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Abstract. High-speed cutting of titanium alloy has the advantages of high processing efficiency, 
reducing tool wear, and obtaining good surface quality, but there is a lack of research on the 
influence of chip shape on machining parameter selection mechanism in the cutting process, which 
hinders the development of high-speed milling quality of titanium alloy. In this paper, the shape 
of titanium alloy (Ti6Al4V) chips at different speeds and different temperatures were simulated. 
With the increase of cutting speed, the tool squeezes the workpiece material, causing it to undergo 
elastic deformation and thereby forming a cutting layer. As the cutting process progresses, the 
chip gradually takes on a serrated shape, the degree of sawtooth sharpening of chips was analyzed. 
The formation mechanism of chips and the formation process of sawtooth chips during right-angle 
cutting were analyzed. The locust optimization algorithm was used to optimize the multi-objective 
parameters, and it was found that high performance machining effect could be achieved by using 
large feed speed, radial cutting depth and spindle speed. 
Keywords: titanium alloy, high speed milling, chips, finite element simulation, machining 
parameter optimization. 

1. Introduction 

With the rapid development of computer technology, the finite-element numerical simulation 
method has gained growing popularity in the research on the cutting – process mechanisms of 
titanium alloys and other metals. This method enables the analysis of various aspects, including 
chip formation, tool behavior, and the distribution of temperature fields, stress fields, strains, and 
strain rates within the workpiece. Through subsequent calculation and analysis, optimal 
processing parameter designs can be obtained. This not only helps reduce costs in the actual 
machining process but also optimizes machining designs and processes. 

A novel approach for machining parameter optimization is presented through the integration 
of the cutting process with finite element analysis. Laakso et al. [1] used the finite element 
simulation method to estimate the influence of the subsequent cutting process on the performance 
of the cutting model, and found the error of the feed force. Li et al. [2] studied the chip formation 
mechanism of high-temperature nickel alloy Inconel 718 in the cutting process by combining 
design milling experiment and finite element simulation, established a two-dimensional cutting 
model based on J-C constitutive model [3], and found that the cutting force and chip morphology 
generated by finite element simulation were basically consistent with the experiment. Walid 
Jomaa et al. [4] used Abaqus/Explicit v6.13 software to simulate AA7075-T651 alloy with 
two-dimensional finite element processing. By using finite element numerical data and chip 
sawtooth analysis model, the physical phenomenon controlling sawtooth chip formation was 
emphasized and discussed in depth.Rodriguez Prieto et al. [5] conducted an investigation on the 
cutting of Ti6Al4V. They modified the Lagrangian finite - element method by basing it on the 
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particle finite-element method and continuous Delaunay re-triangulation. Arrazola et al. [6] 
established a two-dimensional finite-element model by employing the arbitrary Lagrange-Euler 
formula available in Abaqus/Explicit (v6.8). They discovered that thermal conductivity, specific 
heat, inelastic percentage, and the Johnson-Cook (J-C) constitutive coefficients have significant 
impacts on the formation of saw-tooth chips. In particular, thermal conductivity and specific heat 
exert the most substantial influence. In addition, it is found that the yield stress of the material 
itself has a significant effect on the generation of sawtooth chips. Huang et al. [7] proposed a new 
Galerkin grid-free method when studying the chip separation process in the machining process, 
and proved that the formation of shear bands was caused by the thermal softening of materials. 

Sima et al. [8] explored the influence of a modified material model, which was based on 
temperature-dependent flow softening, on the formation of saw-tooth chips during the machining 
of Ti-6Al-4V titanium alloy. The research revealed that the flow-softening phenomenon, strain-
hardening effect, and thermal-softening effect are all interrelated. Fu et al. [9] studied the chip 
morphology changes of 7050-T7451 aluminum alloy at different cutting speeds by using the finite 
element simulation method, and found that continuous chips were more easily formed when the 
cutting speed was lower than 1500 m/min, and when the critical cutting speed was reached (2500 
m/min), the ribbon chips were transformed into sawn-shaped chips. Rhim et al. [10] studied the 
flow stress model based on the assumption of high speed, high temperature and large deformation 
process to predict the formation of sawtooth chips during cutting. The finite element analysis 
shows that the dynamic recrystallization will be induced by the increase of shear zone temperature 
during the cutting process, the flow stress will be reduced, and the adiabatic shear zone and 
sawtooth chip will be formed. 

In complex processing, due to numerous influencing factors, it is not easy to establish a 
theoretical model, while the data-driven model that relies on test data is relatively easy to obtain, 
and there is no need to analyze the construction mechanism of the objective function. Data 
modeling is an important means to optimize machine tool efficiency and processing efficiency, 
and commonly used methods include response surface method [11], inverse propagation neural 
network (BPNN) [12], support vector regression and progressive gradient regression tree. 
Response surface method [13] reveals the correlation between decision variables and target 
variables by constructing a quadratic polynomial model. However, when there are items with 
insignificant influence, it is necessary to artificially eliminate them to improve the prediction 
accuracy, which may be time-consuming and difficult to obtain the best results. In contrast, the 
other three methods can improve the accuracy of the model by adjusting the internal parameters, 
especially for nonlinear data. When selecting the data modeling method, it is necessary to consider 
the complexity of the model, the difficulty of parameter adjustment and the fitting ability of 
nonlinear data according to the specific situation, so as to achieve the best modeling effect. 
Yunchao Tang et al. [14] trained a Support Vector Regression (SVR) model using data from 120 
sets of UCS and peak strain experiments, constructing a multi-objective optimization model based 
on SVR. They successfully generated a Pareto front for mixed optimization design across three 
objectives (UCS, strain, cost), serving as a decision reference under different temperature 
conditions. Shuai Wan et al. [15] proposed an ultrasonic-AI hybrid method, enhancing the 
Extreme Gradient Boosting (XGBoost) model through over-sampling and hyperparameter 
optimization via Bayesian Optimization (BO-XGBoost). The BO-XGBoost model demonstrated 
outstanding performance, with an overall prediction accuracy of 0.92, an accuracy and recall rate 
of 0.90, and an AUC of 0.98. 

In addition, the selection of optimization targets is also very important. Tamal Ghosh et al. 
[16] uses Bayesian regularization neural network and beetle antenna search algorithm for process 
optimization. By applying Kohonen’s self-organization diagram, the relationship between 
different processing parameters is explored. After conducting a comparative analysis of the 
proposed agent-assisted optimization method with three other optimization techniques, it was 
found that the former demonstrated remarkable efficiency and rapidity in handling offline 
processing data. The findings of this study clearly indicate that the agent-assisted optimization 
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method achieved success in the optimization process and exhibited significant advantages over its 
counterparts. 

Previous studies have mostly focused on the formation of chip material or analysis of 
machining parameters, lacking innovation in the application of parameter optimization algorithms. 
This study makes breakthroughs in three aspects: First, addressing the issue of unclear 
mechanisms for selecting machining parameters influenced by chip morphology during high-
speed cutting of titanium alloys, we systematically simulated Ti6Al4V chip morphology under 
different speeds and temperatures, conducting an in-depth analysis of the formation processes and 
mechanisms of straight-cut and serrated chips, filling a research gap in this field; Second, 
innovatively employing the ant colony optimization algorithm for multi-objective parameter 
optimization, which offers significant advantages over traditional genetic algorithms and particle 
swarm optimization in balancing global and local search, flexibility in parameter adjustment, and 
structural innovation, proposing high-performance machining through high feed rates, radial 
cutting depth, and spindle speed, providing new insights for parameter selection; Third, deeply 
integrating the cutting process with finite element analysis to form a novel method for optimizing 
machining parameters, offering more scientific and systematic solutions to improve the quality of 
high-speed milling of titanium alloys, promoting the development of titanium alloy machining 
technology. 

In this paper, ABAQUS software based on ALE Arbitrary Lagrangian Eulerian is used. The 
method combines the advantages of Lagrangian and Eulerian algorithm [17], and can be used to 
simulate large deformation and steady deformation path of materials. The problems of mesh 
redivision and cutting separation are solved. Nevertheless, we still need to face the challenges of 
optimization of titanium alloy machining parameters, especially in the field of multi-objective 
optimization. In order to overcome these problems, we are committed to building a cutting 
parameter optimization model and method for titanium alloy milling, and combining it with the 
process database. 

2. Finite element simulation research based on ABAQUS 

This study utilized ABAQUS finite element simulation analysis software to establish a 
simulation model. By systematically varying the cutting parameters and analyzing the relevant 
variables, the model employed a modified Johnson-Cook nonlinear thermovisco-plastic 
constitutive model, a shear failure chip fracture criterion, and a bond slip mixed friction model. 
These enabled the acquisition of chip morphologies at different cutting speeds. 

2.1. Research on chip morphology at different cutting speeds 

1) In order to study the shape of chips at different cutting speeds, the initial temperature of the 
tool is set at 20 ℃, the ambient temperature is 20 ℃, and the cutting depth is 0.1 mm. The tool 
material is assumed to be rigid body, sharp and have no tool wear, and its model is 4.61 mm long, 
2.56 mm wide, front corner 0 and rear corner 10. The workpiece model is 15 mm long and 8 mm 
wide. 

In the high speed machining of titanium alloy chips, the chip type changes with the processing 
speed, and its conversion mechanism is mainly affected by the interaction of strain hardening and 
thermal softening. The stress distribution is shown in the figure below. From the chip morphology 
in Fig. 1, it can be seen that a continuous ribbon chip is obtained at a low processing speed of 
0.5 m/s. At this time, the heat generated in the cutting process is relatively small, and the strain 
hardening effect of the material occupies the dominant position, which can resist the deformation 
caused by the cutting, so that the chip can be formed continuously and maintain the belt shape. 
When the cutting rate increases to 1.5 m/s, the generated chips gradually have a sawtooth shape, 
and the left half has an uneven wavy profile, but the sawtooth shape is not significant at this time, 
and it should be a transitional form of banded chips and sawtooth chips. At this time, there is no 
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abrupt transition to shear instability because the strain-hardening effect prevails over the 
heat-softening effect. When the cutting speed was increased to 2.0 m/s, a saw-tooth chip segment 
formed with a significant saw-tooth degree, yet no characteristics of adiabatic shear bands were 
observed. The antagonism between strain hardening effect and thermal softening effect makes the 
chip present a more regular sawtooth shape. When the cutting speed is increased to 7.5 m/s, a 
relatively regular sawtooth chip has been formed, the degree of sawtooth has been very high, 
sudden shear instability appears, and an obvious adiabatic shear zone has been formed. This is 
because at this time, the cutting speed is greatly increased, and a large amount of heat is generated 
in the cutting area. The thermal softening effect exceeds the strain hardening effect, and the 
material is rapidly softened locally, resulting in shear instability and forming an adiabatic shear 
band, and the chip presents a typical sawtooth shape. 

 
a) 𝑣 = 0.5 m/s 

 
b) 𝑣 = 1.0 m/s 

 
c) 𝑣 = 1.5 m/s 

 
d) 𝑣 = 2.0 m/s 

 
e) 𝑣 = 7.5 m/s 

 
f) 𝑣 = 12.5 m/s 

Fig. 1. Chip morphology stress (N) cloud diagram at different speeds (m/s) 

2) The specific formation process of sawtooth nodal block at the same speed.  
In this model, the joint temperature, stress field, equivalent plastic strain and milling force of 

titanium alloy during sawing process were simulated by using the finite element numerical 
analysis method. As shown in Fig. 2-3, the zigzag chip break is clearly shown, and the selected 
tool front Angle is 0° and the cutting speed is 𝑣 = 7.5 m/s. 

As shown in Fig. 2, the chip layer material connected to the previous segment of sawtooth 
chips has an uneven temperature distribution, and there is a significant temperature rise at the 
cutting edge of the tool. This is mainly because the heat dissipation of the cutting layer is the worst 
closest to the cutting edge of the tool, and the shear-sliding from the previous step affects a limited 
area of the chip. Due to the rolling action of the tool and the increase in temperature, the material 
near the cutting-edge area undergoes high-degree shear-sliding deformation. Finally, due to the 
extrusion of the tool with the resulting chips, as shown in Fig. 2(b), the Mises stress generated at 
this time was large and extended to the inside of the workpiece, which had an impact on the surface 
quality of the workpiece. 

As shown in Fig. 3, during the cutting process of titanium alloy simulated by finite element 
simulation, due to the metal material being located in a critical thermoplastic instability condition, 
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strong shear slip was generated in the entire shear slip narrow band, resulting in a zigzag shape at 
the top of the chip. Correspondingly, the temperature in the central region of the narrow 
deformation band continued to rise, and all the metals in the narrow band showed thermoplastic 
instability, up to 4.05, and the Mises stress decreased, as shown in Fig. 3(b). With the continuous 
cutting process, the sawtooth deposit body continues to undergo concentrated shear-slip 
deformation, and the sawtooth structure on the top of the sawtooth deposit body will also increase, 
and finally form a sawtooth deposit body. 

 
a) Node temperature distribution cloud map 

 
b) Stress distribution cloud map 

 
c) Equivalent plastic strain  

distribution cloud map 

 
d) Cutting force distribution cloud map 

 
Fig. 2. The third section serrated chip formation began to form 

Based on the analysis, the force applied by the tool to the workpiece, which is closely related 
to the formation mechanism of saw-tooth chips, is the primary factor leading to the elastic 
deformation of the workpiece and the cutting layer. In detail, during the cutting operation, the 
material at the tool tip experiences plastic deformation as a result of the synergistic influences of 
temperature, stress, strain, and other relevant factors. 

A substantial amount of heat is generated during the cutting process due to the plastic 
deformation of the material and frictional work, which leads to the thermal softening of the 
material. During the shearing process, the reduction in shear stress caused by thermal softening is 
greater than the increase in stress resulting from machining-induced strengthening, which leads to 
the generation of shear fold and the first deformation zone is formed quickly in the cutting layer. 
In this process, chips begin to slide and accumulate on the processed material, finally forming a 
zigzag chip. Finally, a new “zigzag” chip breaking mechanism is obtained under the cutting 
process. 

2.2. ABAQUS 3D milling simulation 

The finite element model of 3D milling is shown in Fig. 4. A YG6X flat-head end mill is 
selected with 4 blade numbers, 45° spiral Angle, 7° front edge Angle, 15° back edge Angle, and 
5 diameter. The workpiece material is Ti6Al4V. The axial cutting depth is 3 mm and the radial 
cutting depth is 4.5 mm. The initial temperature is 30 ℃, the bottom surface of the workpiece is 
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constrained by 6 degrees of freedom, and the rigid constraint of the milling cutter is set as a 
reference point. Subsequently, the degrees of freedom of rotation and movement are applied to 
the reference point to establish a dynamic thermodynamic coupling analysis step. Finally, 
ABAQUS/Explicit solver is used for calculation. 

 
a) Node temperature distribution cloud map 

 
b) Stress distribution cloud map 

 
c) Equivalent plastic strain  

distribution cloud map 

 
d) Cutting force distribution cloud map 

 
Fig. 3. The third serrated chip shear slip occurs and completely formed 

In the process of 3D milling, when the temperature change of a certain point of the workpiece 
is wanted to be studied, the temperature change of points under the same 𝑋 coordinate and 
different 𝑍 coordinate can be selected as shown in Fig. 4(b), and the distance between the unit 
node and the machining surface can be 0 mm, 0.7 mm, 1.4 mm and 2.1 mm respectively. The 
temperature measurement points we selected can cover different depth levels: points at distances 
of 0 mm, 0.7 mm, 1.4 mm and 2.1 mm from the machining surface. These points at different 
distances span from the machining surface to various depths within the workpiece, allowing for a 
comprehensive examination of the heat conduction and distribution of milling thermal effects in 
the thickness direction of the workpiece. The machining surface (0 mm) directly participates in 
the cutting process, with intense temperature changes; as the distance increases, the temperature 
decay and variation characteristics during heat conduction into the workpiece can be observed. 
Additionally, temperature responses can be compared: by outputting and plotting the temperature 
changes at these different depth points, it is clear that as the normal distance (distance from the 
machining surface) increases, the peak temperature of the measurement point decreases and the 
time to reach the peak temperature becomes longer, indicating a temperature response lag. This 
comparison provides effective data support for understanding the propagation mechanism of 
milling thermal effects within the workpiece and the thermal influence range, thereby providing a 
basis for optimizing milling process parameters and controlling thermal deformation of the 
workpiece. 

Fig. 5 shows the output and simultaneous plotting of the temperature variations of the four cell 
nodes. As the normal range increases, the peak temperature at the measuring point decreases. 
Meanwhile, it takes each measuring point a longer time to reach the peak temperature. In other 
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words, the temperature response of the measuring point lags to some extent as the normal stroke 
increases. 

 
a) Three-dimensional milling model 

 
b) Schematic diagram of unit node selection 

Fig. 4. 3D milling model 

 
Fig. 5. The change of element node  

temperature with time 

 
Fig. 6. Experimental platform  

As the position of the unit node moves down, the temperature of the area between the adjacent 
sawtooth is getting higher and higher, and the edge of the sawtooth shows the characteristics of 
melting metal, at the same time, in the case of no change in heat dissipation capacity, the cutting 
heat per unit time is increased, thereby increasing the cutting temperature, and then strengthening 
the thermal softening effect, so that the strength and hardness of titanium alloy in the deformation 
area are reduced. As the degree of material deformation increases, the degree of chip serration 
increases. At this time, when an external load is applied to the area, cracks appear between the 
adjacent sawtooth, causing the sawtooth to separate [18]. 

3. Experimental platform construction 

The cutting force in milling process is directly related to milling efficiency, heat production, 
tool loss, workpiece vibration and surface quality. This parameter provides a crucial theoretical 
basis and evaluation criterion for the design and operation of machine tools, cutting tools, and 
fixtures. Moreover, the effects of various processing factors on cutting force differ. At the same 
time, by observing the dynamic cutting force of the tool, we can effectively evaluate the wear of 
the tool and the vibration of the system during the milling process. In the process of cutting 
titanium alloy, the chip heterogeneity often leads to high frequency fluctuation of cutting force. 
After a lot of experiments and in-depth theoretical analysis, we have identified two main sources 
of cutting force in the cutting process: first, the elastoplastic deformation of cutting layer metal, 
chip and workpiece surface metal; Secondly, the friction between the chip and the workpiece 
during the cutting process is also an important source of cutting force.  

Aiming to accurately predict the cutting force under diverse process conditions and provide a 
basis for the rational selection of milling parameters, this research endeavors to develop the 
relevant theoretical model by studying the variation law of cutting force. For Ti6Al4V titanium 
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alloys, the processing speed is greater than 100 m/min, which is considered as high-speed milling. 
In this study, 16 four-factor and four-level orthogonal tests are proposed to obtain milling force as 
the goal, and orthogonal tests with 4 factors and 4 levels are adopted to determine the levels of 
each factor as shown in Table 1 and milling process parameters as shown in Table 2. The 
DMC635V vertical CNC machining center produced by De Magee was used in the test. The 
relevant parameters are as follows: the positioning accuracy is 0.008 mm, the repeated positioning 
accuracy is 0.005mm. The spindle conical hole is SK40, the standard spindle speed can reach 
8000rpm, the feed speed is 20 m/min, and the fast moving speed can reach 30 m/min. Under the 
control of Siemens system, it has four machining axes, 𝑋, 𝑌, 𝑍 and rotation axis, which ensures 
accurate positioning and stable processing, ensuring the accuracy of the test. Fig. 6 shows the 
design of this test bed. 

In this experiment, Xiamen Jinlu brand coated four-sided milling cutter with diameter of 
10 mm and screw Angle of 45 degrees was used. This test takes Ti6Al4V titanium alloy as the 
research object and connects it with the force measuring instrument Kistler9257B. Kistler9257B 
is an advanced dynamometer that can simultaneously measure milling forces and moments in 𝑋, 𝑌 and 𝑍 directions. The system also includes a charge amplifier and related wire device. 

To minimize the impact of burrs on the test results, prior to the commencement of the 
machining test, a large radial cutting depth was initially employed to remove burrs. Subsequently, 
to further reduce the effect of minor surface irregularities of the workpiece on the milling force, a 
one-time milling approach with zero radial cutting depth was adopted. 

Table 1. Factor level table 

Level Factors 
Spindle speed (R/min) Axial cutting (mm) Radial cut (mm) Feed rate (mm/min) 

1 200 0.2 1.2 310 
2 400 0.3 2 440 
3 600 0.4 2.8 570 
4 800 0.5 3.6 700 

Table 2. Milling experiment scheme 
Sequence number Spindle speed (R/min) Feed rate (m/min) Axial cutting (mm) Radial cut (mm) 

1 400 700 0.2 1.2 
2 600 440 0.3 1.2 
3 800 570 0.4 1.2 
4 200 310 0.5 1.2 
5 200 440 0.2 2 
6 800 700 0.3 2 
7 600 310 0.4 2 
8 400 570 0.5 2 
9 800 310 0.2 2.8 
10 200 570 0.3 2.8 
11 400 440 0.4 2.8 
12 600 700 0.5 2.8 
13 600 570 0.2 3.6 
14 400 310 0.3 3.6 
15 200 700 0.4 3.6 
16 800 440 0.5 3.6 

Dyno Ware software was used to derive the cutting force data from the signal measured by the 
dynamometer. Taking the cutting parameters (𝑓ௗ = 200 m/min, 𝑎௣ = 0.1 mm, 𝑛௦ = 1900 r/min, 𝑎௥ = 5 mm) as an example, through the analysis of the cutting component forces 𝐹௑, 𝐹௒ and 𝐹௓, it 
was obtained that in the steady state machining process, the cutting force of the machine would 
be reduced. The relationship between cutting force and time per milling cutter rotation curve 7. 

The cutting force generated during the milling process of the workpiece by the tool varies with 
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the movement of the tool’s four teeth. This is because the engagement and disengagement of the 
tool teeth with the workpiece during the milling operation have a significant impact on the cutting 
force. At the beginning of the machining process, the cutting force gradually increases from the 
minimum to the maximum. Subsequently, during the ongoing machining, the cutting force 
gradually decreases. 

 
Fig. 7. Cutting force periodic signal diagram 

 
Fig. 8. Relationship between four feed speed and milling force 

Fig. 8 shows the law of influence of horizontal changes of milling parameters on milling force, 
where FX, FY and FZ are the average 𝑋, 𝑌 and 𝑍 direction milling force measured by the force 
meter respectively, and FR is the maximum value of the milling force. 

It can be seen from Fig. 8 that with the increase of feed speed, the milling force in 𝑋, 𝑌, 𝑍 
direction and in the direction of milling force is on the rise, but it turns downward at 570 mm/min. 
According to Schulz and Senzovsky [19], increasing the milling speed during the operation 
accelerates the plastic strain rate of the material, leading to strain-rate hardening. Consequently, 
the milling force increases. Due to the limited thermal conductivity of titanium-alloy materials, a 
higher milling speed results in more significant temperature rises. As the thermal-softening effect 
of the material gradually overtakes and dominates the strain-rate hardening effect, both the 
hardness and strength of the material, as well as the milling force, decrease. The results show that 
the thickness and milling force of undeformed chips and the degree of sawtooth serration increase 
with the increase of feed speed and cutter quantity per tooth [20]. 

4. Optimization of processing parameters based on chip morphology 

4.1. Multi-objective parameter estimation 

This paper takes maximum material removal rate and minimum milling force as optimization 
objectives, and takes spindle speed, axial depth of cut, radial depth of cut and feed speed as 
constraint conditions, adopts multi-objective algorithm to optimize multi-objective process 
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parameters, and optimizes 𝑎௣, 𝑣௙, 𝑎௥ and 𝑛. 

4.1.1. Determination of optimization objective function 

In order to obtain relatively scientific observed values of milling force, the average values of 
milling force in 𝑋, 𝑌 and 𝑍 directions were respectively taken from the data collected by milling 
force, and then milling force FR and material removal rate MRR were obtained according to the 
milling force formula and the maximum material removal rate formula respectively. 

1) Taking the minimum milling force FR as the objective function. The calculation formula of 
milling force is as follows: 

𝐹ோ = ට𝐹௑ଶ + 𝐹௒ଶ + 𝐹௓ଶ, (1)

where, 𝐹ோ  is the resultant milling force and 𝐹௑ is the component of the milling force in the 𝑋 
direction. 𝐹௒ is the milling force component in the 𝑌 direction. 𝐹௓ is the milling force component 
in the 𝑍 direction. 

2) The maximum material removal rate MRR was taken as the objective function: 𝑀𝑅𝑅 = 𝑎௣𝑎௥𝑛𝑓𝑁௧ . (2)

And because the relationship between feed speed and feed per tooth is: 𝑣௙ = 𝑓𝑁௧𝑛. (3)

Therefore, the formula for the maximum material removal rate MRR becomes: 𝑀𝑅𝑅 = 𝑎௣𝑎௥𝑣௙, (4)

where, 𝑎௣ is the axial depth of cut (mm), 𝑣௙ is the feed speed (mm/min), 𝑎௥ is the radial depth of 
cut (mm), 𝑛 is the spindle speed (r/min), 𝑁௧ is the number of teeth of the milling cutter, and 𝑓 is 
the feed per tooth (mm/z). 

The objective function is: 𝑀𝑅𝑅 = 𝑓ଶሺ𝑥ଶ, 𝑥ଷ, 𝑥ସሻ. (5)

4.1.2. Establishment and verification of milling force regression model 

In this paper, multiple linear regression model [21] is used to predict milling force. The 
principle of this model is simple and intuitive, with relatively low data requirements. It does not 
require a large amount of complex sample data for training, making it computationally efficient 
and scalable: it easily integrates with other methods or models to further optimize predictive 
performance. For example, it can be combined with feature engineering techniques in machine 
learning to screen and optimize independent variables, or it can be fused with other nonlinear 
models to address more complex milling force prediction issues. Milling force is mainly affected 
by four elements of milling, so a mathematical model of the relationship between milling force 
and milling parameters is established. The stepwise regression method is adopted to establish a 
second-order polynomial regression mathematical model [22], and the formula is as follows: 

𝑦ො = 𝛽଴ + ෍ 𝛽௜𝑥௜ସ௜ୀଵ + ෍ ෍ 𝛽௜௝𝑥௜𝑥௝ସ௝ୀ௜ାଵସ௜ୀଵ + ෍ 𝛽௜௜𝑥௜ଶସ௜ୀଵ . (6)
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Therefore, the empirical calculation expression formula of milling force is: 𝐹௖ = 𝐴 + 𝐵𝑎௣ + 𝐶𝑎௥ + 𝐷𝑛 +  𝐸𝑣௙ + 𝐹𝑎௣𝑎௥ + 𝐺𝑎௣𝑛 + 𝐻𝑎௣𝑣௙ + 𝐼𝑎௥𝑛 +  𝐽𝑎௥𝑣௙ + 𝐾𝑛𝑣௙+ 𝐿𝑎௣ଶ + 𝑀𝑎௥ଶ + 𝑁𝑛ଶ + 𝑂𝑣௙ଶ, (7)

where, 𝐴 is the constant related to the basic conditions of experimental processing, and 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐽, 𝐾, 𝐿, 𝑀, 𝑁 and 𝑂 are the coefficients of each milling element, respectively. 
The parameters of the milling force regression model were obtained by using SPSS software. 

Table 3. Parameter values of regression model 
Parameters Estimated Standard gap 95 % trust area lower limit 95 % trust area 

A –5643.506 7462.342 –100461.554 89174.541 
B 1422.952 3542.736 –43591.776 46437.679 
C –10796.315 58310.475 –751701.148 730108.517 
D 16.151 16.243 –190.235 222.537 
E 5.428 14.906 –183.975 194.830 
F 930.294 5514.676 –69140.311 71000.899 
G –0.451 2.013 –26.028 25.126 
H –1.535 5.784 –75.024 71.953 
I –0.888 32.544 –414.405 412.628 
J –10.067 15.363 –205.271 185.136 
K –0.006 0.011 –0.151 0.139 
L –113.324 434.439 –5633.394 5406.745 
M 27413.628 94281.146 –1170541.915 1225369.172 
N -0.010 0.014 –0.188 0.168 
O 0.004 0.005 –0.056 0.063 

Linear regression analysis was performed on the experimental data: 
1) The expression formula for the empirical calculation of milling force is: 𝐹௖ = −5643.506 + 1422.952𝑎௣ − 10796.315𝑎௥ + 16.151𝑛 + 5.428𝑣௙ + 930.294𝑎௣𝑎௥− 0.451𝑎௣𝑛 − 1.535𝑎௣𝑣௙ − 0.888𝑎௥𝑛 − 10.067𝑎௥𝑣௙ − 0.006𝑛𝑣௙ − 113.324𝑎௣ଶ+ 27413.628𝑎௥ଶ − 0.010𝑛ଶ + 0.004𝑣௙ଶ. (8)

Table 4. Variance analysis table of prediction model 
 Square and Freedom of degrees Range 

Regression 𝑆𝑆௥ 29007641.917 15 1933842.794 
Residual 𝑆𝑆௘ 520926.115 1 520926.115 

Not calibrating the total 29528568.033 16  
Total time after correction 𝑆𝑆்  9763717.406 15  

The corrected total deviation sum of squares is: 𝑆𝑆் = ෍ (𝑦௜ − 𝑦̄)ଶ௡௜ୀଵ . (9)

The residual sum of squares calculated according to the data is: 𝑆𝑆௘ = ෍ (𝑦௜ − 𝑦ො)ଶ௡௜ୀଵ . (10)

In nonlinear regression, the sum of squares decomposition is: 𝑆𝑆் = 𝑆𝑆௘ + 𝑆𝑆௥ . (11)
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This is no longer true, so the partial coefficient of determination 𝑅ଶ is used to measure and 
calculate the correlation coefficient of nonlinear regression: 𝑅ଶ = 1 − 𝑆𝑆௘𝑆𝑆் = 0.947. (12)

Model bias coefficient (𝑅ଶ) is 0.947, which means that spindle speed, radial depth of cut, axial 
depth of cut and feed speed can explain 94.7 % of 𝐹௖ variation, indicating that model construction 
is meaningful. 

2) F-test is carried out on the prediction model. For the F-test [23], Sum of Squares for the Full 
Model (SSR-F) and Sum of Squares for the Reduced Model (SSR-R) need to be calculated. Total 
modular sum of squares represents the sum of squares of a nonlinear regression model built using 
all independent variables, The sum represents the sum of squares using a nonlinear regression 
model that contains only the intercept term. Then, calculate the 𝐹 statistic: 

𝐹 = 𝑆𝑆௥𝑃𝑆𝑆௘𝑁 − 𝑃 − 1 ∼ 𝐹(𝑝,𝑛 − 𝑝 − 1), (13)

where, 𝑛 is the number of experimental group and p is the number of variables. 
There were 16 groups in this experiment, the number of variables was 4, and the significant 

factor 𝑎 = 0.01. The F-test method in this experiment was expressed as F0.01(4,11), and 
F0.01(4,11) = 5.67 was obtained by referring to the 𝐹 distribution table. By substituting SSr and 
SSe into the 𝐹 test formula, the 𝐹 value is 48.79. It is much larger than F0.01(4,11) = 5.67, so the 
empirical formula of milling force proposed in this paper can be well consistent with the milling 
force under orthogonal test conditions, so that the accuracy of the model is higher. 

4.1.3. Establishment and analysis of MRR regression model of material removal rate 

Table 5 indicates that the material removal rate (MRR) serves as the dependent variable in the 
linear regression analysis, while spindle speed, feed speed, axial depth of cut, and radial depth of 
cut are the independent variables. The model formula is presented as follows, as shown in the table 
above: MMR= –960.7955-0.042 × spindle speed +0.964× feed speed +1357.600× axial cutting 
depth +187.150 × radial cutting depth, the model 𝑅 square value is 0.950, This means that spindle 
speed, feed speed, axial cutting depth, and radial cutting depth can explain 95.0 % of the variation 
in MMR. When 𝐹 test was conducted on the model. The model passed the F-test (𝐹 = 51.725, 𝑝 = 0.000 < 0.05), indicating that the MRR is affected by at least one of the following factors: 
feed speed, axial depth of cut, radial depth of cut, and spindle speed. According to the summary 
analysis, the MRR is significantly influenced by feed speed, axial depth of cut, and radial depth 
of cut. However, the spindle speed has no effect on the MRR. Some literature indicates that 
increasing the spindle speed significantly enhances MRR under traditional cutting conditions. 
However, these studies often fail to adequately consider the complex interactions during the 
cutting process. In this study, it is possible that the synergistic effects between other parameters 
(such as feed rate and depth of cut) and spindle speed have offset the potential impact of spindle 
speed on MRR. For example, when the spindle speed increases, if the feed rate and depth of cut 
are not adjusted accordingly, and there is no substantial change in tool-workpiece contact time or 
cutting volume, MRR will not change significantly. Moreover, excessively high spindle speeds 
can lead to increased tool wear and excessive heat generation, which in turn reduces effective 
cutting capacity and limits the improvement of MRR. Future research could delve deeper into the 
cutting mechanisms under different parameter combinations, using more comprehensive 
experimental designs and theoretical analyses to reveal the complex relationships between 
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parameters, providing a more accurate basis for optimizing machining processes. 
Linear regression analysis results (𝑛 = 16). 

Table 5. Parameters of regression model 
 Non-standardized coefficient Standard error 

Constants –960.795 109.545 
Spindle speed –0.042 0.083 

Feed rate 0.964 0.127 
Axial cutting 1357.600 165.445 

Radial cut 187.150 20.681 
R2 0.950  

Table 6. Regression model analysis of variance 
 Square and Freedom of degrees Range 

Regression 𝑆𝑆௥ 1132664.384 4 283166.096 
Residual 𝑆𝑆௘ 60218.816 11 5474.438 

Total time after correction 𝑆𝑆்  1192883.200 15  

As can be seen from the above table, during its execution, indicating the significance of the 
model construction. 

4.2. Optimization of processing parameters based on locust optimization algorithm 

4.2.1. Parameter constraints and determination of multi-objective optimization model 

When solving the optimization model of milling processing parameters, the processing 
parameters need to be constrained. According to the actual processing situation and machine tool 
performance, the constraint range of cutting parameters is: 

൞200 ≤ 𝑛 ≤ 800,0.2 ≤ 𝑎௣ ≤ 0.5,310 ≤ 𝑉௙ ≤ 700,1.2 ≤ 𝑎௥ ≤ 3.6.  (14)

Therefore, the multi-objective optimization model can be obtained as follows: 

⎩⎪⎪⎨
⎪⎪⎧min 𝐹ோ൫𝑛,𝑎௣,𝑉௙ ,𝑎௥൯,max𝑀𝑅𝑅൫𝑎௣,𝑉௙ ,𝑎௥൯ ,200 ≤ 𝑛 ≤ 800,0.2 ≤ 𝑎௣ ≤ 0.5,310 ≤ 𝑉௙ ≤ 700,1.2 ≤ 𝑎௥ ≤ 3.6.

 (15)

In order to obtain the Pareto solution of the multi-objective optimization model [24], the 
following solution flow Fig. 9 is given. As illustrated in the figure, the milling force and resultant 
force data were acquired through meticulously designed milling experiments. Meanwhile, the 
material removal rate was calculated using a specific formula. Subsequently, SPSS software was 
employed to conduct nonlinear regression analysis for prediction purposes, thereby establishing a 
relationship model between the cutting force and cutting parameters. A multi-objective 
optimization model of cutting parameters was established to minimize the resultant cutting force 
and maximize the material removal rate, and was optimized by MOGOA algorithm. Finally, the 
solution is obtained from Pareto frontier. 



MACHINING PARAMETERS OPTIMIZATION IN HIGH-SPEED MILLING OF TITANIUM ALLOY CHIPS.  
NA ZHAO, WEI DU, HAO TONG, KUO LIU 

 JOURNAL OF MEASUREMENTS IN ENGINEERING. DECEMBER 2025, VOLUME 13, ISSUE 4 867 

4.2.2. Optimization results and analysis 

The multi-objective optimization model was solved based on the locust optimization 
algorithm. Parameters were set as follows: the population number was 200 and the number of 
iterations was 100. After multiple iterations of the optimization algorithm, the optimization results 
were obtained, as shown in Fig. 10. 

 
Fig. 9. Flow chart of process parameter optimization solution 

As depicted in Fig. 10, the optimization results of the two objective functions, namely the 
maximum material removal rate and the minimum milling force, are in conflict with each other. 
Specifically, the milling force increases as the material removal rate rises. When the milling force 
is low, the material removal rate is also low. When selecting machining parameters, the 
requirements of the actual manufacturing process should be considered. The multi-objective 
parameter optimization provides a basis for the selection of cutting parameters. Table 7 presents 
the 16 groups of Pareto-optimal solutions generated based on the multi-objective optimization 
results. 

Through in-depth analysis of the proposed optimization results, it is obvious that the optimal 
solution shows a tendency of uniform distribution along the Pareto optimal solution in the two key 
objective functions of milling force and material removal rate. This distribution pattern 
demonstrates excellent performance and accuracy in finding the best solution. 

In order to verify the effect of optimization of machining parameters, two groups of 
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optimization parameters are carefully selected from 16 groups of Pareto optimal solution sets and 
verified by experiments. Since the material removal rate can be calculated directly by the formula, 
we focus on the measurement experiment of milling force. The comparison between experimental 
results and optimization parameters is shown in Table 8, which provides a basis for us to evaluate 
the rationality of optimization results. According to Table 8, the errors of the optimized milling 
force value and the experimental milling force value are 11.3 % and 7.65 % respectively, which 
is within the allowable range, proving the rationality of the optimization results. In the mechanical 
processing industry, there is no absolute unified standard for the error range between the predicted 
value and the experimental value of milling force. In the rough machining of ordinary mechanical 
manufacturing, the processing accuracy is relatively low and the focus is on improving efficiency. 
Therefore, the error range of 11.3 % and 7.65 % is acceptable. 

 
Fig. 10. Pareto solution set curve 

Table 7. The trade-offs between milling force (FR) and material removal rate (MRR) 

Sequence 
number 

Spindle 
speed 

(R/min) 

Feed rate 
(mm/min) 

Axial 
cutting 
(mm) 

Radial 
cut (mm) 

Material removal 
rate 𝑀𝑅𝑅 
(cm3/min) 

Milling 
force (N) 

1 800 700 0.4952 2.4850 861.41 127.57 
2 200 700 0.4961 2.4827 862.15 127.59 
3 388.0939 700 0.5000 2.5169 880.92 132.36 
4 800 700 0.5000 2.5108 878.77 130.64 
5 800 700 0.5000 2.5392 888.72 134.06 
6 800 700 0.4966 2.4857 864.10 127.65 
7 388.0928 700 0.5000 2.6738 935.84 151.91 
8 800 700 0.4987 2.4857 867.68 127.66 
9 800 700 0.5000 2.5509 892.81 135.48 

10 800 700 0.4979 2.4857 866.49 127.65 
11 800 700 0.5000 2.5103 878.62 130.59 
12 800 700 0.5000 2.6731 935.58 150.77 
13 288.2984 700 0.5000 1.7001 595.05 52.07 
14 288.2984 700 0.5000 1.7014 595.51 52.17 
15 668.4960 700 0.4860 1.3782 468.85 30.92 
16 200 700 0.4882 2.0395 696.92 80.41 

In order to ensure that the quality of the processed titanium alloy meets the expected standards 
and meets various processing constraints, a larger feed speed, radial depth of cut and spindle speed 
are used. 

The locust optimization algorithm provides an effective method to optimize the milling process 
parameters to achieve high performance machining results. This method can not only improve the 
processing quality, but also reduce the production cost and shorten the time to market. Therefore, 
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in the future engineering applications, this optimization algorithm will be more widely used and 
recognized. 

Table 8. Pareto optimal solutions 

Sequence 
number 

Spindle 
speed 

(R/min) 

Feed rate 
(mm/min) 

Axial 
cutting 
(mm) 

Radial 
cut (mm) 

Material removal 
rate 𝑀𝑅𝑅 
(cm3/min) 

Milling 
force (N) 

1 800 700 0.4952 2.4850 127.57 141.98 
2 388.0928 700 0.5000 2.6738 151.91 163.53 

5. Conclusions 

This paper conducts a finite-element simulation study using ABAQUS, focusing on the 
simulation and analysis of cutting force, cutting temperature, and chip morphology. Additionally, 
it delves into the application of multi-objective optimization algorithms for the optimization of 
cutting process parameters. Based on these investigations, the following conclusions are drawn: 

1) Simulation of the cutting process under different cutting speeds shows that the cutting speed 
increases, the thermal softening effect increases, and the average flow stress decreases, thus 
reducing the cutting force. By analyzing the process of chip formation, the workpiece material is 
elastic deformed by cutting tool extrusion, and the cutting layer is formed. As the cutting 
progresses, the chip gradually takes on a zigzag shape. Through the simulation analysis of 
temperature variations, it was discovered that the peak temperature at the measuring point 
significantly increases as the normal measuring distance decreases. 

2) Orthogonal experiments are designed to collect milling force data, and several sets of 
experiments are carried out for different milling parameters. Optimization objective function is 
determined, milling force regression model and material removal rate regression model are 
established, parameter constraint and multi-objective optimization are carried out. In actual 
manufacturing, the material removal speed can be accelerated, the processing time can be reduced, 
and the production efficiency can be improved. For example, in mass production of parts, the 
overall processing cycle can be shortened. The multi-objective optimization model is solved by 
locust optimization algorithm, and 16 Pareto optimal solutions are obtained, which provides an 
important basis for the selection of cutting parameters in actual machining process. 

3) Although FEM has many advantages, it has some limitations. This study is based on the 
limitations of ABAQUS finite element simulation. First, the constitutive models we use are mostly 
simplified assumptions, making it difficult to accurately reflect the true mechanical behavior of 
titanium alloys under complex high-speed cutting conditions. They fail to adequately consider the 
coupled effects of strain rate and temperature. Second, the parameter schemes obtained from 
multi-objective optimization are based on specific condition influences, which limit their 
applicability in diverse industrial production scenarios. 
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