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Abstract. This paper presents an algorithm that combines a convolutional neural network (CNN)
with a gated recurrent unit (GRU) to predict the wharf subsidence deformation. First, the digital
elevation model (DEM) image features of the wharf area were extracted using the CNN, and then
the patterns of change in wharf settlement were captured using the GRU. Moreover, the wharf in
the Longtan Port area of Nanjing Port, located in Jiangsu Province, was analyzed. When the CNN
comprised three convolutional layers and the activation function was set to sigmoid, the prediction
performance of the proposed algorithm was the best. In both short-term and long-term scenarios,
the CNN+GRU algorithm had better prediction performance than long short-term memory and
GRU models.
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1. Introduction

With the continuous growth of global trade and improvements in port infrastructure, the
stability and safety of wharves, as important hubs for cargo distribution, have become key to
ensuring smooth economic operation [1]. However, during the long-term use of wharves, it is
prone to subsidence deformation due to various factors, including environmental conditions, load
changes, and material aging. These factors not only affect the normal operation of the wharf but
also pose risks to the safety of personnel and goods [2]. Therefore, accurately predicting the degree
of subsidence deformation in wharves is beneficial for implementing timely maintenance
measures and extending their service life. Among the various prediction methods, deep learning
has emerged as a rapidly developing technology that can process large volumes of monitoring data
to predict wharf subsidence deformation and automatically learn complex relationships between
wharf structures and environmental factors to enhance the prediction precision [3]. Liu et al. [4]
proposed a parametric non-uniform tunnel deformation model containing three different modes
and established a surface settlement prediction model. Hasanipanah et al. [S] put forward a hybrid
prediction model that combines an artificial neural network (ANN) with particle swarm
optimization. They found that, compared to the traditional ANN model, their proposed model
could predict the maximum surface settlement with greater accuracy. Fang et al. [6] derived a
prediction equation for the land subsidence process by introducing parameter j, which represents
the longitudinal settlement width coefficient, and its determining formula. Ji et al. [7] proposed a
physical-data-driven combined strategy for identifying the load of tire-type rail transit vehicles.
This strategy extracted the temporal-spatial features of signals using a convolutional neural
network (CNN) and a bidirectional gated recurrent unit (GRU), then predicted the error of an
extended Kalman filter, and corrected the identification results. Chen et al. [8] developed a novel
explicit speed-integrated long short-term memory (LSTM) model to improve the representation
accuracy of non-stationary vibration signals and enhance gearbox fault detection performance.
The above relevant studies have all conducted research and analysis on land subsidence prediction
and related prediction algorithms. Some focus on land subsidence models, while others emphasize
prediction algorithms. In contrast, this article used drones to collect surface images of a wharf and
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then constructed the digital elevation model (DEM) of the wharf. Then, a CNN algorithm was
employed to extract features from the DEM, and a GRU was used to capture the time series
variation law of the DEM to predict the subsidence deformation of the wharf. The differences and
improvements lie in first quickly obtaining the basic situation of the wharf surface using DEM,
then using the convolutional structure in CNN to extract the surface settlement characteristics
from the wharf DEM data, and finally leveraging the advantages of GRU for time series data to
analyze the non-linear laws of wharf settlement. This paper integrated a CNN with a GRU to
forecast the subsidence deformation of the wharf. The DEM image features of the wharf area were
extracted using CNN, and GRU captured the changing patterns of wharf subsidence. Moreover,
the wharf in the Longtan Port area of Nanjing Port in Jiangsu Province was taken for a case study.
The contribution of this paper lies in combining intelligent algorithms such as CNN and GRU to
capture the patterns of wharf ground settlement to more effectively detect the changes in the wharf
and ensure its safety. The novelty of this paper is the combination of a CNN with a GRU. The
convolutional structure of the CNN algorithm was used to extract features from the wharf DEM
data, and then the advantages of GRU for time series data were utilized to identify the patterns of
changes in wharf ground settlement.

2. Prediction algorithm of wharf subsidence deformation based on deep learning
2.1. GRU algorithm in deep learning algorithm

The basic principle of predicting the degree of wharf subsidence deformation is to predict the
future data based on the current and historical data [9]. Deep learning algorithms, such as the
recurrent neural network (RNN), are highly appropriate for analyzing such time series data. The
GRU is an enhancement of long short-term memory (LSTM) networks. It merges the forgetting
gate and the input gate into an update gate, thereby reducing the computational burden of the
algorithm [10], which is beneficial to the rapid early warning of changes in wharf subsidence. The
forward formula is:

Zy = f(wz(ht—l'xt)).
Tt = f(wr(ht—vxt)). 1)

h; = tanh(w(1y X he_q, X)),
he =1 —2z) X he_qg + 2, X h,

where z; is the update gate output [11], r; is the reset gate output, w, and w, are the weight in the
update and reset gates, x; is the current input, f( ) is the activation function adopted by the update
and reset gates, h;_; is the hidden state of the previous moment, h; is the temporary hidden state
of the present moment, w is the weight when calculating h;, and h; is the hidden state of the
current moment.

2.2. Prediction of wharf subsidence deformation

The wharf is an important distribution hub in water transportation. One of the characteristics
of water transportation is its capacity for large freight volumes, which leads to the need for the
wharf'to bear a large amount of cargo load. Typically, the wharfusually extends from the shoreline
into the water (sea) region [12]. As a hydraulic structure, a wharf will be deformed during
operation due to the influence of cargo loads, natural environments, and other factors. If the
deformation exceeds a certain threshold, it can result in irreversible damage, which will eventually
cause damages to wharf staff and cargo safety [13]. Therefore, in order to guarantee the safety of
the wharf, it is necessary to monitor the subsidence deformation and then make predictions
according to the monitoring data, so as to prepare coping strategies in advance.
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Fig. 1. Training flow of wharf subsidence deformation prediction based on a deep learning algorithm

In this paper, a deep learning algorithm is employed to forecast the degree of subsidence
deformation at the wharf, as shown in Fig. 1.

(1) A monitoring point is set at an interval in the wharf area to be monitored [14].

(2) An unmanned aerial vehicle (UAV) equipped with a camera is used to capture images of
the wharf area, and the collection interval is determined by specific requirements.

(3) The DEM of the wharf area is constructed based on the monitoring points in the UAV-
captured images. The construction process is as follows. Firstly, scale-invariant feature transform
(SIFT) features are utilized to identify the monitoring points in the images. Then, the camera pose
is estimated using these monitoring points, and the actual coordinates of the monitoring points are
calculated to create a sparse point cloud. Then, the multi-view stereo (MVS) image matching
algorithm is applied to generate a dense point cloud. Finally, the DEM of the pier area is derived
by filtering and interpolating the dense point cloud [15].

(4) The DEM of the wharf area is organized chronologically by day, and then the samples are
constructed in the form of “4+1”. The form of “4+1” means that in the continuous-time DEM, the
DEM of four consecutive days is taken as the input data of the sample, and the DEM of the fifth
day is taken as the actual forecast data of the sample (label).

(5) The input data from the training sample is input into a CNN, and the convolution and
pooling layers of the CNN are used to extract and compress the convolutional features of the
training sample.

(6) The convolutional features extracted by the CNN are fed into the GRU according to the
time series for forward calculation.

(7) After the GRU forward calculation results are obtained, they are compared with the sample
labels to determine whether the error converges to the preset threshold. If it does, the training is
considered complete. If not [16], the parameters in the GRU and CNN are reversely adjusted
according to the error, and the process returns to step (5).
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3. Case analysis
3.1. Case overview

The Longtan Port area of Nanjing Port in Jiangsu Province (Fig. 2) was taken as the subject
for a case analysis. Nanjing Port is located in the middle and lower reaches of the Yangtze River.
Its coordinates are 118°44’ east longitude and 32°05” north latitude. The entire Nanjing Port area
is 98 km long. Longtan Port is an important part of Nanjing Port. It is a container wharf with a
coastline of 910 m and an average water depth of 12.5 m at the front of the wharf. Longtan Port
has a vast hinterland of cargo sources, excellent transportation conditions, and convenient access
for both land and water transport.

3.2. Analysis and setting

The UAV used for image acquisition in the port area was a DJI Mini 4 Pro, equipped with a
camera with 48 million effective pixels. It has a maximum flight time of 34 min. The navigation
system employed was a combination of the global positioning system (GPS) and BeiDou.

When setting up monitoring points in the Longtan Port area, a monitoring point was positioned
every 50 m along the wharf (within the red box in Fig. 2). Then, the UAV flew along the
designated route, and captured images, including the monitoring points. Images were collected at
12 o'clock every day from September 2022 to September 2023. After eliminating images affected
by bad weather, a total of 300 remote sensing images of Longtan Port were finally collected.

Table 1. Relevant parameters of the prediction algorithm

Structure setup Parameter Structure setup Parameter
CNN input .Depe.nd on the m.atr.ix CNN. 64! convolution kernels (3 X.3), a
layer specification when building the | convolution | moving step length of 2, the sigmoid
training and testing samples layer activation function
CNN pooling 3%3 pooling box, mean pooling GRU input 256 nodes
layer layer
GRU hidden 1,024 nodes, the activation GRU output | Depend on the number of points to
layer function sigmoid [17] layer be predicted in the sample.

CNN and GRU algorithms were combined, and the relevant parameters of the combined
prediction algorithm for wharf ground subsidence deformation degree are shown in Table 1. The
CNN algorithm was used to extract image features from the DEM built by monitoring images,
and then the features were input into the GRU to predict wharf subsidence. The specifications of
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the CNN input layer depended on the specifications of the matrix during the construction of
training and testing samples. The form of “4+1” was adopted when constructing samples, i.e., the
wharf DEM for four consecutive days and the wharf DEM for the 5th day. However, since the
wharf DEM belongs to a point cloud map, where each point is regarded as a detection point,
inputting the entire DEM into the algorithm for training at once would result in a heavy
computational load. Therefore, when constructing the sample set in the “4+1” form, n detection
points were selected from the DEM, the DEM data of the n detection points for four consecutive
days constituted a 4xn input matrix, and the DEM data on the 5th day was the output label for the
sample. In order to facilitate training and testing, n was set to 6, then the input layer specification
of the CNN was set to 4x6.

The convolutional layers of the CNN are the key to extracting image features. The more layers
there are, the more feature details will be extracted, but the amount of computation will also
increase. Therefore, 1, 2, 3, 4, and 5 convolutional layers were set respectively, and the activation
function in the convolutional layers was set to relu, sigmoid, and tanh, respectively, to test the
performance of the algorithm under different convolutional layer numbers and activation
functions.

In addition, in order to further validate the performance of the proposed algorithm, it was
compared with other algorithms, LSTM and GRU, which are essentially extensions of RNNs and
share a similar structural framework. The parameters for the structure settings were referred to the
GRU part of the combined algorithm.

3.3. Evaluation index

The mean absolute error (MAE) and root mean square error (RMSE) were used to assess the
performance of the algorithm. The formulas are:

(MAE _ Y=y — yil
4 -
, 2
LRMSE _ 2O —y)?
n )

where MAE is the mean absolute error, RMSE is the root mean square error, n is the number of
observation days of wharf subsidence, y; is the actual observed value of the detection point on the
t-th day, and y; is the predicted observation value of the detection point on the t-th day.

3.4. Test results

The performance of the combined algorithm was evaluated using different CNN activation
functions and varying numbers of convolution layers. As shown in Table 2, under the same CNN
activation function, the error index of the algorithm decreased with the increase of the
convolutional layers. However, after three convolutional layers, the error index showed minimal
change. Under the same number of convolutional layers, the algorithm using sigmoid as the
activation function exhibited the lowest error index. Considering these results and the
computational amount of the algorithm, the activation function was finally set to sigmoid, and the
number of convolutional layers was set to three.

Then, the performance of the three prediction algorithms was compared (Table 3). The MAE
and RMSE of the LSTM algorithm for predicting the wharf ground subsidence were 0.178 and
0.184, respectively. The values for the GRU algorithm were 0.114 and 0.126, respectively. The
values for the CNN+GRU algorithms were 0.079 and 0.087, respectively. It can be seen that the
CNN+GRU algorithm had the best performance in predicting wharf ground subsidence and
consumed the least time.
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Table 2. Performance of the proposed algorithm under different activation
functions and convolution layer numbers

Activation function | Convolution layer number 1 2 3 4 5
Relu MAE 0.231 | 0.169 | 0.109 | 0.108 | 0.108
RMSE 0.222 | 0.172 | 0.112 | 0.111 | 0.111
Sigmoid MAE 0.187 | 0.104 | 0.079 | 0.078 | 0.078
RMSE 0.193 | 0.115 | 0.087 | 0.086 | 0.086
Tahn MAE 0.219 | 0.154 | 0.107 | 0.106 | 0.106
RMSE 0.226 | 0.163 | 0.115 | 0.114 | 0.114

The average subsidence in the wharf area after some monitoring days and the prediction
deviation of the subsidence amount by the three algorithms are shown in Table 3. The actual
observed elevation value at a specific monitoring point in the wharf area over a specific time frame
and the predicted elevation changes of the three algorithms are shown in Fig. 3.

Table 3. Performance comparison of three algorithms

LSTM | GRU | CNN+GRU
MAE 0.178 | 0.114 0.079
RMSE 0.184 | 0.126 0.087
Time consumption | 2.15 1.69 1.23

As time went by, the elevation of the monitoring points gradually decreased, indicating
subsidence; however, it stabilized after a certain period, indicating that the subsidence was not
serious. The average subsidence changes of the entire wharf area in Table 4 further confirm that
the subsidence was occurring, but it remained stable and not particularly serious. Moreover, by
comparing the predicted elevation values from the three algorithms and the two evaluation
indicators in Table 4, it can be seen that the predictions made by the CNN+GRU algorithm were
closest to the actual observed values.

Table 4. The average subsidence of the wharf area within certain monitoring days and the prediction
deviations of the subsidence amount by the three prediction algorithms

Monitoring days Actual average subsidence LSTM GRU CNN+GRU
/n value / mm MAE | RMSE | MAE | RMSE | MAE | RMSE
100 3.1 0.178 | 0.184 | 0.114 | 0.126 | 0.079 | 0.087
101 3.0 0.181 | 0.188 | 0.117 | 0.130 | 0.082 | 0.089
102 2.0 0.186 | 0.193 | 0.120 | 0.132 | 0.084 | 0.091
103 2.5 0.191 | 0.195 | 0.122 | 0.135 | 0.086 | 0.093
104 1.0 0.195 | 0.200 | 0.125 | 0.139 | 0.088 | 0.095
105 1.5 0.200 | 0.203 | 0.128 | 0.142 | 0.091 | 0.097
106 2.2 0.203 | 0.207 | 0.131 | 0.144 | 0.093 | 0.099
107 2.3 0.207 | 0.210 | 0.134 | 0.148 | 0.096 | 0.101
108 2.3 0.212 | 0.213 | 0.138 | 0.151 | 0.098 | 0.103
109 1.2 0.216 | 0.218 | 0.141 | 0.154 | 0.101 | 0.105
110 1.0 0.220 | 0.221 | 0.143 | 0.157 | 0.103 | 0.107
111 1.0 0.225 | 0.226 | 0.147 | 0.160 | 0.105 | 0.110
112 0.6 0.229 | 0.229 | 0.150 | 0.164 | 0.106 | 0.113
113 0.6 0.234 | 0.232 | 0.152 | 0.167 | 0.108 | 0.114
114 0.4 0.238 | 0.236 | 0.156 | 0.171 | 0.110 | 0.117
115 0.4 0.241 | 0.239 | 0.160 | 0.174 | 0.112 | 0.119
116 0.2 0.245 | 0.241 | 0.163 | 0.178 | 0.115 | 0.121
117 0.1 0.250 | 0.245 | 0.166 | 0.180 | 0.116 | 0.123
118 0.1 0.253 | 0.249 | 0.168 | 0.183 | 0.118 | 0.125
119 0.0 0.256 | 0.252 | 0.170 | 0.185 | 0.121 | 0.128
120 0.0 0.261 | 0.256 | 0.174 | 0.189 | 0.123 | 0.130
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Fig. 3. The actual observed value of a monitoring point in the wharf

area within a period of time and the predicted value of the three algorithms
4. Conclusions

This paper integrates a CNN with GRU to predict the wharf subsidence deformation. First, the
DEM image features of the wharf area were extracted by using the CNN algorithm, and then the
GRU algorithm was employed to identify the patterns of wharf subsidence changes. Then, the
wharf of the Longtan Port area of Nanjing Port in Jiangsu Province was taken as the subject of the
case analysis. When the number of convolutional layers in the CNN part was three and the
activation function was set to sigmoid, the prediction performance of the algorithm was the best.
Compared with the LSTM and GRU algorithms, the CNN+GRU algorithm showed the smallest
error in predicting wharf subsidence. In the long-term prediction, the prediction error of the
CNN+GRU algorithm was always the smallest. However, one limitation of this study is the
reliance on SIFT features to construct the DEM of the wharf, as SIFT features can be significantly
influenced by environmental factors such as changes in illumination and viewpoint. Moreover,
the subject of case analysis was limited to Longtan Port. The performance of the CNN+GRU
algorithm proposed in different ports has not been explored, lacking generalization. Therefore, the
future research direction is to use a CNN to extract features for constructing DEM and expand the
subjects of case analysis to enhance the generalization of the prediction model.
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