎ௧ᇱ  is the temporary hidden state 
of the present moment, 𝜔 is the weight when calculating ℎ௧ᇱ , and ℎ௧ is the hidden state of the 
current moment. 

2.2. Prediction of wharf subsidence deformation 

The wharf is an important distribution hub in water transportation. One of the characteristics 
of water transportation is its capacity for large freight volumes, which leads to the need for the 
wharf to bear a large amount of cargo load. Typically, the wharf usually extends from the shoreline 
into the water (sea) region [12]. As a hydraulic structure, a wharf will be deformed during 
operation due to the influence of cargo loads, natural environments, and other factors. If the 
deformation exceeds a certain threshold, it can result in irreversible damage, which will eventually 
cause damages to wharf staff and cargo safety [13]. Therefore, in order to guarantee the safety of 
the wharf, it is necessary to monitor the subsidence deformation and then make predictions 
according to the monitoring data, so as to prepare coping strategies in advance. 
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Fig. 1. Training flow of wharf subsidence deformation prediction based on a deep learning algorithm 

In this paper, a deep learning algorithm is employed to forecast the degree of subsidence 
deformation at the wharf, as shown in Fig. 1. 

(1) A monitoring point is set at an interval in the wharf area to be monitored [14]. 
(2) An unmanned aerial vehicle (UAV) equipped with a camera is used to capture images of 

the wharf area, and the collection interval is determined by specific requirements. 
(3) The DEM of the wharf area is constructed based on the monitoring points in the UAV-

captured images. The construction process is as follows. Firstly, scale-invariant feature transform 
(SIFT) features are utilized to identify the monitoring points in the images. Then, the camera pose 
is estimated using these monitoring points, and the actual coordinates of the monitoring points are 
calculated to create a sparse point cloud. Then, the multi-view stereo (MVS) image matching 
algorithm is applied to generate a dense point cloud. Finally, the DEM of the pier area is derived 
by filtering and interpolating the dense point cloud [15]. 

(4) The DEM of the wharf area is organized chronologically by day, and then the samples are 
constructed in the form of “4+1”. The form of “4+1” means that in the continuous-time DEM, the 
DEM of four consecutive days is taken as the input data of the sample, and the DEM of the fifth 
day is taken as the actual forecast data of the sample (label). 

(5) The input data from the training sample is input into a CNN, and the convolution and 
pooling layers of the CNN are used to extract and compress the convolutional features of the 
training sample. 

(6) The convolutional features extracted by the CNN are fed into the GRU according to the 
time series for forward calculation. 

(7) After the GRU forward calculation results are obtained, they are compared with the sample 
labels to determine whether the error converges to the preset threshold. If it does, the training is 
considered complete. If not [16], the parameters in the GRU and CNN are reversely adjusted 
according to the error, and the process returns to step (5). 
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3. Case analysis 

3.1. Case overview 

The Longtan Port area of Nanjing Port in Jiangsu Province (Fig. 2) was taken as the subject 
for a case analysis. Nanjing Port is located in the middle and lower reaches of the Yangtze River. 
Its coordinates are 118°44’ east longitude and 32°05’ north latitude. The entire Nanjing Port area 
is 98 km long. Longtan Port is an important part of Nanjing Port. It is a container wharf with a 
coastline of 910 m and an average water depth of 12.5 m at the front of the wharf. Longtan Port 
has a vast hinterland of cargo sources, excellent transportation conditions, and convenient access 
for both land and water transport. 

 
Fig. 2. Longtan Port area of Nanjing Port 

3.2. Analysis and setting 

The UAV used for image acquisition in the port area was a DJI Mini 4 Pro, equipped with a 
camera with 48 million effective pixels. It has a maximum flight time of 34 min. The navigation 
system employed was a combination of the global positioning system (GPS) and BeiDou. 

When setting up monitoring points in the Longtan Port area, a monitoring point was positioned 
every 50 m along the wharf (within the red box in Fig. 2). Then, the UAV flew along the 
designated route, and captured images, including the monitoring points. Images were collected at 
12 o'clock every day from September 2022 to September 2023. After eliminating images affected 
by bad weather, a total of 300 remote sensing images of Longtan Port were finally collected. 

Table 1. Relevant parameters of the prediction algorithm 
Structure setup Parameter Structure setup Parameter 

CNN input 
layer 

Depend on the matrix 
specification when building the 

training and testing samples 

CNN 
convolution 

layer 

64 convolution kernels (3×3), a 
moving step length of 2, the sigmoid 

activation function 
CNN pooling 

layer 3×3 pooling box, mean pooling GRU input 
layer 256 nodes 

GRU hidden 
layer 

1,024 nodes, the activation 
function sigmoid [17] 

GRU output 
layer 

Depend on the number of points to 
be predicted in the sample. 

CNN and GRU algorithms were combined, and the relevant parameters of the combined 
prediction algorithm for wharf ground subsidence deformation degree are shown in Table 1. The 
CNN algorithm was used to extract image features from the DEM built by monitoring images, 
and then the features were input into the GRU to predict wharf subsidence. The specifications of 
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the CNN input layer depended on the specifications of the matrix during the construction of 
training and testing samples. The form of “4+1” was adopted when constructing samples, i.e., the 
wharf DEM for four consecutive days and the wharf DEM for the 5th day. However, since the 
wharf DEM belongs to a point cloud map, where each point is regarded as a detection point, 
inputting the entire DEM into the algorithm for training at once would result in a heavy 
computational load. Therefore, when constructing the sample set in the “4+1” form, n detection 
points were selected from the DEM, the DEM data of the n detection points for four consecutive 
days constituted a 4×𝑛 input matrix, and the DEM data on the 5th day was the output label for the 
sample. In order to facilitate training and testing, 𝑛 was set to 6, then the input layer specification 
of the CNN was set to 4×6. 

The convolutional layers of the CNN are the key to extracting image features. The more layers 
there are, the more feature details will be extracted, but the amount of computation will also 
increase. Therefore, 1, 2, 3, 4, and 5 convolutional layers were set respectively, and the activation 
function in the convolutional layers was set to relu, sigmoid, and tanh, respectively, to test the 
performance of the algorithm under different convolutional layer numbers and activation 
functions. 

In addition, in order to further validate the performance of the proposed algorithm, it was 
compared with other algorithms, LSTM and GRU, which are essentially extensions of RNNs and 
share a similar structural framework. The parameters for the structure settings were referred to the 
GRU part of the combined algorithm. 

3.3. Evaluation index 

The mean absolute error (MAE) and root mean square error (RMSE) were used to assess the 
performance of the algorithm. The formulas are: 

⎩⎪⎨
⎪⎧MAE = ∑ |𝑦௧ − 𝑦௧ᇱ|௡௧ୀଵ 𝑛 ,

RMSE = ඨ∑ (𝑦௧ − 𝑦௧ᇱ)ଶ௡௧ୀଵ 𝑛 , (2)

where MAE is the mean absolute error, RMSE is the root mean square error, 𝑛 is the number of 
observation days of wharf subsidence, 𝑦௧ is the actual observed value of the detection point on the 𝑡-th day, and 𝑦௧ᇱ is the predicted observation value of the detection point on the 𝑡-th day. 

3.4. Test results 

The performance of the combined algorithm was evaluated using different CNN activation 
functions and varying numbers of convolution layers. As shown in Table 2, under the same CNN 
activation function, the error index of the algorithm decreased with the increase of the 
convolutional layers. However, after three convolutional layers, the error index showed minimal 
change. Under the same number of convolutional layers, the algorithm using sigmoid as the 
activation function exhibited the lowest error index. Considering these results and the 
computational amount of the algorithm, the activation function was finally set to sigmoid, and the 
number of convolutional layers was set to three. 

Then, the performance of the three prediction algorithms was compared (Table 3). The MAE 
and RMSE of the LSTM algorithm for predicting the wharf ground subsidence were 0.178 and 
0.184, respectively. The values for the GRU algorithm were 0.114 and 0.126, respectively. The 
values for the CNN+GRU algorithms were 0.079 and 0.087, respectively. It can be seen that the 
CNN+GRU algorithm had the best performance in predicting wharf ground subsidence and 
consumed the least time. 
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Table 2. Performance of the proposed algorithm under different activation  
functions and convolution layer numbers 

Activation function Convolution layer number 1 2 3 4 5 

Relu MAE 0.231 0.169 0.109 0.108 0.108 
RMSE 0.222 0.172 0.112 0.111 0.111 

Sigmoid MAE 0.187 0.104 0.079 0.078 0.078 
RMSE 0.193 0.115 0.087 0.086 0.086 

Tahn MAE 0.219 0.154 0.107 0.106 0.106 
RMSE 0.226 0.163 0.115 0.114 0.114 

The average subsidence in the wharf area after some monitoring days and the prediction 
deviation of the subsidence amount by the three algorithms are shown in Table 3. The actual 
observed elevation value at a specific monitoring point in the wharf area over a specific time frame 
and the predicted elevation changes of the three algorithms are shown in Fig. 3.  

Table 3. Performance comparison of three algorithms 
 LSTM GRU CNN+GRU 

MAE 0.178 0.114 0.079 
RMSE 0.184 0.126 0.087 

Time consumption 2.15 1.69 1.23 

As time went by, the elevation of the monitoring points gradually decreased, indicating 
subsidence; however, it stabilized after a certain period, indicating that the subsidence was not 
serious. The average subsidence changes of the entire wharf area in Table 4 further confirm that 
the subsidence was occurring, but it remained stable and not particularly serious. Moreover, by 
comparing the predicted elevation values from the three algorithms and the two evaluation 
indicators in Table 4, it can be seen that the predictions made by the CNN+GRU algorithm were 
closest to the actual observed values. 

Table 4. The average subsidence of the wharf area within certain monitoring days and the prediction 
deviations of the subsidence amount by the three prediction algorithms 

Monitoring days 
/ n 

Actual average subsidence 
value / mm 

LSTM GRU CNN+GRU 
MAE RMSE MAE RMSE MAE RMSE 

100 3.1 0.178 0.184 0.114 0.126 0.079 0.087 
101 3.0 0.181  0.188  0.117  0.130  0.082  0.089  
102 2.0 0.186  0.193  0.120  0.132  0.084  0.091  
103 2.5 0.191  0.195  0.122  0.135  0.086  0.093  
104 1.0 0.195  0.200  0.125  0.139  0.088  0.095  
105 1.5 0.200  0.203  0.128  0.142  0.091  0.097  
106 2.2 0.203  0.207  0.131  0.144  0.093  0.099  
107 2.3 0.207  0.210  0.134  0.148  0.096  0.101  
108 2.3 0.212  0.213  0.138  0.151  0.098  0.103  
109 1.2 0.216  0.218  0.141  0.154  0.101  0.105  
110 1.0 0.220  0.221  0.143  0.157  0.103  0.107  
111 1.0 0.225  0.226  0.147  0.160  0.105  0.110  
112 0.6 0.229  0.229  0.150  0.164  0.106  0.113  
113 0.6 0.234  0.232  0.152  0.167  0.108  0.114  
114 0.4 0.238  0.236  0.156  0.171  0.110  0.117  
115 0.4 0.241  0.239  0.160  0.174  0.112  0.119  
116 0.2 0.245  0.241  0.163  0.178  0.115  0.121  
117 0.1 0.250  0.245  0.166  0.180  0.116  0.123  
118 0.1 0.253  0.249  0.168  0.183  0.118  0.125  
119 0.0 0.256  0.252  0.170  0.185  0.121  0.128  
120 0.0 0.261  0.256  0.174  0.189  0.123  0.130  
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Fig. 3. The actual observed value of a monitoring point in the wharf  

area within a period of time and the predicted value of the three algorithms 

4. Conclusions 

This paper integrates a CNN with GRU to predict the wharf subsidence deformation. First, the 
DEM image features of the wharf area were extracted by using the CNN algorithm, and then the 
GRU algorithm was employed to identify the patterns of wharf subsidence changes. Then, the 
wharf of the Longtan Port area of Nanjing Port in Jiangsu Province was taken as the subject of the 
case analysis. When the number of convolutional layers in the CNN part was three and the 
activation function was set to sigmoid, the prediction performance of the algorithm was the best. 
Compared with the LSTM and GRU algorithms, the CNN+GRU algorithm showed the smallest 
error in predicting wharf subsidence. In the long-term prediction, the prediction error of the 
CNN+GRU algorithm was always the smallest. However, one limitation of this study is the 
reliance on SIFT features to construct the DEM of the wharf, as SIFT features can be significantly 
influenced by environmental factors such as changes in illumination and viewpoint. Moreover, 
the subject of case analysis was limited to Longtan Port. The performance of the CNN+GRU 
algorithm proposed in different ports has not been explored, lacking generalization. Therefore, the 
future research direction is to use a CNN to extract features for constructing DEM and expand the 
subjects of case analysis to enhance the generalization of the prediction model. 
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