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Abstract. The accurate estimation of vehicle state parameters has a significant impact on the 
active safety system of automobiles. Accurately obtaining vehicle operating parameters is the 
foundation and prerequisite for active safety control of vehicles. In response to the limited 
estimation accuracy of the traditional CKF method, the CKF was extended to fifth-order according 
to the third-order sphere-radius cubature rule, making it have the accuracy of fifth-order Taylor 
series expansion. At the same time, singular value decomposition was used instead of traditional 
Cholesky decomposition to form a fifth-order cubature Kalman filter (SVD-FCKF) estimator for 
singular value decomposition. Then, the SVD-FCKF was validated using the Carsim and 
Matlab/Simulink joint simulation platform. Finally, the effectiveness of the proposed method was 
verified through virtual experiments. The results show that the improved SVD-FCKF estimator 
can effectively improve the accuracy and stability of vehicle state estimation, with overall 
estimation performance better than the CKF estimator and has strong adaptability under high and 
low adhesion coefficient conditions. The research results can provide theoretical support for the 
active safety research of intelligent vehicles and have practical application value.  
Keywords: automotive engineering, fifth-order cubature Kalman filter, singular value 
decomposition, vehicle state estimation and measurement. 

1. Introduction 

Today, with the increasing number of vehicles on the road and the increasingly complex traffic 
environment, driving safety is facing severe challenges. Intelligent vehicles equipped with 
advanced driving assistance systems have become a research hotspot due to their ability of 
reducing the driver operation load and assisting the driver in achieving safe driving. Accurately 
and real-time obtaining vehicle driving status information is the key to achieve effective 
decision-making and control of intelligent vehicles. The active safety technology of automobiles 
has always been a focus of attention. Active safety can help improve the maneuverability and 
stability of vehicles, thereby reducing the probability of accidents. One of the key aspects of active 
safety technology is to accurately obtain the real-time status of the vehicle, including its yaw rate, 
longitudinal and lateral velocity, and side slip angle. There are two main ways to obtain vehicle 
status parameters. One is based on sensor measurement, but due to the high cost of sensors, 
algorithms are currently more commonly used for estimation. The acquisition of vehicle driving 
state parameters is the basis for the active safety of vehicles, but due to the cost of sensors or the 
inability to directly measure parameters, accurate estimation of vehicle driving state parameters 
by low-cost estimators is crucial [1-3]. 

The idea of Cubature Kalman Filter was originally presented by Ienkaran Arasaratnam and 
Simon Haykin [4]. Over the past few decades, intelligent connected vehicles have received 
increasing attention for their large benefits in improving road safety [5-8]. Compared with EKF, 
the UKF can be applied to nonlinear distributed systems, achieving higher computational accuracy 
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[9-14]. Most estimation algorithms based on KF had higher estimation accuracy, but they were 
limited by the vehicle kinematic model and required accurate model parameters, so KF based 
algorithms had certain limitations [15-17]. In order to solve the problem of relying on kinematic 
models, some studies had applied machine learning algorithms to vehicle state estimation. 
Machine learning based regression algorithms did not rely on automotive kinematic models and 
inherent vehicle parameters, but estimated vehicle state parameters through model structure and 
training datasets [18]. At the same time the neural network and the sensor fusion technologies are 
used for the vehicle state estimation [19-21]. Cubature-Kalman filter is widely used for nonlinear 
dynamic estimations due to its high accuracy and numerical stability [22-26]. 

In recent years, scholars have found that CKF has strong adaptability, but its estimation 
accuracy is low or even divergent in strongly nonlinear system environments such as distributed 
drive electric vehicles. Zhao et al. estimated the yaw rate, longitudinal speed, and side slip angle 
based on the 3-DOF dynamic model based on the front wheel angle and longitudinal acceleration. 
By comparing the UKF and EKF algorithms, the efficiency and accuracy of the application of the 
UKF in the estimation of vehicle handling stability states and parameters were verified. The 
method described in the article controlled the driving or braking torque of the vehicle, effectively 
improving the slipping and locking conditions during driving and braking, ensuring the safety of 
the vehicle operation [27]. Lu et al. designed a nonlinear full dimensional observer and a UKF 
observer based on vehicle sensors, and compared and analyzed the two estimation methods under 
extreme conditions. The prediction performance of the nonlinear full dimensional observer was 
slightly higher under extreme conditions [28]. Pan et al. studied the lateral stability of vehicles 
based on the Uni-tire model and 2-DOF dynamic model, and designed a side slip angle estimator, 
which significantly improved the estimation effect and provided more accurate prediction values 
for the design of vehicle control strategies [29]. Particle Filter is widely used for nonlinear 
dynamic estimations especially in the field of vehicle state estimation [30-32]. 

The Kalman filter estimation algorithms studied above are all based on the improvement of 
third-order accuracy, which limits the improvement of their accuracy. Other estimation algorithms 
mainly fuse different algorithms, which are computationally complex and have high levels of 
algorithm constraints. They do not have high estimation accuracy for high-dimensional nonlinear 
models. In response to the limitations of traditional third-order CKF, this paper extends it using 
the fifth-order sphere-radius cubature rule to form a fifth-order CKF. At the same time, in the 
filtering process of the fifth-order CKF, a more stable singular value decomposition is used instead 
of Cholesky decomposition, further improving the estimation accuracy of the algorithm. During 
the CKF iteration process, it is necessary to generate cubature points. The generation of cubature 
points is related to the error covariance matrix. Generally, in the calculation process, the error 
covariance matrix needs to be subjected to Cholesky decomposition to obtain the volume points, 
which requires the error covariance matrix to maintain positive definiteness at all times. Errors 
may occur during the computer process, causing the covariance matrix to become non positive 
definite during the update process, resulting in the inability to perform Cholesky decomposition 
properly and causing the algorithm to fail in computation. 

2. Mathematical model of vehicle state estimation problem 

2.1. 3-DOF vehicle model 

The vehicle state estimation model is established based on a 3-DOF vehicle model: 
The dynamic equation of the 3-DOF vehicle model is as follows [33]: 

𝜔ሶ ௥ = 𝑎ଶ𝑘ଵ − 𝑏ଶ𝑘ଶ𝐼௭ 𝜔௥𝑢  + 𝑎𝑘ଵ + 𝑏𝑘ଶ𝐼௭ 𝛽 − 𝑘ଵ𝐼௭ 𝛿, (1)𝛽ሶ = 𝑎𝑘ଵ − 𝑏𝑘ଶ − 𝑚𝑢ଶ𝑚 𝜔௥𝑢ଶ + 𝑘ଵ + 𝑘ଶ𝑚 𝛽𝑢 − 𝑘ଵ𝛿𝑚𝑢 , (2)
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𝑢ሶ = 𝑎௫ + 𝑣𝑟, (3)𝑎௬ = 𝑎𝑘ଵ − 𝑏𝑘ଶ𝑚𝑢 𝜔௥ + 𝑘ଵ + 𝑘ଶ𝑚 𝛽 − 𝑘ଵ𝑚 𝛿. (4)

The side slip angle of the center of mass is: 𝛽 = arctan ቀ𝑣𝑢ቁ.  (5)
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Fig. 1. 3-DOF vehicle model 

2.2. Tire model 

The lateral forces of front and rear wheels can be expressed as: 

൜𝐹௬௙ = 𝑐௙𝛼௙,𝐹௬௥ = 𝑐௥𝛼௥, (6)

where 𝑐௙ and 𝑐௥ are the lateral stiffness of the front and rear tires. 𝛼௙ and 𝛼௥  are the front and rear 
slip angles: 

⎩⎪⎨
⎪⎧𝑐௙ = 𝜕𝐹௬௙𝜕𝛼௙ ቤ 𝛼௙ = 0,
𝑐௥ = 𝜕𝐹௬௥𝜕𝛼௥ ฬ 𝛼௥ = 0. (7)

3. SVD FCKF estimator 

For the following discrete-time nonlinear dynamic systems: 𝑥௞ = 𝑓ሺ𝑥௞ିଵሻ + 𝑤௞ିଵ, (8)𝑧௞ = ℎሺ𝑥௞ሻ + 𝑣௞, (9)

where 𝑥௞ and 𝑊௠,ଵ = 𝐴௡/(𝑛(𝑛 + 2)) are the state and observation vectors of the system at time 
k; 𝑊௠,ଶ = (4 − 𝑛)𝐴௡/(2𝑛(𝑛 + 2)) and 𝑒௝ are the system state transition function and the 
observation function; 2𝑛ଶ + 1 and 𝑣௞ are the process noise and observation noise which are 
uncorrelated and follow a normal distribution, 𝑁௥ = 2 and 𝑁௦ = 2𝑛ଶ; 𝑋௞ିଵ,௜ is the covariance 
matrix of the process noise; 𝑘 − 1 is the mean square error matrix of the observation noise. 
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3.1. Fifth-order sphere-radius cubature rule 

When considering nonlinear dynamical systems under Gaussian assumptions, approximate 
values of multidimensional Gaussian weighted function integrals are calculated using the sphere-
radius cubature rule. For different cubature points and weights, they should be determined by 
cubature rules of different orders. And the results obtained based on Gaussian-Laguerre 
integration will not be the same. For third-order CKF, if all third-order polynomials in  𝑛-dimensional vector space can be obtained according to the sphere-radius cubature rule, then the 
third-order sphere-radius cubature rule can be represented by extending the Gaussian-Laguerre 
integral. At present, the cubature rule can accurately represent monomials of third-order and 
below. The fifth-order sphere-radius cubature rule can be obtained as [34]: 

𝐼௎೙,ହ(𝑔௠) = 𝑊௠,ଵ ෍ ቀ𝑔௠൫𝑠௝ା൯ + 𝑔௠൫−𝑠௝ା൯ + 𝑔௠൫𝑠௝ି ൯ + 𝑔௠൫−𝑠௝ି ൯ቁ௡(௡ିଵ) ଶ⁄
௜ୀଵ  

      +𝑊௠,ଶ෍ቀ𝑔௠൫𝑒௝൯ + 𝑔௠൫−𝑒௝൯ቁ ,௡
௝ୀଵ  (10)

where 𝑊௠,ଵ = 𝐴௡/(𝑛(𝑛 + 2)); 𝑊௠,ଶ = (4 − 𝑛)𝐴௡/(2𝑛(𝑛 + 2)); 𝑒௝ is the unit vector in an  𝑛-dimensional vector space, with the 𝑗th element being 1 and all other elements being 0. 
By combining Gaussian weighting function integration, spherical cubature rule, and the 

expression of integration points and their prerequisites, the fifth order spherical-radial cubature 
rule using 2𝑛ଶ + 1 cubature points can be obtained: 

න 𝑔(𝑥)𝑁(𝑥|0, 𝐼)𝑑𝑥 ≈ 1𝜋௡ଶ 
ோ೙ ෍෍𝑊௥,௜ேೞ

௝ୀଵ 𝑊௦,௝ேೝ
௜ୀଵ 𝑔(2𝑟௜𝑠௜) = 2𝑛 + 2𝑔(0) 

      + 1(𝑛 + 2)ଶ ෍ ൣ𝑔൫√𝑛 + 2 ∙ 𝑠௝ା൯ + 𝑔൫−√𝑛 + 2 ∙ 𝑠௝ା൯൧௡(௡ିଵ)/ଶ
௝ୀଵ  

      + 1(𝑛 + 2)ଶ ෍ ൣ𝑔൫√𝑛 + 2 ∙ 𝑠௝ି ൯ + 𝑔൫−√𝑛 + 2 ∙ 𝑠௝ା൯൧௡(௡ିଵ)/ଶ
௝ୀଵ  

      + 12(𝑛 + 2)ଶ෍ൣ𝑔൫√𝑛 + 2 ∙ 𝑒௝ ൯ + 𝑔൫−√𝑛 + 2 ∙ 𝑒௝ ൯൧௡
௝ୀଵ , 

(11)

where 𝑁௥ = 2; 𝑁௦ = 2𝑛ଶ. 

3.2. SVD-FCKF algorithm 

The FCKF algorithm based on high-order sphere-radius cubature rule has higher 
computational efficiency compared to third-order CKF and has been widely used in GPS/INS 
navigation systems. By replacing the Cholesky decomposition in the traditional CKF algorithm 
with more numerically stable singular value decomposition, the resulting covariance matrix is 
used as the characteristic covariance matrix. Thus, the SVD-FCKF algorithm for vehicle state 
estimation is constructed, and its specific calculation process is as follows. 

3.2.1. Time updating 

To calculate the cubature points 𝑋௞ିଵ,௜ at time 𝑘 − 1, the covariance matrix 𝑣௞ = 𝑧௞ − 𝑧̂௞|௞ିଵ 
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is decomposed using SVD: 

𝐸௞ = 1𝑀 ෍ 𝑒௝(𝑒௝)்.௞
௝ୀ௞ିெାଵ  (12)

The column vectors of 𝑄௞ାଵ = 𝐾ሜ௞௝𝐸௞(𝐾ሜ௞௝)் and 𝑅௞ାଵ = 𝐸௞ + ∑ 𝑤௖௜[𝑧௞|௞ିଵ(௜) −ଶ௡௜ୀ଴𝑧̂௞∣௞ିଵ][𝑧௞|௞ିଵ(௜) − 𝑧̂௞∣௞ିଵ]் are the left and right singular value vectors of 𝑃௞ିଵ respectively; Λ௞ିଵ =
diag[𝑆ଵ, 𝑆ଶ,⋯ , 𝑆௡]; 𝑛 is the dimension of the state vector. 𝜉௜ is expressed as: 

𝜉௜ =
⎩⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪⎪
⎧[0 0 ⋯ 0]், 𝑖 = 0,𝜅𝑠௜ା, 𝑖 = 1,2,⋯ ,𝑛(𝑛 − 1)2 ,−𝜅𝑠௜ି௡(௡ିଵ)ଶା , 𝑖 = 1 + 𝑛(𝑛 − 1)2 , 2 + 𝑛(𝑛 − 1),⋯ ,𝑛(𝑛 − 1),
−𝜅𝑠௜ି௡(௡ିଵ)ଶି , 𝑖 = 1 + 𝑛(𝑛 − 1)2 , 2 + 𝑛(𝑛 − 1),⋯ , 3𝑛(𝑛 − 1)2 ,
−𝜅𝑠௜ିଷ௡(௡ିଵ)/ଶି , 𝑖 = 1 + 3𝑛(𝑛 − 1)2 , 2 + 3𝑛(𝑛 − 1),⋯ ,2𝑛(𝑛 − 1),𝜅𝑒௜ିଶ௡(௡ିଵ), 𝑖 = 1 + 2𝑛(𝑛 − 1)2,2 + 2𝑛(𝑛 − 1),⋯ ,𝑛(2𝑛 − 1),−𝜅𝑒௜ି௡(ଶ௡ିଵ), 𝑖 = 1 + 𝑛(2𝑛 − 1)2,2 + 𝑛(2𝑛 − 1),⋯ ,2𝑛ଶ,

 (13)

where 𝜅 = √𝑛 + 2; the element of the 𝑛-dimensional unit vector is 0 except for the 𝑖th element 
which is 1. 𝑠௝ା and 𝑠௝ି  are expressed as: 

⎩⎪⎨
⎪⎧൛𝑠௝ାൟ = ቊ√22 ൫𝑒௣ + 𝑒௤൯,   𝑝 < 𝑞,   𝑝, 𝑞 = 1,2⋯ ,𝑛ቋ ,
൛𝑠௝ି ൟ = ቊ√22 ൫𝑒௣ − 𝑒௤൯,   𝑝 < 𝑞,   𝑝, 𝑞 = 1,2⋯ ,𝑛ቋ . (14)

The transferring cubature point of nonlinear state equation is calculated: 𝑋௞/௞ିଵ,௜∗ = 𝑓 ൬𝑋௞ିଵ௞ିଵ,௜൰. (15)

The prediction value of the state at time 𝑘 is calculated: 

𝑥ො௞/௞ିଵ = ෍ 𝑊௜𝑋௞/௞ିଵ,௜∗ଶ௡మ௜ୀ଴ , (16)

where the weight 𝑊௜ is expressed as: 

𝑊௜ =
⎩⎪⎪⎨
⎪⎪⎧ 2𝑛 + 2 ,     𝑖 = 01(𝑛 + 2)ଶ ,       𝑖 = 1,2,⋯ ,2𝑛(𝑛 − 1),4 − 𝑛[2(𝑛 + 2)ଶ] ,     𝑖 = 1 + 2𝑛(𝑛 − 1),⋯ ,2𝑛ଶ. (17)
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The covariance matrix of state error at time 𝑘 is calculated: 

𝑃௞/௞ିଵ = ෍𝑊௜(𝑋௞/௞ିଵ,௜∗ − 𝑥ො௞/௞ିଵ) ⋅ (𝑋௞/௞ିଵ,௜∗ − 𝑥ො௞/௞ିଵ)் + 𝑄௞ିଵଶ௡మ
௜ୀ଴ , (18)

where 𝑄௞ିଵ is the system noise covariance. 

3.3. Measurement updating 

The cubature points after measurement updating is calculated by decomposing the covariance 
matrix at time 𝑘 using SVD: 

ቊ𝑃௞/௞ିଵ = 𝑈௞/௞ିଵΛ௞/௞ିଵ𝑉௞/௞ିଵ் ,𝑋௞/௞ିଵ,௜ = 𝑥ො௞/௞ିଵ + 𝑈௞/௞ିଵ𝜉௜ .  (19)

The cubature point transmitted through the measurement equation is calculated: 𝑍௞/௞ିଵ,௜ = ℎ ൬𝑋௞௞ିଵ,௜൰. (20)

The SVD-FCKF gain matrix is calculated: 

𝑧̂௞/௞ିଵ = ෍𝑊௜𝑍௞/௞ିଵ,௜ଶ௡మ
௜ୀ଴ , (21)

𝑃௞௭௭ = ෍𝑊௜(𝑍௞/௞ିଵ,௜ − 𝑧̂௞/௞ିଵ)(𝑍௞/௞ିଵ,௜ − 𝑧̂௞/௞ିଵ)் + 𝑅௞ଶ௡మ
௜ୀ଴ , (22)

𝑃௞/௞ିଵ௫௭ = ෍𝑊௜(𝑋௞/௞ିଵ,௜∗ − 𝑥ො௞/௞ିଵ)(𝑍௞/௞ିଵ,௜ − 𝑧̂௞/௞ିଵ)்ଶ௡మ
௜ୀ଴ , (23)𝐾௞ = 𝑃௞/௞ିଵ௫௭ (𝑃௞௭௭)ିଵ. (24)

The state estimation value and state error covariance matrix at time 𝑘 is calculated: 𝑥ො௞ = 𝑥ො௞/௞ିଵ + 𝐾௞ ൬𝑧௞ − 𝑧̂௞௞ିଵ൰, (25)𝑃௞ = 𝑃௞/௞ିଵ − 𝐾௞𝑃௞௭௭𝐾௞் . (26)

In this algorithm, the information from the observed residual sequence is applied to adaptively 
update the noise covariance matrix, instead of using a fixed noise covariance matrix for recursive 
estimation to improve the estimation accuracy of the algorithm. The specific calculation method 
is as follows. 

The residual of the relevant output observation vector is calculated as: 𝑣௞ = 𝑧௞ − 𝑧̂௞|௞ିଵ. (27)

The residual covariance matrix of the relevant output observation vector is calculated as: 
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𝐸௞ = 1𝑀 ෍ 𝑒௝(𝑒௝)்௞
௝ୀ௞ିெାଵ  (28)

The covariance matrix of the process noise at time 𝑘 + 1 is updated as follows: 𝑄௞ାଵ = 𝐾ሜ௞௝𝐸௞(𝐾ሜ௞௝)். (29)

The covariance matrix of the observation noise at time 𝑘 + 1 is updated as follows: 

𝑅௞ାଵ = 𝐸௞ + ෍𝑤௖௜[𝑧௞|௞ିଵ(௜) − 𝑧̂௞∣௞ିଵ][𝑧௞|௞ିଵ(௜) − 𝑧̂௞∣௞ିଵ]்ଶ௡మ
௜ୀ଴ . (30)

4. Numerical simulation and experimental verification 

This article uses the SVD-FCKF method to filter and estimate the yaw rate and side slip angle 
as well as longitudinal velocity. A Carsim and Matlab/Simulink joint simulation platform is 
established for simulation and the results are compared and analyzed with the CKF method. 

4.1. Numerical simulation 

4.1.1. 𝝁 = 0.85 

In the simulation sampling period is set as 0.001 s; the covariance matrix of the system noise 
is 𝑄 = 0.1𝐼ଷ×ଷ and the initial value of the covariance matrix of the measurement noise is  𝑅଴ = 0.01𝐼ଷ×ଷ. 

The simulation results of the yaw rate and side slip angle as well as longitudinal velocity of 
the vehicle under the condition of 𝜇 = 0.85 are shown in Fig. 2. 

From Fig. 2, it can be seen that the curve obtained by the SVD-FCKF estimator is more in line 
with the reference values than the curve obtained by the CKF estimator. And the effect is more 
significant at the peak and valley of the curve. The reason for this trend is that the steering angle 
at the peak and valley changes at high speed causing significant fluctuations in the vehicle state. 
At this time, the CKF processing highly nonlinear systems in the third-order dimension can easily 
accumulate errors, resulting in estimation results deviating from actual values. However, the 
SVD-FCKF can control the accumulation of errors and obtain more accurate estimation results 
through a fifth-order Taylor expansion. The SVD-FCKF estimator and CKF estimator maintained 
a good fit with the reference value in the first 1 second. But after 1 second, the estimated value of 
the CKF gradually deviated from the reference value, while the SVD-FCKF still maintained good 
estimation performance. This is because singular value decomposition can reduce the influence of 
noise in the estimation process and improve the robustness of the system and reduce the influence 
of state estimation errors and ensure that the estimation results always converge to the reference 
value. At the same time, singular value decomposition and Cholesky decomposition are two 
different matrix decomposition methods that are applicable to different types of matrices. Singular 
value decomposition has the following advantages over Cholesky decomposition: Cholesky 
decomposition is mainly used for decomposing symmetric positive definite matrices, while 
singular value decomposition can be used for decomposing any matrix, making the application 
scenarios of singular value decomposition more extensive. 

In order to further compare the estimation accuracy of the algorithm, the root mean square 
error (RMSE) is used to evaluate and compare the estimation accuracy, as shown in Table 1. From 
Table 1, it can be seen that the RMSE of the yaw rate and side slip angle as well as the longitudinal 
velocity calculated by the SVD-FCKF algorithm is smaller than that of the CKF algorithm. 
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Fig. 2. Simulation results under the condition of 𝜇 = 0.85: a) yaw rate; b) error of yaw rate;  
c) side slip angle; d) error of side slip angle; e) longitudinal velocity; f) error of longitudinal velocity 

Table 1. The RMSE indicators of the two algorithms 
Evaluation index State value SVD-FCKF CKF 

RMSE 
𝑟 (rad/s) 0.00279 0.00566 𝛽 (rad) 0.000441 0.000672 𝑣 (km/h) 0.1629 1.1432 

4.1.2. 𝝁 =0.2 

The simulation results of the yaw rate and side slip angle as well as longitudinal velocity of 
the vehicle under condition of 𝜇 = 0.2 are shown in Fig. 3. 

From Figs. 3 (a)-(b), it can be seen that the longitudinal velocity estimated by SVD-FCKF and 
CKF estimators are generally consistent with the reference values. However, the overall error of 
the SVD-FCKF is smaller than that of the CKF, indicating higher estimation accuracy. From 
Fig. 3(c), it can be seen that the longitudinal velocity errors estimated by the SVD-FCKF estimator 
under low adhesion coefficient condition are superior to those estimated by the CKF estimator. 
Although the estimation accuracy under low adhesion coefficient conditions is lower than that 
under high adhesion coefficient conditions, the overall estimation effect is stable, and the error is 
within a controllable range. At the same time, singular value decomposition can be used to solve 
least squares problems and principal component analysis as well as matrix compression and 
denoising applications. Cholesky decomposition is mainly used to solve linear systems of 
equations and calculate determinants, inverse matrices, etc. of matrices. At the same time, singular 
value decomposition is robust to small changes in the matrix, and even with small perturbations 
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in the matrix. The changes in singular values are not too significant, which makes it perform better 
when dealing with noisy data. 

a) 
 

b) 

 
c) 

Fig. 3. Simulation results under the condition of 𝜇 =0.2:  
a) yaw rate; b) side slip angle; c) longitudinal velocity 

4.2. Experimental verification 

A virtual test using the CarSim is conducted to verify the feasibility of the simulated results. 
At the same time, this paper conducted real an experimental verification research for a vehicle. 

The real experimental vehicle is shown in Fig. 4. The measurement devices are shown in Fig. 5. 

  
Fig. 4. Real test vehicle 

  
Fig. 5. Measurement devices 
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The experimental results of the longitudinal velocity and yaw rate as well as side slip angle of 
the vehicle under the double lane changing condition are shown in Fig. 6. 

 
a) 

 
b) 

 
c) 

Fig. 6. Experimental results: a) longitudinal velocity; b) yaw rate; c) side slip angle 

The virtual and real vehicle experiment results demonstrate that the algorithm can accurately 
estimate the vehicle state parameters and has good accuracy. This is because the CKF Kalman 
filter estimation algorithm is based on the improvement of third-order accuracy, which limits the 
improvement of its accuracy. It is extended using the fifth-order sphere-radius cubature rule to 
form the fifth-order CKF. At the same time, in the fifth-order CKF filtering process, more stable 
singular value decomposition is used instead of Cholesky decomposition, further improving the 
estimation accuracy and robustness to anomalous observations of the algorithm. It can be seen 
that there are errors between the test and the simulation value. This is because that the model in 
the virtual test ignored the nonlinearity of the steering and suspension systems. However, the trend 
of the virtual vehicle results is consistent with the simulation results, which reflects the virtual 
situation of the vehicle more realistically verifying the effectiveness of the algorithm. 

5. Conclusions 

This article applies a SVD-FCKF algorithm estimator to address the issues of low estimation 
accuracy and poor stability in the process of vehicle state estimation. Based on the third-order 
CKF, the sphere-radius cubature rule is extended to a fifth-order form, constructing a fifth-order 
CKF. At the same time, the singular value decomposition is used instead of Cholesky 
decomposition in covariance matrix decomposition to enhance numerical stability. The effect of 
the algorithm under high and low adhesion coefficient conditions is simulated and verified. The 
results show that compared with CKF, the SVD-FCKF estimator has significantly improved the 
estimation accuracy and stability of the yaw rate and side slip angle as well as longitudinal 
velocity. It can maintain strong robustness under extreme conditions such as low adhesion 
coefficient achieving the expected effect and providing reference for active safety research of 
intelligent vehicles. The virtual experiment results are consistent with the simulation results, so 
the algorithm can accurately and timely estimate the state parameters. Its accuracy has been 
verified, and it also provides some theoretical and real vehicle data basis for vehicle stability 
control.  

A higher-degree rule will translate to higher accuracy only if the integrand is well-behaved in 
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the sense of being approximated by a higher-degree polynomial, and the weighting function is 
known to be a Gaussian density exactly. In practice, these two requirements are hardly met. For 
example, the integrand function in engineering may not be smooth, or the weight function may be 
unknown or non-Gaussian. In order to solve the problem, we can adopt an adaptive integration 
strategy, combining trapz and quad methods for error estimation or dynamically adjust the 
integration step size instead of relying on fixed high-order rules. And also, we can establish 
smooth processing for the non-smooth function through convolution operation and construct a 
smooth function column to approximate the original function or establish different order 
quadrature rules. In the future, how to solve the above issue should be studied. 
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