Advancing industrial gas turbine field performance
testing: a review of procedures and key considerations
with emerging technologies

Roupa Agbadede', Biweri Kainga?

Department of Mechanical Engineering, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
ICorresponding author

E-mail: 'roupaagbadede@yahoo.com, *biwerikainga@gmail.com

Received 13 March 2025; accepted 6 August 2025; published online 20 December 2025 W) Check for updates
DOI https://doi.org/10.21595/marc.2025.24894

Copyright © 2025 Roupa Agbadede, et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. This review explores the possibility of enhancing the efficiency and accuracy of
Industrial Gas turbine Performance testing by critically assessing the traditional methods, their
limitations, and how modern technologies can be used to complement the existing traditional
testing approaches, optimize data acquisition, and predict operational failures. A systematic and
comprehensive search strategy was employed to identify relevant academic and industry literature.
Studies on traditional testing practices were reviewed to highlight their constraints, while
researches involving the application of emerging technologies for performance diagnostics were
also reviewed to illustrate their benefits. Findings show that measured data such as turbine inlet
temperature, compressor pressure ratio, exhaust temperature, fuel flow, shaft speed, and vibration
remain essential for both traditional and Al-enhanced methods. These parameters, typically
obtained through standardized testing procedures, provide the foundational input for AI models
such as machine learning algorithms and digital twins. The study revealed that Al technologies
thrive in data-rich, repeatable environments by enhancing processes like instrumentation, data
logging, and normalization. The study also revealed that machine learning, deep learning, artificial
neural networks, and digital twins can be used for more effective planning, reduce redundant
testing, and mitigate delays caused by variable factors like weather or load conditions.

Keywords: artificial intelligence, digital twins, gas turbine performance test, test procedures.
1. Introduction

In the past four decades, Industrial Gas Turbines (IGTs) have been employed in power
generation, mechanical drives, and marine applications [1, 2]. The performance and reliability of
industrial gas turbines are determined by taking measurement of critical parameters such as
efficiency, fuel flow, and power output. Traditional methods for testing and evaluating these
parameters have followed well-defined procedures and standards [1]. However, the emergence of
artificial intelligence and other advanced technologies has necessitated the need to employ these
new technologies, in addition to existing traditional methods, to optimize testing methodologies
and improve the decision-making process.

The industrial gas turbine performance test procedure provides a structured approach for
accurately assessing gas turbine performance while considering the operational environment [1].
Performance testing is essential for newly manufactured, repaired, or overhauled gas turbines [3].
It ensures the optimization of the IGT’s performance and helps minimize unscheduled shutdowns
and repairs, as turbine component failures can lead to significant financial losses [1]. Although
the testing procedure may involve considerable costs for operators and manufacturers, it serves as
a critical foundation for operational decisions, including modifications, performance monitoring,
and plant extensions. It also provides valuable complementary data to factory testing results.
Established standard testing codes, such as those from the American Society of Mechanical
Engineers (ASME), Verband Deutscher Ingenieure (VDI), and the International Organization for
Standardization (ISO), have traditionally been used to assess the performance of industrial gas
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turbines. These codes provide comprehensive guidelines for site preparation, instrumentation
requirements, thermodynamic calculations, and test result reporting [4]. They ensure consistency
and accuracy across various testing scenarios, facilitating fair comparisons and informed
operational decision-making [1].

The efficiency and operational stability of the gas turbine are determined by conducting
performance testing. Performance testing provides information about power output, thermal
efficiency, and fuel consumption under standardized and varying operational conditions [5].
Affonso et al. [6] stated that obtaining the heat rate is crucial for determining the overall
performance of a gas turbine and is most commonly considered when conducting an acceptance
test. The guidelines for accurate and repeatable tests, which are provided by international
standards such as ASME PTC 22 [4] and ISO 2314 [7], are required to be adhered to when
conducting performance testing. Comprehensive methods for evaluating turbine power output and
efficiency are provided by the American Society of Mechanical Engineers (ASME) Performance
Test Code [4]. Test requirements such as instrumentation setup, environmental correction factors,
and test duration are outlined in ISO 2022[8]. A detailed framework for determining performance
based on direct measurement and thermodynamic principles is provided in the ASME PTC 22
standard [4].

This review explores the possibility of enhancing the efficiency and accuracy of these tests by
critically assessing the traditional methods, their limitations, and how modern technologies,
including Al, can be deployed in addition to traditional methods to achieve enhanced testing
methodologies and procedures in industrial gas turbines. The focus of this study is on using Al to
complement the existing traditional testing approaches, optimize data acquisition, and predict
operational failures.

2. Materials and methods

The methodology adopted in this study involved search strategies, inclusion/exclusion criteria,
data extraction, and analysis procedures. The strategies adopted in conducting this study include
examining current procedures and best practices in industrial gas turbine performance testing,
identifying key challenges associated with performance testing, and exploring the role and impact
of emerging technologies, including Al, in enhancing gas turbine performance testing. Fig. 1
shows the flow chart of the study.

To identify relevant and important literature in the area of study, a systematic and
comprehensive search strategy was employed. Academic and industry databases were pivotal in
conducting the study. The academic databases covered in the study include articles from Elsevier,
Springer Nature, ASME Journal of Engineering for Gas Turbines and Power, PhD Thesis from
reputable universities etc. The industry databases include the ASME Digital Collection,
Gasturbine World, ASME Turbo Expo, and communications from leading gas turbine
manufacturers such as General Electric, Siemens, Solar Turbines, and Mitsubishi. Grey literature,
including technical reports, industry white papers, and conference proceedings, were also
reviewed during the literature search. In addition, key search word combinations such as industrial
gas turbine performance testing, gas turbine testing procedures, key considerations in turbine
testing were used. Other key word combinations included application emerging technologies in
gas turbine performance diagnostics, artificial intelligence in performance testing, and Al-based
turbine diagnostics.

The literature was examined through a thematic analysis to uncover recurring patterns and
emerging trends. The primary themes identified were as follows: traditional performance testing
procedures, including benchmarking methods and their limitations; challenges in performance
testing, such as instrumentation errors, environmental variability, and operational constraints; and
the integration of emerging technologies, particularly the role of Al and machine learning in
optimizing performance.
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Fig. 1. Flow chart of study
3. Studies on industrial gas turbine performance testing using traditional approaches

Diakunchak [9] conducted a fully factory-loaded test to verify the performance and mechanical
integrity of a new engine model. To obtain measurement data on the engine and its components'
performance, a large number of specialized instruments were employed. At each measurement
point, nearly 500 individual readings were recorded. The results showed that the power output
exceeded 47 MW when measurements were conducted under ISO conditions using natural gas as
the fuel. Also, the author reported that metal temperature measurements in the combustor and
turbine confirmed the engine's mechanical integrity. Bustos et al. [10] stated that during individual
test campaign, some major gas turbine components can be verified to ascertain their mechanical
integrity and performance. The authors further added that vibration levels in the power turbine are
assessed through a mechanical run test (MRT), while the gas generator is expected undergo
performance testing to determine whether its operating parameters are within acceptable limits.
Lee et al. [11] conducted a performance test on a micro gas turbine consisting of a single-stage
centrifugal compressor, a radial turbine, and an annular combustor. Various instrumentations were
used to measure temperature, pressure, and flow rate at different sections of the engine as shown
in Fig. 2. The compressor inlet and turbine exit temperatures were measured using T-type and K-
type thermocouples, respectively, installed within the engine. Meanwhile, the fuel flow rate was
measured using a thermal mass flow meter, and the compressor exit pressure was obtained using
a pressure probe. Based on the measurement data, the authors calculated the shaft power and
thermal efficiency.

Decker and Pathak [12] conducted an Engineer, Procure and Construct (EPC) performance
test on Combustion Turbine Generators under base load condition to ascertain the facility-wide
unfired net electrical output and heat rate. It was stated that during the test, the Chiller was switch
off while the HRSG remained unfired. The study revealed that the corrected unfired net electrical
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output was greater than the guaranteed value, while the corrected unfired net heat rate was less
than the guarantee value. Purvis [13] conducted the measurement of turbine inlet temperature
using a single three-point stagnation thermocouple rake at the outlet from each of the six
combustion chambers to provide a rough guide to temperature. The authors ensured that single
unit readings were never accepted as representing a true mean outlet temperature. Six
thermocouple units are usually used to measure the exhaust temperature. Of these, three are
installed in the exhaust duct elbows in pairs [30]. Mathioudakis [14] presented methods for
correcting data from gas turbine acceptance testing. The study focused on addressing issues that
were not sufficiently covered by existing standards. The author presented a procedure for verifying
guarantee data at specific operating points, and methods were proposed for correcting performance
test data. Kurz et al. [15] discussed field testing of gas turbine-driven compressors and
measurement uncertainties when test guidelines were judiciously followed. The authors outlined
a compressor field testing procedure that reduces measurement inaccuracies and maintains cost
efficiency. In addition, the authors addressed issues related to the planning and organization of
field tests and necessary instrumentation. Other areas covered in the study include data reduction,
data correction, test uncertainty, and the interpretation of test data. Furthermore, the study
reviewed necessary test codes and their relevance to field testing.

Fig. 2. Micro gas turbine test facility [11]

Purvis [13] conducted tests using standard procedures and rules similar to those outlined in the
ASME Power Test Code 22 or the CIMAC code of acceptance requirements. The tests were
performed on normal production units that were being prepared for delivery or on-site acceptance.
During the measurement exercise, attempts were made to provide an alternative for measuring
parameters where doubt existed regarding the accuracy of the recorded measurement data. The
author used a measuring device that functions by sensing the distortion of the magnetic flux
induced by the shaft torque when it was subjected to torsional strain to obtain the measurement of
the output torque produced. Performance testing of an APU GTCP was conducted by MSc
Thermal Power class of 2010. The performance test was carried out on an APU GTCP 30-92 Avon
Test Facility located at Cranfield University, UK, to provide a first-hand insight on the operation
of a gas turbine. The APU been investigated was an old gas turbine engine which performs
multiple functions in an aircraft (see Fig. 3).

According to Pachidis [16] the measurements were obtained after starting and running until it
is stabilized before readings were taken. The fuel flow was measured using a ball flow meter
located just before the injection port into the combustion chamber. The flow meter was calibrated
for the density of the fuel used, and the corresponding chart between the graduations and fuel flow
were used to obtain the fuel flow in kg/s. While the pressure values were measured at the
compressor exit and the exhaust using five tubes connected to a digital meter (DP101). The
compressor intake total pressure was measured using three of the Pitot probes provided. While the
remaining tubes, which consist of a rail of three tubes were used to measure static pressure at the
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exhaust, whose mean value provides the static exhaust pressure. The compressor delivery
temperature and exhaust temperature were measured through thermocouples installed at the
exhaust tubes. The K-type thermocouples made of Chromel-Alumel material, which are poor
conductors and are well-suited for high-temperature measurements due to their low electromotive
force, were used for obtaining the temperature measurements, as shown in Fig. 4. Due to the non-
homogeneous gas flow in the exhaust duct, three thermocouple probes were installed at strategic
positions according to the British Standard for the measurement of fluid flow.

Turbine (‘ompressur—‘ Intake
5
v

Gearbox

— | Fuel injection

Fig. 3. Main components of the GTCP 30-92 engine [16]

Cong et al. [17] conducted experiments to mimic varying environmental conditions by
controlling intake humidity using ultrasonic atomizers. The intake pressure was adjusted with a
wind deflector, and intake temperature was regulated by selecting different room temperatures.
The measurements collected during the experiment included flow, pressure, temperature,
humidity, and smoke composition. Flow and pressure data were obtained using the micro gas
turbine’s pre-installed system, while temperature and humidity were measured with an AS847
split-type meter. An infrared smoke analyzer (MGAS) was employed to measure the combustion-
generated smoke components. The results showed that operating parameters of the micro gas
turbine fluctuated slightly with changes in intake humidity, but the magnitude of these fluctuations
was small, indicating that the turbine can operate normally even in high humidity environments.
Also, power generation efficiency and compressor power consumption exhibited opposite trends
when the intake temperature changed. Changes in intake temperature also affected the
concentrations of NOx and CO emissions.

Fig. 4. Exhaust instrumentations [16]

Sitanggang et al. [18] conducted an experimental study to analyse the performance of Gas
Turbine Units in Jambi, Indonesia. The performance testing was conducted by collecting data
accordance ASME Performance Test Code 22. Data obtained included parameters such as inlet
air temperature, air filter pressure differential, fuel flow rate, exhaust gas temperature, self-use
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electrical energy, and electricity production. The kWh-meter transactions in the Generator
Auxiliary Control (GAC) room was used to obtain the Net energy production data, while gross
energy production data was read from the gross kWh-meter in the Local Control Room. The heat
rate and compressor efficiency were calculated from data obtained from the measured parameters.

Syverud et al. [19] conducted an investigation to determine the effect of saltwater ingestion on
the performance of a General Electric J85-13 turbojet engine. Salt ingestion was achieved by
spraying atomized droplets of saltwater into the engine intake, leading to the fouling of salt
deposits on the axial compressor. To obtain more detailed data than what was available from the
existing test instrumentation, additional sensors were deployed. Figures 5 and 6 show the General
Electric J85-13 turbojet engine and test equipment mounted at the inlet screen of the engine
respectively. Four sensors positioned at the engine inlet screen measured the compressor inlet
temperature. The compressor inlet total pressure was measured using three pitot tubes located in
the bellmouth, while the static pressure at the same location was measured using three static ports.
Static pressure at stage 5 was recorded via a 1 mm tap located at a single point on the
circumference within the bleed channel. Gas path temperatures were measured using unshielded
Resistance Temperature Detectors (RTDs) installed at stator rows 1, 3, 4, 6, and 8. Ambient
temperature and relative humidity were manually recorded outside the test cell at the same
location. The compressor inlet temperature was observed to be higher than the ambient
temperature and varied with engine load, attributed to test cell recirculation. A minimum of 60
data points were collected at each setting, using a 2 Hz sampling rate, to reduce data scatter. The
average of these readings was taken as the steady-state data point. All performance data were
corrected to standard ISO reference conditions (15°C ambient temperature and 101,325 kPa
barometric pressures). The authors reported that the largest shift in mean value occurred in the
compressor discharge pressure, which resulted in partial overlap of the measurement uncertainties.

Fig. 6. GE J85-13 with test equipment mounted at the inlet screen [19]
It is evident from the foregoing that numerous studies have been conducted using traditional
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methods of industrial gas turbine performance testing. Table 1 provides a summary of the key
references reviewed for this research, highlighting the key performance parameters measured, the
equipment used, and the objectives achieved in the respective tests. From the reviewed literature,
it is evident that field performance testing requires considerable human effort for data collection
and analysis. Also, accurate calibration of instruments is also required to reduce errors in the
measured results. In addition, the personnel conducting the test must have a strong understanding
of gas turbine performance calculations to estimate parameters that cannot be measured directly.
In light of these challenges associated with traditional performance testing, it has become
necessary to integrate emerging technologies, such as artificial intelligence, to address these issues
and optimize the testing process for improved accuracy and efficiency.

3.1. Limitations of traditional gas turbine performance testing

In the recent past, traditional testing procedures have been used to evaluate the performance
of gas turbines and provide guidance for maintenance actions. However, these methods face
several challenges and limitations, including high costs and time requirements for comprehensive
testing, limited flexibility in adapting to new turbine designs, the potential for human errors in
data collection and analysis, and the inability to predict long-term performance and degradation
trends. These limitations and challenges have necessitated the exploration of more robust and
sophisticated methods that use artificial intelligence that can affect their effectiveness [1]. Some
of the limitations associated with traditional performance testing are presented below:

1. Manual Data Analysis.

— Time-consuming and prone to human error.

— Limited to steady-state conditions and snapshot data.

2. Delayed Fault Detection.

— Anomalies often detected only after performance deviation becomes significant.

3. Limited Adaptability.

— Performance results do not easily adapt to changing operational environments (e.g., ambient
conditions, fuel variability).

4. Reactive Approach.

— Testing focuses on assessing current state rather than predicting future issues or optimization
opportunities.

3.2. Integrating emerging technologies in IGT performance testing

Advancements in diagnostic tools have significantly improved the accuracy and efficiency of
performance tests [20]. As a result, there is growing interest in leveraging emerging technologies
such as Al-based models for predictive analytics, anomaly detection, and performance
optimization. Data collection has also been significantly improved through the development of
high-precision, wireless, and self-calibrating sensors [21]. Another pivotal technology in
performance testing is digital twins, which use virtual replicas to enable real-time simulation and
performance analysis of gas turbines [22]. Also, a digital twin models are capable of providing
early warning for gas-path faults. The ability to process vast amounts of data and identify patterns
that are not readily apparent to human analysts has positioned Al and machine learning as pivotal
tools in performance testing.

3.3. Application of emerging technologies for gas turbine performance diagnostics
Industrial gas turbine performance testing can be revolutionized by employing advanced
technologies, such as Al, for data acquisition, data analysis, and system behavior prediction. With

Al, the process of data acquisition can be automated, and data analysis can be enhanced [23]. Key
Al technologies, such as Machine Learning, Deep Learning, Natural Language Processing, and
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the Internet of Things (IoT), can be employed to achieve automated data acquisition and enhanced
data analysis, as mentioned.

Table 1. Key references for traditional testing cases studies
Key parameters measured/

Reference calculated Equipment employed Overall target
Compressor inlet pressure
and temperature, relative K-type thermocouples,
. humidity, Exhaust digital pressure indicator, | To verify the performance and
Diakunchak T .
9] temperature and pressure, |Reuter Stokes, Pressure Test| mechanical integrity of a new
Power output - Performance | Gauge, station meters, Tube engine model
Combustor Metal Manometer

Temperature, fuel flow
Vibration levels in the power
turbine Mechanical run test (MRT)
Performance Test

Bustos et al.
[10]

To verify mechanical integrity
and performance

T-type and K-type

thermocouples-for
Temperature, pressure, and

Lee et al. . . temperature Performance test on a micro
flow rate at different sections .
[11] . Thermal mass flow meter gas turbine
of the engine
for Fuel flow
Pressure probe
Performance test on
Combustion Turbine
Decker and | Net electrical output and heat Permanent plant Generators under base load
Pathak [12] rate Instrumentation condition to ascertain the

facility-wide unfired net
electrical output and heat rate

Thermocouple for
temperature
Magnetic Flux Torque meter
K-type thermocouples

Pachidis et Fuel flow, Pressure, Ball flow meter
al. [16] temperature Pressure tubes connected to
a digital meter

Torque, Exhaust
Temperature, Power Output

On-site performance

Purvis [1
urvis [13] acceptance test

To provide insight on gas
turbine engine testing and test
data collection and assessment

Inlet air temperature, air filter
pressure differential, fuel
Sitanggang flow rate, exhaust gas
etal. [18] temperature, self-use
electrical energy, and
electricity production

Analyse the performance of
gross kWh-meter Gas Turbine Units in Jambi,
Indonesia

Analyse the performance of

Flow, pressure, temperature, AS847 split-type meter . .
Cong et al. L . micro gas turbines under
humidity, and smoke An infrared smoke analyzer | ,. : .
[17] .. different intake environmental
composition (MGA5)

conditions

Ambient temperature, relative|  Pitot tubes, static ports.

humidity, Compressor Inlet | Static pressure ,1 mm tap, To determine the effect of

Syverud et Pressure and temperature, unshielded resistance saltwater ingestion on the
al. [19] performance of a General
Exhaust temperature and temperature detectors . . .
Electric J85-13 turbojet engine
pressure (RTDs)

3.3.1. Machine learning
A tool which is known as machine learning has gain significant recognition for solving

physical problems by learning from data [24]. Trained ML models, which typically work without
the need of solving physical governing equations, are computationally efficient [25]. Machine
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learning methods are data-driven approaches that use interconnected sensor systems to transmit
real-time measurements from machines to the cloud. These systems create datasets for the models,
which analyze large amounts of data to detect patterns and alert users when something is not right
[20]. For instance, large volumes of test data can be analyzed using machine learning algorithms
to identify patterns and correlations that may be difficult to detect with traditional methods [21].
Shen and Khorasani [26] proposed a data driven fault diagnostic system to monitor engine health
status. A hybrid multi-mode machine learning strategies was used to develop the system. The
hybrid system comprised the supervised recurrent neural networks and the unsupervised self-
organizing maps. The authors reported that the proposed framework and methodology can also be
applied for assessing the health status of multiple components by only having access to the
input/output sensor data.

A machine learning-based technique was employed to predict gas turbine performance for
power generation [27]. Two surrogate models based on High Dimensional Model Representation
(HDMR) and Artificial Neural Networks (ANN) were developed using real operational data. The
authors reported that the operating characteristics of the air compressor and turbine were
effectively predicted by the developed models, demonstrating the potential of Al in predicting the
performance of gas turbines. Liu et al. [28] developed a physics-informed machine learning
methodology that incorporated thermodynamic heat balancing mechanisms, component
characteristics, multi-source data, and neural network models to predict gas turbine degradation.
The study provided insights into parameters that are difficult to measure directly through the
simulation of the thermodynamic performance model under different conditions. The study
demonstrated that the complex dynamics of gas turbines can be effectively captured by combining
physics-based models with machine learning techniques.

3.3.2. Artificial neural networks

Asgari et al. [29] developed a methodology based on ANN for an offline system identification
of a gas turbine. Different ANN models with two-layer feed-forward multi-layer perceptron
(MLP) structure were created and trained using a comprehensive computer program code,
generated and run on MATLAB environment. The resulting model predicted the performance of
the system with high accuracy. The authors reported that a comprehensive view of the
performance of different ANN models for system identification of a single shaft GT was achieved
using the proposed methodology. Osigwe et al. [30] presented an integrated gas turbine system
diagnostic tool, based on ANN diagnostic system, for quantifying gas turbine component and
sensor fault. Also, Omoniabipi et al [31]) developed an ANN system to detect deteriorations in
transmission cables. Neural networks were employed using MATLAB R2021a and Python,
implemented in Visual Studio Code. Data from 132 kV overhead line (OHL) transmission cables,
provided by the Transmission Company of Nigeria (TCN), were utilized in the study. The authors
reported that the modeled ANN system successfully identified transmission cable deterioration
caused by electric overloading, achieving an accuracy of 77.9 % in recognizing overload patterns.

3.3.3. Digital twin technology

Digital twin technology has emerged as a pivotal tool for monitoring and enhancing gas turbine
performance. By creating virtual replicas of physical turbines, digital twins enable real-time data
analysis, facilitating predictive maintenance and performance optimization [32-34]. This
technology collects and processes real-time data from numerous sensors embedded in gas turbines,
providing valuable insights that enhance operational efficiency and reliability. Through digital
twin solutions, organizations can proactively identify issues, reduce downtime, and optimize
turbine performance. Panov and Cruz-Manzo [32] opined that gas turbine performance can be
virtually simulated under various conditions using digital twins, which have the capacity to
provide insights for optimization. Zhang et al. [35] proposed a digital twin approach to fuse
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physical mechanisms and big data by integrating machine learning, performance adaptation and
component matching methods. Panov and Cruz-Manzo [32] conducted an investigation on a field
trial of the Performance of a Digital Twin system deployed onto a PC-based platform at an
operational site. Field data collected covering several months were analysed to assess performance
of the deployed Digital Twin. The Digital Twin utilized various gas turbine sensors to detect
variations in predicted engine health conditions, which served as indicators of common gas path
faults and degradation patterns. The authors highlighted that the Digital Twin system successfully
fulfilled its intended functions, particularly in tracking gas turbine performance and performing
diagnostics.

3.3.4. Other technologies

Deep Learning models are particularly suited for handling complex, non-linear relationships
in test data. These models are especially effective for visual inspections and monitoring turbine
performance over time due to their superior image recognition and time-series analysis
capabilities. A deep learning approach was explored by Yan and Yu [36] to detect anomalies in
gas turbine combustors. The authors stated that the deep learning approach, which involved
hierarchically learning features from exhaust gas temperature sensor measurements, demonstrated
improved combustor performance anomaly detection, highlighting the efficacy of deep learning
in diagnostics. Also, Natural Language Processing (NLP) can be used to extract valuable insights
that provide necessary information for test planning and execution by analysing test reports and
maintenance logs. The Internet of Things, on the other hand, enables real-time monitoring of IGT
parameters through a network of interconnected sensors, facilitating continuous data acquisition;
thereby reducing the need for periodic testing. In recent years, the integration of the Internet of
Things (IoT) into gas turbines for monitoring engine performance has gained significant attention
[20]. IoT technologies are playing a pivotal role in achieving enhanced efficiency and reliability
in gas turbine operations by enabling real-time data acquisition, advanced analytics, and predictive
maintenance.

Togni et al. [37] proposed a performance-based diagnostic system for detecting single and
multiple failures in a two-spool engine, utilizing a combination of methodologies. To enhance the
system’s success rate, Kalman Filter (KF), Artificial Neural Network (ANN), and Fuzzy Logic
(FL) techniques were integrated. The system targeted specific failure types, including compressor
fouling, turbine fouling, and turbine erosion. In random simulations involving varying
deterioration magnitudes and failure types, the system achieved success rates exceeding 92.0 %
for quantification and 95.1 % for classification.

Ma et al. [21] presented a novel approach for anomaly detection in gas turbines using a digital
twin framework. The developed system consisted of an Uncertain Performance Digital Twin
(UPDT) and a fault detection component. The UPDT modeled the expected performance behavior
of real-world gas turbine engines operating under varying conditions. The fault detection module
was designed to identify UPDT outputs that exhibit low probability under the training distribution.
To train and test the UPDT model, a real full-flight operation data of a turbofan engine was used.
Seven parameters namely static air temperature, altitude, Mach number, low pressure rotor speed,
Thrust Lever Angle resolver, Selected VSV Position, Selected VBV position, which are used to
characterize the engine operating conditions and thrust setting were used as input data, while
Exhaust gas temperature, fuel flow and high pressure rotor speed were considered as the target
outputs. The study demonstrated that the proposed method effectively detects abnormal samples,
thereby improving fault detection once anomalies are identified. Table 2 presents key references
reviewed for the application emerging technologies including Al for gas turbine performance
diagnostics.
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Table 2. Case studies involving technologies deployed for gas turbine performance diagnostics

Reference Type of Al technologies employed Overall target

. Lo . . To predict gas turbine
Liu et al. [28] Physics-informed machine learning methodology degradation

Liu, Z. and . . . To predict gas turbine

Karimi [24] Machine learning-based technique performance

To detect anomalies in gas

Yan and Yu [36] A deep learning approach turbine combustors
Omoniabipi et al. Artificial Neural Networks To detect ('letfsrloratlons in
[31] transmission cables
Panov and Cruz- To detect variations in
Digital Twin system predicted engine health
Manzo [32] .S
conditions
Combination of methodologies: Kalman Filter For detecting single and
Togni et al. [37] (KF), Artificial Neural Network (ANN), and multiple failures in a two-
Fuzzy Logic (FL) techniques spool engine
Ma et al. [21] Digital Twin framework For anomaly detection in gas
turbines
Shen and . . . . . to monitor engine health
Khorasani [26] Hybrid multi-mode machine learning strategies status

4. Findings

From the literature review conducted on industrial gas turbine performance testing, including
the assessment of various test procedures, key considerations, and the transformative role of
emerging technologies, a detailed combination of findings is presented. Traditional testing
methods outline standard procedures for evaluating the performance of gas turbines. These
methods include steady-state, transient, and emission testing. Steady-state testing involves
measuring parameters such as temperature, pressure, and fuel flow under stable operating
conditions, while transient testing entails monitoring dynamic responses to load changes or
operational events. For emission testing, the exhaust gas composition is examined to ensure
compliance with environmental regulations.

The study revealed that it is essential to monitor key parameters such as, efficiency, power
output, exhaust temperature and gas flow rate, air temperature, pressure ratios, and airflow rates,
to assess the performance of gas turbines. These parameters provide valuable insights into the
turbine’s condition, enabling operators to identify issues related to efficiency degradation. With
this information, operators can take appropriate measures to optimize the turbine’s performance.
To optimize the operation and performance of IGTs, it is imperative to ensure that the efficiency,
fuel flow, power output, capacity, and all control installations are adequately verified.

The study revealed that traditional methods provided a reliable foundation for performance
testing. However, they are associated with numerous challenges, including being labor-intensive
and prone to inaccuracies due to sensor limitations and variations in environmental conditions.
These limitations highlight the need for integrating advanced technologies such as Artificial
Intelligence, for a more automated and adaptive testing solutions to improve accuracy and
efficiency.

It is evident from the reviewed studies that measured data were essential wherever emerging
technologies were applied to assess gas turbine performance. Standard performance test data,
obtained through established ASME or ISO procedures, provided key parameters such as turbine
inlet temperature (TIT), compressor pressure ratio, exhaust temperature, fuel flow, shaft speed,
and vibration. These parameters form the foundation upon which artificial intelligence (Al)
methods rely to optimize performance testing. Data generated through traditional testing
approaches also serves as training input for machine learning models. The studies indicate that
emerging technologies like Al build upon these traditional methods-especially in data-rich,
repeatable processes such as instrumentation, logging, and normalization. These features form the
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basis for Al technologies to make the entire testing cycle faster, smarter, and more adaptive.

The study further revealed that gas turbine performance testing can be significantly optimized
by integrating artificial intelligence (AI) techniques such as machine learning, digital twins, deep
learning, and artificial neural networks into traditional testing methods. Al enhances efficiency by
enabling better planning, reducing unnecessary tests, and minimizing delays caused by weather or
load conditions. This is possible because machine learning models, trained on historical
operational data, can recommend optimal testing conditions and accurately detect faulty readings,
data noise, and instrument drift. Also, Al can simulate ideal turbine behavior for comparison with
actual test data, allowing for more precise evaluation. It can also track test results over time to
identify trends that may indicate issues such as compressor fouling, turbine blade degradation, or
seal leakage.

While the review provides valuable insights, several limitations must be acknowledged. The
rapid development of Al and sensor technologies may render some findings out-dated. In addition,
limited access to proprictary industry data constrained the analysis, and the focus on peer-
reviewed literature may have excluded relevant grey literature.

Key findings from the study which highlight the significance of the integration emerging
technologies such as Artificial Intelligence into traditional gas turbine performance testing
methodologies are presented in Table 3.

Table 3. Comparison tradition methods only and application Al technologies

Traditional testing approach Application Al technologies Resulting benefit

Manual log review Al-driven time-series analysis Faster, more reliable data insights

Limited detection of transient Real-time anomaly detection Early warning of performance

issues algorithms degradation
Standard-only baseline Digital twin modeling and adaptive Context-aware performance
comparison baselines evaluation
Post-test fault identification Predictive analy;;ctzsl using historical Proactive issue resolution
Static test conditions Al optimizatior} pnder variable Better test representativeness and
conditions output

5. Conclusions

This study provides a comprehensive review of established procedures, key considerations,
and emerging trends in gas turbine performance assessment to improve testing practices.
Traditional methodologies for measuring critical performance indicators, such as power output
and efficiency, remain fundamental but face limitations in precision and adaptability under diverse
operating conditions.

Key considerations, including accurate instrumentation, standardized testing protocols, and
comprehensive data collection, are essential for reliable assessments. The integration of emerging
technologies with traditional methods has shown great potential in advancing industrial gas
turbine performance testing.

Al-driven solutions enable predictive analytics, automated anomaly detection, and
optimization of operational parameters, thereby significantly reducing downtime and maintenance
costs. Additionally, machine learning models enhance data processing, providing deeper insights
into turbine performance trends.

To achieve optimized performance testing and further minimize downtime and maintenance
costs, a hybrid approach that combines traditional methods with data-driven analytics and
emerging sensor technologies must be adopted.
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