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Abstract. High-speed cutting of titanium alloy has the advantages of high processing efficiency,
reducing tool wear, and obtaining good surface quality, but there is a lack of research on the
influence of chip shape on machining parameter selection mechanism in the cutting process, which
hinders the development of high-speed milling quality of titanium alloy. In this paper, the shape
of titanium alloy (Ti6Al14V) chips at different speeds and different temperatures were simulated.
With the increase of cutting speed, the tool squeezes the workpiece material, causing it to undergo
elastic deformation and thereby forming a cutting layer. As the cutting process progresses, the
chip gradually takes on a serrated shape, the degree of sawtooth sharpening of chips was analyzed.
The formation mechanism of chips and the formation process of sawtooth chips during right-angle
cutting were analyzed. The locust optimization algorithm was used to optimize the multi-objective
parameters, and it was found that high performance machining effect could be achieved by using
large feed speed, radial cutting depth and spindle speed.

Keywords: titanium alloy, high speed milling, chips, finite element simulation, machining
parameter optimization.

1. Introduction

With the rapid development of computer technology, the finite-element numerical simulation
method has gained growing popularity in the research on the cutting — process mechanisms of
titanium alloys and other metals. This method enables the analysis of various aspects, including
chip formation, tool behavior, and the distribution of temperature fields, stress fields, strains, and
strain rates within the workpiece. Through subsequent calculation and analysis, optimal
processing parameter designs can be obtained. This not only helps reduce costs in the actual
machining process but also optimizes machining designs and processes.

A novel approach for machining parameter optimization is presented through the integration
of the cutting process with finite element analysis. Laakso et al. [1] used the finite element
simulation method to estimate the influence of the subsequent cutting process on the performance
of the cutting model, and found the error of the feed force. Li et al. [2] studied the chip formation
mechanism of high-temperature nickel alloy Inconel 718 in the cutting process by combining
design milling experiment and finite element simulation, established a two-dimensional cutting
model based on J-C constitutive model [3], and found that the cutting force and chip morphology
generated by finite element simulation were basically consistent with the experiment. Walid
Jomaa et al. [4] used Abaqus/Explicit v6.13 software to simulate AA7075-T651 alloy with
two-dimensional finite element processing. By using finite element numerical data and chip
sawtooth analysis model, the physical phenomenon controlling sawtooth chip formation was
emphasized and discussed in depth.Rodriguez Prieto et al. [5] conducted an investigation on the
cutting of Ti6Al4V. They modified the Lagrangian finite - element method by basing it on the
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particle finite-element method and continuous Delaunay re-triangulation. Arrazola et al. [6]
established a two-dimensional finite-element model by employing the arbitrary Lagrange-Euler
formula available in Abaqus/Explicit (v6.8). They discovered that thermal conductivity, specific
heat, inelastic percentage, and the Johnson-Cook (J-C) constitutive coefficients have significant
impacts on the formation of saw-tooth chips. In particular, thermal conductivity and specific heat
exert the most substantial influence. In addition, it is found that the yield stress of the material
itself has a significant effect on the generation of sawtooth chips. Huang et al. 7] proposed a new
Galerkin grid-free method when studying the chip separation process in the machining process,
and proved that the formation of shear bands was caused by the thermal softening of materials.

Sima et al. [8] explored the influence of a modified material model, which was based on
temperature-dependent flow softening, on the formation of saw-tooth chips during the machining
of Ti-6Al-4V titanium alloy. The research revealed that the flow-softening phenomenon, strain-
hardening effect, and thermal-softening effect are all interrelated. Fu et al. [9] studied the chip
morphology changes of 7050-T7451 aluminum alloy at different cutting speeds by using the finite
element simulation method, and found that continuous chips were more easily formed when the
cutting speed was lower than 1500 m/min, and when the critical cutting speed was reached (2500
m/min), the ribbon chips were transformed into sawn-shaped chips. Rhim et al. [10] studied the
flow stress model based on the assumption of high speed, high temperature and large deformation
process to predict the formation of sawtooth chips during cutting. The finite element analysis
shows that the dynamic recrystallization will be induced by the increase of shear zone temperature
during the cutting process, the flow stress will be reduced, and the adiabatic shear zone and
sawtooth chip will be formed.

In complex processing, due to numerous influencing factors, it is not easy to establish a
theoretical model, while the data-driven model that relies on test data is relatively easy to obtain,
and there is no need to analyze the construction mechanism of the objective function. Data
modeling is an important means to optimize machine tool efficiency and processing efficiency,
and commonly used methods include response surface method [11], inverse propagation neural
network (BPNN) [12], support vector regression and progressive gradient regression tree.
Response surface method [13] reveals the correlation between decision variables and target
variables by constructing a quadratic polynomial model. However, when there are items with
insignificant influence, it is necessary to artificially eliminate them to improve the prediction
accuracy, which may be time-consuming and difficult to obtain the best results. In contrast, the
other three methods can improve the accuracy of the model by adjusting the internal parameters,
especially for nonlinear data. When selecting the data modeling method, it is necessary to consider
the complexity of the model, the difficulty of parameter adjustment and the fitting ability of
nonlinear data according to the specific situation, so as to achieve the best modeling effect.
Yunchao Tang et al. [14] trained a Support Vector Regression (SVR) model using data from 120
sets of UCS and peak strain experiments, constructing a multi-objective optimization model based
on SVR. They successfully generated a Pareto front for mixed optimization design across three
objectives (UCS, strain, cost), serving as a decision reference under different temperature
conditions. Shuai Wan et al. [15] proposed an ultrasonic-Al hybrid method, enhancing the
Extreme Gradient Boosting (XGBoost) model through over-sampling and hyperparameter
optimization via Bayesian Optimization (BO-XGBoost). The BO-XGBoost model demonstrated
outstanding performance, with an overall prediction accuracy of 0.92, an accuracy and recall rate
0f 0.90, and an AUC of 0.98.

In addition, the selection of optimization targets is also very important. Tamal Ghosh et al.
[16] uses Bayesian regularization neural network and beetle antenna search algorithm for process
optimization. By applying Kohonen’s self-organization diagram, the relationship between
different processing parameters is explored. After conducting a comparative analysis of the
proposed agent-assisted optimization method with three other optimization techniques, it was
found that the former demonstrated remarkable efficiency and rapidity in handling offline
processing data. The findings of this study clearly indicate that the agent-assisted optimization
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method achieved success in the optimization process and exhibited significant advantages over its
counterparts.

Previous studies have mostly focused on the formation of chip material or analysis of
machining parameters, lacking innovation in the application of parameter optimization algorithms.
This study makes breakthroughs in three aspects: First, addressing the issue of unclear
mechanisms for selecting machining parameters influenced by chip morphology during high-
speed cutting of titanium alloys, we systematically simulated Ti6Al4V chip morphology under
different speeds and temperatures, conducting an in-depth analysis of the formation processes and
mechanisms of straight-cut and serrated chips, filling a research gap in this field; Second,
innovatively employing the ant colony optimization algorithm for multi-objective parameter
optimization, which offers significant advantages over traditional genetic algorithms and particle
swarm optimization in balancing global and local search, flexibility in parameter adjustment, and
structural innovation, proposing high-performance machining through high feed rates, radial
cutting depth, and spindle speed, providing new insights for parameter selection; Third, deeply
integrating the cutting process with finite element analysis to form a novel method for optimizing
machining parameters, offering more scientific and systematic solutions to improve the quality of
high-speed milling of titanium alloys, promoting the development of titanium alloy machining
technology.

In this paper, ABAQUS software based on ALE Arbitrary Lagrangian Eulerian is used. The
method combines the advantages of Lagrangian and Eulerian algorithm [17], and can be used to
simulate large deformation and steady deformation path of materials. The problems of mesh
redivision and cutting separation are solved. Nevertheless, we still need to face the challenges of
optimization of titanium alloy machining parameters, especially in the field of multi-objective
optimization. In order to overcome these problems, we are committed to building a cutting
parameter optimization model and method for titanium alloy milling, and combining it with the
process database.

2. Finite element simulation research based on ABAQUS

This study utilized ABAQUS finite element simulation analysis software to establish a
simulation model. By systematically varying the cutting parameters and analyzing the relevant
variables, the model employed a modified Johnson-Cook nonlinear thermovisco-plastic
constitutive model, a shear failure chip fracture criterion, and a bond slip mixed friction model.
These enabled the acquisition of chip morphologies at different cutting speeds.

2.1. Research on chip morphology at different cutting speeds

1) In order to study the shape of chips at different cutting speeds, the initial temperature of the
tool is set at 20 °C, the ambient temperature is 20 °C, and the cutting depth is 0.1 mm. The tool
material is assumed to be rigid body, sharp and have no tool wear, and its model is 4.61 mm long,
2.56 mm wide, front corner 0 and rear corner 10. The workpiece model is 15 mm long and 8 mm
wide.

In the high speed machining of titanium alloy chips, the chip type changes with the processing
speed, and its conversion mechanism is mainly affected by the interaction of strain hardening and
thermal softening. The stress distribution is shown in the figure below. From the chip morphology
in Fig. 1, it can be seen that a continuous ribbon chip is obtained at a low processing speed of
0.5 m/s. At this time, the heat generated in the cutting process is relatively small, and the strain
hardening effect of the material occupies the dominant position, which can resist the deformation
caused by the cutting, so that the chip can be formed continuously and maintain the belt shape.
When the cutting rate increases to 1.5 m/s, the generated chips gradually have a sawtooth shape,
and the left half has an uneven wavy profile, but the sawtooth shape is not significant at this time,
and it should be a transitional form of banded chips and sawtooth chips. At this time, there is no
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abrupt transition to shear instability because the strain-hardening effect prevails over the
heat-softening effect. When the cutting speed was increased to 2.0 m/s, a saw-tooth chip segment
formed with a significant saw-tooth degree, yet no characteristics of adiabatic shear bands were
observed. The antagonism between strain hardening effect and thermal softening effect makes the
chip present a more regular sawtooth shape. When the cutting speed is increased to 7.5 m/s, a
relatively regular sawtooth chip has been formed, the degree of sawtooth has been very high,
sudden shear instability appears, and an obvious adiabatic shear zone has been formed. This is
because at this time, the cutting speed is greatly increased, and a large amount of heat is generated
in the cutting area. The thermal softening effect exceeds the strain hardening effect, and the
material is rapidly softened locally, resulting in shear instability and forming an adiabatic shear
band, and the chip presents a typical sawtooth shape.

100pum

v =15m/s d)v =2.0m/s

100pum
e)v="75m/s Hv=125m/s
Fig. 1. Chip morphology stress (N) cloud diagram at different speeds (m/s)

2) The specific formation process of sawtooth nodal block at the same speed.

In this model, the joint temperature, stress field, equivalent plastic strain and milling force of
titanium alloy during sawing process were simulated by using the finite element numerical
analysis method. As shown in Fig. 2-3, the zigzag chip break is clearly shown, and the selected
tool front Angle is 0° and the cutting speed is v = 7.5 m/s.

As shown in Fig. 2, the chip layer material connected to the previous segment of sawtooth
chips has an uneven temperature distribution, and there is a significant temperature rise at the
cutting edge of the tool. This is mainly because the heat dissipation of the cutting layer is the worst
closest to the cutting edge of the tool, and the shear-sliding from the previous step affects a limited
area of the chip. Due to the rolling action of the tool and the increase in temperature, the material
near the cutting-edge area undergoes high-degree shear-sliding deformation. Finally, due to the
extrusion of the tool with the resulting chips, as shown in Fig. 2(b), the Mises stress generated at
this time was large and extended to the inside of the workpiece, which had an impact on the surface
quality of the workpiece.

As shown in Fig. 3, during the cutting process of titanium alloy simulated by finite element
simulation, due to the metal material being located in a critical thermoplastic instability condition,
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strong shear slip was generated in the entire shear slip narrow band, resulting in a zigzag shape at
the top of the chip. Correspondingly, the temperature in the central region of the narrow
deformation band continued to rise, and all the metals in the narrow band showed thermoplastic
instability, up to 4.05, and the Mises stress decreased, as shown in Fig. 3(b). With the continuous
cutting process, the sawtooth deposit body continues to undergo concentrated shear-slip
deformation, and the sawtooth structure on the top of the sawtooth deposit body will also increase,
and finally form a sawtooth deposit body.

S, Mises
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Fig. 2. The third section serrated chip formation began to form

Based on the analysis, the force applied by the tool to the workpiece, which is closely related
to the formation mechanism of saw-tooth chips, is the primary factor leading to the elastic
deformation of the workpiece and the cutting layer. In detail, during the cutting operation, the
material at the tool tip experiences plastic deformation as a result of the synergistic influences of
temperature, stress, strain, and other relevant factors.

A substantial amount of heat is generated during the cutting process due to the plastic
deformation of the material and frictional work, which leads to the thermal softening of the
material. During the shearing process, the reduction in shear stress caused by thermal softening is
greater than the increase in stress resulting from machining-induced strengthening, which leads to
the generation of shear fold and the first deformation zone is formed quickly in the cutting layer.
In this process, chips begin to slide and accumulate on the processed material, finally forming a
zigzag chip. Finally, a new “zigzag” chip breaking mechanism is obtained under the cutting
process.

2.2. ABAQUS 3D milling simulation

The finite element model of 3D milling is shown in Fig. 4. A YG6X flat-head end mill is
selected with 4 blade numbers, 45° spiral Angle, 7° front edge Angle, 15° back edge Angle, and
5 diameter. The workpiece material is Ti6Al4V. The axial cutting depth is 3 mm and the radial
cutting depth is 4.5 mm. The initial temperature is 30 °C, the bottom surface of the workpiece is
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constrained by 6 degrees of freedom, and the rigid constraint of the milling cutter is set as a
reference point. Subsequently, the degrees of freedom of rotation and movement are applied to
the reference point to establish a dynamic thermodynamic coupling analysis step. Finally,
ABAQUS/Explicit solver is used for calculation.
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Fig. 3. The third serrated chip shear slip occurs and completely formed

In the process of 3D milling, when the temperature change of a certain point of the workpiece
is wanted to be studied, the temperature change of points under the same X coordinate and
different Z coordinate can be selected as shown in Fig. 4(b), and the distance between the unit
node and the machining surface can be 0 mm, 0.7 mm, 1.4 mm and 2.1 mm respectively. The
temperature measurement points we selected can cover different depth levels: points at distances
of 0 mm, 0.7 mm, 1.4 mm and 2.1 mm from the machining surface. These points at different
distances span from the machining surface to various depths within the workpiece, allowing for a
comprehensive examination of the heat conduction and distribution of milling thermal effects in
the thickness direction of the workpiece. The machining surface (0 mm) directly participates in
the cutting process, with intense temperature changes; as the distance increases, the temperature
decay and variation characteristics during heat conduction into the workpiece can be observed.
Additionally, temperature responses can be compared: by outputting and plotting the temperature
changes at these different depth points, it is clear that as the normal distance (distance from the
machining surface) increases, the peak temperature of the measurement point decreases and the
time to reach the peak temperature becomes longer, indicating a temperature response lag. This
comparison provides effective data support for understanding the propagation mechanism of
milling thermal effects within the workpiece and the thermal influence range, thereby providing a
basis for optimizing milling process parameters and controlling thermal deformation of the
workpiece.

Fig. 5 shows the output and simultaneous plotting of the temperature variations of the four cell
nodes. As the normal range increases, the peak temperature at the measuring point decreases.
Meanwhile, it takes each measuring point a longer time to reach the peak temperature. In other
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words, the temperature response of the measuring point lags to some extent as the normal stroke
increases.

a) Three-dimensional milling model b) Schematic diagram of unit node selection
Fig. 4. 3D milling model
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Fig. 5. The change of element node Fig. 6. Experimental platform

temperature with time

As the position of the unit node moves down, the temperature of the area between the adjacent
sawtooth is getting higher and higher, and the edge of the sawtooth shows the characteristics of
melting metal, at the same time, in the case of no change in heat dissipation capacity, the cutting
heat per unit time is increased, thereby increasing the cutting temperature, and then strengthening
the thermal softening effect, so that the strength and hardness of titanium alloy in the deformation
area are reduced. As the degree of material deformation increases, the degree of chip serration
increases. At this time, when an external load is applied to the area, cracks appear between the
adjacent sawtooth, causing the sawtooth to separate [18].

3. Experimental platform construction

The cutting force in milling process is directly related to milling efficiency, heat production,
tool loss, workpiece vibration and surface quality. This parameter provides a crucial theoretical
basis and evaluation criterion for the design and operation of machine tools, cutting tools, and
fixtures. Moreover, the effects of various processing factors on cutting force differ. At the same
time, by observing the dynamic cutting force of the tool, we can effectively evaluate the wear of
the tool and the vibration of the system during the milling process. In the process of cutting
titanium alloy, the chip heterogeneity often leads to high frequency fluctuation of cutting force.
After a lot of experiments and in-depth theoretical analysis, we have identified two main sources
of cutting force in the cutting process: first, the elastoplastic deformation of cutting layer metal,
chip and workpiece surface metal; Secondly, the friction between the chip and the workpiece
during the cutting process is also an important source of cutting force.

Aiming to accurately predict the cutting force under diverse process conditions and provide a
basis for the rational selection of milling parameters, this research endeavors to develop the
relevant theoretical model by studying the variation law of cutting force. For Ti6Al4V titanium
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alloys, the processing speed is greater than 100 m/min, which is considered as high-speed milling.
In this study, 16 four-factor and four-level orthogonal tests are proposed to obtain milling force as
the goal, and orthogonal tests with 4 factors and 4 levels are adopted to determine the levels of
each factor as shown in Table 1 and milling process parameters as shown in Table 2. The
DMC635V vertical CNC machining center produced by De Magee was used in the test. The
relevant parameters are as follows: the positioning accuracy is 0.008 mm, the repeated positioning
accuracy is 0.005mm. The spindle conical hole is SK40, the standard spindle speed can reach
8000rpm, the feed speed is 20 m/min, and the fast moving speed can reach 30 m/min. Under the
control of Siemens system, it has four machining axes, X, Y, Z and rotation axis, which ensures
accurate positioning and stable processing, ensuring the accuracy of the test. Fig. 6 shows the
design of this test bed.

In this experiment, Xiamen Jinlu brand coated four-sided milling cutter with diameter of
10 mm and screw Angle of 45 degrees was used. This test takes Ti6Al4V titanium alloy as the
research object and connects it with the force measuring instrument Kistler9257B. Kistler9257B
is an advanced dynamometer that can simultaneously measure milling forces and moments in X,
Y and Z directions. The system also includes a charge amplifier and related wire device.

To minimize the impact of burrs on the test results, prior to the commencement of the
machining test, a large radial cutting depth was initially employed to remove burrs. Subsequently,
to further reduce the effect of minor surface irregularities of the workpiece on the milling force, a
one-time milling approach with zero radial cutting depth was adopted.

Table 1. Factor level table

Level : . : : Factors - .
Spindle speed (R/min) Axial cutting (mm) Radial cut (mm) Feed rate (mm/min)

1 200 0.2 1.2 310

2 400 0.3 2 440

3 600 0.4 2.8 570

4 800 0.5 3.6 700

Table 2. Milling experiment scheme
Sequence number | Spindle speed (R/min) | Feed rate (m/min) | Axial cutting (mm) | Radial cut (mm)

1 400 700 0.2 1.2
2 600 440 0.3 1.2
3 800 570 0.4 1.2
4 200 310 0.5 1.2
5 200 440 0.2 2
6 800 700 0.3 2
7 600 310 0.4 2
8 400 570 0.5 2
9 800 310 0.2 2.8
10 200 570 0.3 2.8
11 400 440 0.4 2.8
12 600 700 0.5 2.8
13 600 570 0.2 3.6
14 400 310 0.3 3.6
15 200 700 0.4 3.6
16 800 440 0.5 3.6

Dyno Ware software was used to derive the cutting force data from the signal measured by the
dynamometer. Taking the cutting parameters (f; = 200 m/min, a,, = 0.1 mm, ng = 1900 r/min,
a, = 5 mm) as an example, through the analysis of the cutting component forces Fy, Fy and F, it
was obtained that in the steady state machining process, the cutting force of the machine would
be reduced. The relationship between cutting force and time per milling cutter rotation curve 7.

The cutting force generated during the milling process of the workpiece by the tool varies with
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the movement of the tool’s four teeth. This is because the engagement and disengagement of the
tool teeth with the workpiece during the milling operation have a significant impact on the cutting
force. At the beginning of the machining process, the cutting force gradually increases from the
minimum to the maximum. Subsequently, during the ongoing machining, the cutting force
gradually decreases.
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B 200 3 200
(=] (=]
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-600 400
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Fig. 7. Cutting force periodic signal diagram
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Fig. 8. Relationship between four feed speed and milling force

Fig. 8 shows the law of influence of horizontal changes of milling parameters on milling force,
where FX, FY and FZ are the average X, Y and Z direction milling force measured by the force
meter respectively, and FR is the maximum value of the milling force.

It can be seen from Fig. 8 that with the increase of feed speed, the milling force in X, Y, Z
direction and in the direction of milling force is on the rise, but it turns downward at 570 mm/min.
According to Schulz and Senzovsky [19], increasing the milling speed during the operation
accelerates the plastic strain rate of the material, leading to strain-rate hardening. Consequently,
the milling force increases. Due to the limited thermal conductivity of titanium-alloy materials, a
higher milling speed results in more significant temperature rises. As the thermal-softening effect
of the material gradually overtakes and dominates the strain-rate hardening effect, both the
hardness and strength of the material, as well as the milling force, decrease. The results show that
the thickness and milling force of undeformed chips and the degree of sawtooth serration increase
with the increase of feed speed and cutter quantity per tooth [20].

4. Optimization of processing parameters based on chip morphology
4.1. Multi-objective parameter estimation

This paper takes maximum material removal rate and minimum milling force as optimization
objectives, and takes spindle speed, axial depth of cut, radial depth of cut and feed speed as
constraint conditions, adopts multi-objective algorithm to optimize multi-objective process
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parameters, and optimizes a,, V¢, a, and n.
4.1.1. Determination of optimization objective function

In order to obtain relatively scientific observed values of milling force, the average values of
milling force in X, Y and Z directions were respectively taken from the data collected by milling
force, and then milling force FR and material removal rate MRR were obtained according to the
milling force formula and the maximum material removal rate formula respectively.

1) Taking the minimum milling force FR as the objective function. The calculation formula of
milling force is as follows:

FR=1/FX2+FY2+FZZ’ (D

where, Fj is the resultant milling force and Fy is the component of the milling force in the X
direction. Fy is the milling force component in the Y direction. F; is the milling force component
in the Z direction.

2) The maximum material removal rate MRR was taken as the objective function:

MRR = aja,nfNy. 2)
And because the relationship between feed speed and feed per tooth is:

vy = fN 3)
Therefore, the formula for the maximum material removal rate MRR becomes:

MRR = aya,vy, 4)

where, a,, is the axial depth of cut (mm), v is the feed speed (mm/min), a, is the radial depth of
cut (mm), n is the spindle speed (r/min), N; is the number of teeth of the milling cutter, and f is
the feed per tooth (mm/z).

The objective function is:

MRR =f2(x2,X3,x4). (5)
4.1.2. Establishment and verification of milling force regression model

In this paper, multiple linear regression model [21] is used to predict milling force. The
principle of this model is simple and intuitive, with relatively low data requirements. It does not
require a large amount of complex sample data for training, making it computationally efficient
and scalable: it easily integrates with other methods or models to further optimize predictive
performance. For example, it can be combined with feature engineering techniques in machine
learning to screen and optimize independent variables, or it can be fused with other nonlinear
models to address more complex milling force prediction issues. Milling force is mainly affected
by four elements of milling, so a mathematical model of the relationship between milling force
and milling parameters is established. The stepwise regression method is adopted to establish a
second-order polynomial regression mathematical model [22], and the formula is as follows:

4 4 4 4 )
y=pB+ Z Bixi + Z Z - Biyxixg + Z Buixi (6)
i=1 i=1 j=i+1 i=1
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Therefore, the empirical calculation expression formula of milling force is:

F,=A+Ba, + Ca, + Dn+ Evf + Faya, + Gapn + Ha,vp + la,n+ Ja, vy + Knvy 7
+ Laj + MaZ + Nn? + Ovf, )
where, A is the constant related to the basic conditions of experimental processing, and B, C, D,
E,F,G,H,1,],K,L,M, N and O are the coefficients of each milling element, respectively.
The parameters of the milling force regression model were obtained by using SPSS software.

Table 3. Parameter values of regression model

Parameters | Estimated | Standard gap | 95 % trust area lower limit | 95 % trust area
A —5643.506 7462.342 —100461.554 89174.541
B 1422.952 3542.736 —43591.776 46437.679
C -10796.315 | 58310.475 —751701.148 730108.517
D 16.151 16.243 —190.235 222.537
E 5.428 14.906 —183.975 194.830
F 930.294 5514.676 —69140.311 71000.899
G —0.451 2.013 —26.028 25.126
H -1.535 5.784 —75.024 71.953
I —0.888 32.544 —414.405 412.628
J —10.067 15.363 —205.271 185.136
K —0.006 0.011 —-0.151 0.139
L -113.324 434.439 —5633.394 5406.745
M 27413.628 94281.146 —1170541.915 1225369.172
N -0.010 0.014 —0.188 0.168
0 0.004 0.005 -0.056 0.063

Linear regression analysis was performed on the experimental data:
1) The expression formula for the empirical calculation of milling force is:

F, = —5643.506 + 1422.952a, — 10796.315a, + 16.151n + 5.428v; + 930.294a,a,
— 0.451a,n — 1.535a,v; — 0.888a,n — 10.067a,v; — 0.006nv; — 113.324a>
+27413.628a2 — 0.010n? + 0.004v7.

Table 4. Variance analysis table of prediction model

Square and Freedom of degrees Range
Regression SS, 29007641.917 15 1933842.794
Residual SS, 520926.115 1 520926.115
Not calibrating the total 29528568.033 16
Total time after correction SS; | 9763717.406 15

The corrected total deviation sum of squares is:

n
SSr=) =)
=1

The residual sum of squares calculated according to the data is:

n
SSe=Y -9
-

In nonlinear regression, the sum of squares decomposition is:

SS; =SS, + SS,.
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This is no longer true, so the partial coefficient of determination R? is used to measure and
calculate the correlation coefficient of nonlinear regression:

SS,
R?=1-—°
SSr

= 0.947. (12)

Model bias coefficient (R?) is 0.947, which means that spindle speed, radial depth of cut, axial
depth of cut and feed speed can explain 94.7 % of F, variation, indicating that model construction
is meaningful.

2) F-test is carried out on the prediction model. For the F-test [23], Sum of Squares for the Full
Model (SSR-F) and Sum of Squares for the Reduced Model (SSR-R) need to be calculated. Total
modular sum of squares represents the sum of squares of a nonlinear regression model built using
all independent variables, The sum represents the sum of squares using a nonlinear regression
model that contains only the intercept term. Then, calculate the F statistic:

S,
- P —p—
F - SSe F(p'n p 1)1 (13)

N—P—1

where, n is the number of experimental group and p is the number of variables.

There were 16 groups in this experiment, the number of variables was 4, and the significant
factor a =0.01. The F-test method in this experiment was expressed as Fooi(4,11), and
Fo.01(4,11) = 5.67 was obtained by referring to the F distribution table. By substituting SSr and
SSe into the F test formula, the F value is 48.79. It is much larger than Fo0:1(4,11) = 5.67, so the
empirical formula of milling force proposed in this paper can be well consistent with the milling
force under orthogonal test conditions, so that the accuracy of the model is higher.

4.1.3. Establishment and analysis of MRR regression model of material removal rate

Table 5 indicates that the material removal rate (MRR) serves as the dependent variable in the
linear regression analysis, while spindle speed, feed speed, axial depth of cut, and radial depth of
cut are the independent variables. The model formula is presented as follows, as shown in the table
above: MMR= —960.7955-0.042 x spindle speed +0.964x feed speed +1357.600x axial cutting
depth +187.150 % radial cutting depth, the model R square value is 0.950, This means that spindle
speed, feed speed, axial cutting depth, and radial cutting depth can explain 95.0 % of the variation
in MMR. When F test was conducted on the model. The model passed the F-test (F = 51.725,
p = 0.000 < 0.05), indicating that the MRR is affected by at least one of the following factors:
feed speed, axial depth of cut, radial depth of cut, and spindle speed. According to the summary
analysis, the MRR is significantly influenced by feed speed, axial depth of cut, and radial depth
of cut. However, the spindle speed has no effect on the MRR. Some literature indicates that
increasing the spindle speed significantly enhances MRR under traditional cutting conditions.
However, these studies often fail to adequately consider the complex interactions during the
cutting process. In this study, it is possible that the synergistic effects between other parameters
(such as feed rate and depth of cut) and spindle speed have offset the potential impact of spindle
speed on MRR. For example, when the spindle speed increases, if the feed rate and depth of cut
are not adjusted accordingly, and there is no substantial change in tool-workpiece contact time or
cutting volume, MRR will not change significantly. Moreover, excessively high spindle speeds
can lead to increased tool wear and excessive heat generation, which in turn reduces effective
cutting capacity and limits the improvement of MRR. Future research could delve deeper into the
cutting mechanisms under different parameter combinations, using more comprehensive
experimental designs and theoretical analyses to reveal the complex relationships between
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parameters, providing a more accurate basis for optimizing machining processes.
Linear regression analysis results (n = 16).

Table 5. Parameters of regression model

Non-standardized coefficient Standard error

Constants —960.795 109.545
Spindle speed —0.042 0.083

Feed rate 0.964 0.127
Axial cutting 1357.600 165.445

Radial cut 187.150 20.681

R2 0.950
Table 6. Regression model analysis of variance
Square and | Freedom of degrees Range
Regression SS,. 1132664.384 4 283166.096
Residual SS, 60218.816 11 5474.438
Total time after correction SS3 | 1192883.200 15

As can be seen from the above table, during its execution, indicating the significance of the
model construction.

4.2. Optimization of processing parameters based on locust optimization algorithm
4.2.1. Parameter constraints and determination of multi-objective optimization model

When solving the optimization model of milling processing parameters, the processing
parameters need to be constrained. According to the actual processing situation and machine tool
performance, the constraint range of cutting parameters is:

200 < n < 800,
0.2 <a, <05,
(14)
310 < V; < 700,
1.2 <a, <3.6.

Therefore, the multi-objective optimization model can be obtained as follows:

min Fr(n, a,,V;, a,),
max MRR(ap,Vf, ar),
200 < n < 800, (15)
0.2<a, <05,
L310 < V; <700,
12<a, <36.

In order to obtain the Pareto solution of the multi-objective optimization model [24], the
following solution flow Fig. 9 is given. As illustrated in the figure, the milling force and resultant
force data were acquired through meticulously designed milling experiments. Meanwhile, the
material removal rate was calculated using a specific formula. Subsequently, SPSS software was
employed to conduct nonlinear regression analysis for prediction purposes, thereby establishing a
relationship model between the cutting force and cutting parameters. A multi-objective
optimization model of cutting parameters was established to minimize the resultant cutting force
and maximize the material removal rate, and was optimized by MOGOA algorithm. Finally, the
solution is obtained from Pareto frontier.
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4.2.2. Optimization results and analysis

The multi-objective optimization model was solved based on the locust optimization
algorithm. Parameters were set as follows: the population number was 200 and the number of
iterations was 100. After multiple iterations of the optimization algorithm, the optimization results
were obtained, as shown in Fig. 10.

Orthogonal milling
experiment L16(44)

Empirical formula ¢ ¢ Data acquisition

Material removal rate

MER Milling force FR

SPASS nonlinear Machining
regression analyss parameter

* i

Expression formula for

empirical calculation of The prediction
milling force model of milling

force was established

The optimization medel of
» machining parameters is -
established

v

Add constraint

Multi-objective optimization
solution based on MOGO

!

Pareto solution set

I

Multi-objective Output and get the processing
optimization process of] plan
milling parameters

Fig. 9. Flow chart of process parameter optimization solution

As depicted in Fig. 10, the optimization results of the two objective functions, namely the
maximum material removal rate and the minimum milling force, are in conflict with each other.
Specifically, the milling force increases as the material removal rate rises. When the milling force
is low, the material removal rate is also low. When selecting machining parameters, the
requirements of the actual manufacturing process should be considered. The multi-objective
parameter optimization provides a basis for the selection of cutting parameters. Table 7 presents
the 16 groups of Pareto-optimal solutions generated based on the multi-objective optimization
results.

Through in-depth analysis of the proposed optimization results, it is obvious that the optimal
solution shows a tendency of uniform distribution along the Pareto optimal solution in the two key
objective functions of milling force and material removal rate. This distribution pattern
demonstrates excellent performance and accuracy in finding the best solution.

In order to verify the effect of optimization of machining parameters, two groups of
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optimization parameters are carefully selected from 16 groups of Pareto optimal solution sets and
verified by experiments. Since the material removal rate can be calculated directly by the formula,
we focus on the measurement experiment of milling force. The comparison between experimental
results and optimization parameters is shown in Table 8, which provides a basis for us to evaluate
the rationality of optimization results. According to Table 8, the errors of the optimized milling
force value and the experimental milling force value are 11.3 % and 7.65 % respectively, which
is within the allowable range, proving the rationality of the optimization results. In the mechanical
processing industry, there is no absolute unified standard for the error range between the predicted
value and the experimental value of milling force. In the rough machining of ordinary mechanical
manufacturing, the processing accuracy is relatively low and the focus is on improving efficiency.
Therefore, the error range of 11.3 % and 7.65 % is acceptable.
[—=— FX

f—e— FY

160 f—— F7
{—— FR
140
120
1001
80T
60
40
1.2 1.6 2.0 2.4 2.8 3.2 3.6
Radial depth of cut (mm)
Fig. 10. Pareto solution set curve

N)

Milling force

Table 7. The trade-offs between milling force (FR) and material removal rate (MRR)

Sequence Spindle Feed rate AX}al Radial Material removal Milling
number speed (mm/min) cutting cut (mm) rate MRR force (N)
(R/min) (mm) (cm?/min)
1 800 700 0.4952 2.4850 861.41 127.57
2 200 700 0.4961 2.4827 862.15 127.59
3 388.0939 700 0.5000 2.5169 880.92 132.36
4 800 700 0.5000 2.5108 878.77 130.64
5 800 700 0.5000 2.5392 888.72 134.06
6 800 700 0.4966 2.4857 864.10 127.65
7 388.0928 700 0.5000 2.6738 935.84 151.91
8 800 700 0.4987 2.4857 867.68 127.66
9 800 700 0.5000 2.5509 892.81 135.48
10 800 700 0.4979 2.4857 866.49 127.65
11 800 700 0.5000 2.5103 878.62 130.59
12 800 700 0.5000 2.6731 935.58 150.77
13 288.2984 700 0.5000 1.7001 595.05 52.07
14 288.2984 700 0.5000 1.7014 595.51 52.17
15 668.4960 700 0.4860 1.3782 468.85 30.92
16 200 700 0.4882 2.0395 696.92 80.41

In order to ensure that the quality of the processed titanium alloy meets the expected standards
and meets various processing constraints, a larger feed speed, radial depth of cut and spindle speed
are used.

The locust optimization algorithm provides an effective method to optimize the milling process
parameters to achieve high performance machining results. This method can not only improve the
processing quality, but also reduce the production cost and shorten the time to market. Therefore,

868 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635



MACHINING PARAMETERS OPTIMIZATION IN HIGH-SPEED MILLING OF TITANIUM ALLOY CHIPS.
NA ZHA0, WEI DU, HAO TONG, KUo Liu

in the future engineering applications, this optimization algorithm will be more widely used and

recognized.
Table 8. Pareto optimal solutions
Sequence Spindle Feed rate Ax@l Radial Material removal Milling
number speed (mm/min) cutting cut (mm) rate MRR force (N)
(R/min) (mm) (cm?/min)
1 800 700 0.4952 2.4850 127.57 141.98
2 388.0928 700 0.5000 2.6738 151.91 163.53

5. Conclusions

This paper conducts a finite-element simulation study using ABAQUS, focusing on the
simulation and analysis of cutting force, cutting temperature, and chip morphology. Additionally,
it delves into the application of multi-objective optimization algorithms for the optimization of
cutting process parameters. Based on these investigations, the following conclusions are drawn:

1) Simulation of the cutting process under different cutting speeds shows that the cutting speed
increases, the thermal softening effect increases, and the average flow stress decreases, thus
reducing the cutting force. By analyzing the process of chip formation, the workpiece material is
elastic deformed by cutting tool extrusion, and the cutting layer is formed. As the cutting
progresses, the chip gradually takes on a zigzag shape. Through the simulation analysis of
temperature variations, it was discovered that the peak temperature at the measuring point
significantly increases as the normal measuring distance decreases.

2) Orthogonal experiments are designed to collect milling force data, and several sets of
experiments are carried out for different milling parameters. Optimization objective function is
determined, milling force regression model and material removal rate regression model are
established, parameter constraint and multi-objective optimization are carried out. In actual
manufacturing, the material removal speed can be accelerated, the processing time can be reduced,
and the production efficiency can be improved. For example, in mass production of parts, the
overall processing cycle can be shortened. The multi-objective optimization model is solved by
locust optimization algorithm, and 16 Pareto optimal solutions are obtained, which provides an
important basis for the selection of cutting parameters in actual machining process.

3) Although FEM has many advantages, it has some limitations. This study is based on the
limitations of ABAQUS finite element simulation. First, the constitutive models we use are mostly
simplified assumptions, making it difficult to accurately reflect the true mechanical behavior of
titanium alloys under complex high-speed cutting conditions. They fail to adequately consider the
coupled effects of strain rate and temperature. Second, the parameter schemes obtained from
multi-objective optimization are based on specific condition influences, which limit their
applicability in diverse industrial production scenarios.
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