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Abstract. This review explores the possibility of enhancing the efficiency and accuracy of 
Industrial Gas turbine Performance testing by critically assessing the traditional methods, their 
limitations, and how modern technologies can be used to complement the existing traditional 
testing approaches, optimize data acquisition, and predict operational failures. A systematic and 
comprehensive search strategy was employed to identify relevant academic and industry literature. 
Studies on traditional testing practices were reviewed to highlight their constraints, while 
researches involving the application of emerging technologies for performance diagnostics were 
also reviewed to illustrate their benefits. Findings show that measured data such as turbine inlet 
temperature, compressor pressure ratio, exhaust temperature, fuel flow, shaft speed, and vibration 
remain essential for both traditional and AI-enhanced methods. These parameters, typically 
obtained through standardized testing procedures, provide the foundational input for AI models 
such as machine learning algorithms and digital twins. The study revealed that AI technologies 
thrive in data-rich, repeatable environments by enhancing processes like instrumentation, data 
logging, and normalization. The study also revealed that machine learning, deep learning, artificial 
neural networks, and digital twins can be used for more effective planning, reduce redundant 
testing, and mitigate delays caused by variable factors like weather or load conditions.  
Keywords: artificial intelligence, digital twins, gas turbine performance test, test procedures. 

1. Introduction 

In the past four decades, Industrial Gas Turbines (IGTs) have been employed in power 
generation, mechanical drives, and marine applications [1, 2]. The performance and reliability of 
industrial gas turbines are determined by taking measurement of critical parameters such as 
efficiency, fuel flow, and power output. Traditional methods for testing and evaluating these 
parameters have followed well-defined procedures and standards [1]. However, the emergence of 
artificial intelligence and other advanced technologies has necessitated the need to employ these 
new technologies, in addition to existing traditional methods, to optimize testing methodologies 
and improve the decision-making process.  

The industrial gas turbine performance test procedure provides a structured approach for 
accurately assessing gas turbine performance while considering the operational environment [1]. 
Performance testing is essential for newly manufactured, repaired, or overhauled gas turbines [3]. 
It ensures the optimization of the IGT’s performance and helps minimize unscheduled shutdowns 
and repairs, as turbine component failures can lead to significant financial losses [1]. Although 
the testing procedure may involve considerable costs for operators and manufacturers, it serves as 
a critical foundation for operational decisions, including modifications, performance monitoring, 
and plant extensions. It also provides valuable complementary data to factory testing results. 
Established standard testing codes, such as those from the American Society of Mechanical 
Engineers (ASME), Verband Deutscher Ingenieure (VDI), and the International Organization for 
Standardization (ISO), have traditionally been used to assess the performance of industrial gas 
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turbines. These codes provide comprehensive guidelines for site preparation, instrumentation 
requirements, thermodynamic calculations, and test result reporting [4]. They ensure consistency 
and accuracy across various testing scenarios, facilitating fair comparisons and informed 
operational decision-making [1]. 

The efficiency and operational stability of the gas turbine are determined by conducting 
performance testing. Performance testing provides information about power output, thermal 
efficiency, and fuel consumption under standardized and varying operational conditions [5]. 
Affonso et al. [6] stated that obtaining the heat rate is crucial for determining the overall 
performance of a gas turbine and is most commonly considered when conducting an acceptance 
test. The guidelines for accurate and repeatable tests, which are provided by international 
standards such as ASME PTC 22 [4] and ISO 2314 [7], are required to be adhered to when 
conducting performance testing. Comprehensive methods for evaluating turbine power output and 
efficiency are provided by the American Society of Mechanical Engineers (ASME) Performance 
Test Code [4]. Test requirements such as instrumentation setup, environmental correction factors, 
and test duration are outlined in ISO 2022[8]. A detailed framework for determining performance 
based on direct measurement and thermodynamic principles is provided in the ASME PTC 22 
standard [4]. 

This review explores the possibility of enhancing the efficiency and accuracy of these tests by 
critically assessing the traditional methods, their limitations, and how modern technologies, 
including AI, can be deployed in addition to traditional methods to achieve enhanced testing 
methodologies and procedures in industrial gas turbines. The focus of this study is on using AI to 
complement the existing traditional testing approaches, optimize data acquisition, and predict 
operational failures. 

2. Materials and methods 

The methodology adopted in this study involved search strategies, inclusion/exclusion criteria, 
data extraction, and analysis procedures. The strategies adopted in conducting this study include 
examining current procedures and best practices in industrial gas turbine performance testing, 
identifying key challenges associated with performance testing, and exploring the role and impact 
of emerging technologies, including AI, in enhancing gas turbine performance testing. Fig. 1 
shows the flow chart of the study. 

To identify relevant and important literature in the area of study, a systematic and 
comprehensive search strategy was employed. Academic and industry databases were pivotal in 
conducting the study. The academic databases covered in the study include articles from Elsevier, 
Springer Nature, ASME Journal of Engineering for Gas Turbines and Power, PhD Thesis from 
reputable universities etc. The industry databases include the ASME Digital Collection, 
Gasturbine World, ASME Turbo Expo, and communications from leading gas turbine 
manufacturers such as General Electric, Siemens, Solar Turbines, and Mitsubishi. Grey literature, 
including technical reports, industry white papers, and conference proceedings, were also 
reviewed during the literature search. In addition, key search word combinations such as industrial 
gas turbine performance testing, gas turbine testing procedures, key considerations in turbine 
testing were used. Other key word combinations included application emerging technologies in 
gas turbine performance diagnostics, artificial intelligence in performance testing, and AI-based 
turbine diagnostics.  

The literature was examined through a thematic analysis to uncover recurring patterns and 
emerging trends. The primary themes identified were as follows: traditional performance testing 
procedures, including benchmarking methods and their limitations; challenges in performance 
testing, such as instrumentation errors, environmental variability, and operational constraints; and 
the integration of emerging technologies, particularly the role of AI and machine learning in 
optimizing performance. 
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Fig. 1. Flow chart of study  

3. Studies on industrial gas turbine performance testing using traditional approaches 

Diakunchak [9] conducted a fully factory-loaded test to verify the performance and mechanical 
integrity of a new engine model. To obtain measurement data on the engine and its components' 
performance, a large number of specialized instruments were employed. At each measurement 
point, nearly 500 individual readings were recorded. The results showed that the power output 
exceeded 47 MW when measurements were conducted under ISO conditions using natural gas as 
the fuel. Also, the author reported that metal temperature measurements in the combustor and 
turbine confirmed the engine's mechanical integrity. Bustos et al. [10] stated that during individual 
test campaign, some major gas turbine components can be verified to ascertain their mechanical 
integrity and performance. The authors further added that vibration levels in the power turbine are 
assessed through a mechanical run test (MRT), while the gas generator is expected undergo 
performance testing to determine whether its operating parameters are within acceptable limits. 
Lee et al. [11] conducted a performance test on a micro gas turbine consisting of a single-stage 
centrifugal compressor, a radial turbine, and an annular combustor. Various instrumentations were 
used to measure temperature, pressure, and flow rate at different sections of the engine as shown 
in Fig. 2. The compressor inlet and turbine exit temperatures were measured using T-type and K-
type thermocouples, respectively, installed within the engine. Meanwhile, the fuel flow rate was 
measured using a thermal mass flow meter, and the compressor exit pressure was obtained using 
a pressure probe. Based on the measurement data, the authors calculated the shaft power and 
thermal efficiency. 

Decker and Pathak [12] conducted an Engineer, Procure and Construct (EPC) performance 
test on Combustion Turbine Generators under base load condition to ascertain the facility-wide 
unfired net electrical output and heat rate. It was stated that during the test, the Chiller was switch 
off while the HRSG remained unfired. The study revealed that the corrected unfired net electrical 
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output was greater than the guaranteed value, while the corrected unfired net heat rate was less 
than the guarantee value. Purvis [13] conducted the measurement of turbine inlet temperature 
using a single three-point stagnation thermocouple rake at the outlet from each of the six 
combustion chambers to provide a rough guide to temperature. The authors ensured that single 
unit readings were never accepted as representing a true mean outlet temperature. Six 
thermocouple units are usually used to measure the exhaust temperature. Of these, three are 
installed in the exhaust duct elbows in pairs [30]. Mathioudakis [14] presented methods for 
correcting data from gas turbine acceptance testing. The study focused on addressing issues that 
were not sufficiently covered by existing standards. The author presented a procedure for verifying 
guarantee data at specific operating points, and methods were proposed for correcting performance 
test data. Kurz et al. [15] discussed field testing of gas turbine-driven compressors and 
measurement uncertainties when test guidelines were judiciously followed. The authors outlined 
a compressor field testing procedure that reduces measurement inaccuracies and maintains cost 
efficiency. In addition, the authors addressed issues related to the planning and organization of 
field tests and necessary instrumentation. Other areas covered in the study include data reduction, 
data correction, test uncertainty, and the interpretation of test data. Furthermore, the study 
reviewed necessary test codes and their relevance to field testing. 

 
Fig. 2. Micro gas turbine test facility [11] 

Purvis [13] conducted tests using standard procedures and rules similar to those outlined in the 
ASME Power Test Code '22 or the CIMAC code of acceptance requirements. The tests were 
performed on normal production units that were being prepared for delivery or on-site acceptance. 
During the measurement exercise, attempts were made to provide an alternative for measuring 
parameters where doubt existed regarding the accuracy of the recorded measurement data. The 
author used a measuring device that functions by sensing the distortion of the magnetic flux 
induced by the shaft torque when it was subjected to torsional strain to obtain the measurement of 
the output torque produced. Performance testing of an APU GTCP was conducted by MSc 
Thermal Power class of 2010. The performance test was carried out on an APU GTCP 30-92 Avon 
Test Facility located at Cranfield University, UK, to provide a first-hand insight on the operation 
of a gas turbine. The APU been investigated was an old gas turbine engine which performs 
multiple functions in an aircraft (see Fig. 3). 

According to Pachidis [16] the measurements were obtained after starting and running until it 
is stabilized before readings were taken. The fuel flow was measured using a ball flow meter 
located just before the injection port into the combustion chamber. The flow meter was calibrated 
for the density of the fuel used, and the corresponding chart between the graduations and fuel flow 
were used to obtain the fuel flow in kg/s. While the pressure values were measured at the 
compressor exit and the exhaust using five tubes connected to a digital meter (DP101). The 
compressor intake total pressure was measured using three of the Pitot probes provided. While the 
remaining tubes, which consist of a rail of three tubes were used to measure static pressure at the 
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exhaust, whose mean value provides the static exhaust pressure. The compressor delivery 
temperature and exhaust temperature were measured through thermocouples installed at the 
exhaust tubes. The K-type thermocouples made of Chromel-Alumel material, which are poor 
conductors and are well-suited for high-temperature measurements due to their low electromotive 
force, were used for obtaining the temperature measurements, as shown in Fig. 4. Due to the non-
homogeneous gas flow in the exhaust duct, three thermocouple probes were installed at strategic 
positions according to the British Standard for the measurement of fluid flow. 

 
Fig. 3. Main components of the GTCP 30-92 engine [16] 

Cong et al. [17] conducted experiments to mimic varying environmental conditions by 
controlling intake humidity using ultrasonic atomizers. The intake pressure was adjusted with a 
wind deflector, and intake temperature was regulated by selecting different room temperatures. 
The measurements collected during the experiment included flow, pressure, temperature, 
humidity, and smoke composition. Flow and pressure data were obtained using the micro gas 
turbine’s pre-installed system, while temperature and humidity were measured with an AS847 
split-type meter. An infrared smoke analyzer (MGA5) was employed to measure the combustion-
generated smoke components. The results showed that operating parameters of the micro gas 
turbine fluctuated slightly with changes in intake humidity, but the magnitude of these fluctuations 
was small, indicating that the turbine can operate normally even in high humidity environments. 
Also, power generation efficiency and compressor power consumption exhibited opposite trends 
when the intake temperature changed. Changes in intake temperature also affected the 
concentrations of NOx and CO emissions. 

  
Fig. 4. Exhaust instrumentations [16] 

Sitanggang et al. [18] conducted an experimental study to analyse the performance of Gas 
Turbine Units in Jambi, Indonesia. The performance testing was conducted by collecting data 
accordance ASME Performance Test Code 22. Data obtained included parameters such as inlet 
air temperature, air filter pressure differential, fuel flow rate, exhaust gas temperature, self-use 



ADVANCING INDUSTRIAL GAS TURBINE FIELD PERFORMANCE TESTING: A REVIEW OF PROCEDURES AND KEY CONSIDERATIONS WITH EMERGING 
TECHNOLOGIES. ROUPA AGBADEDE, BIWERI KAINGA 

134 ISSN ONLINE 2669-2961  

electrical energy, and electricity production. The kWh-meter transactions in the Generator 
Auxiliary Control (GAC) room was used to obtain the Net energy production data, while gross 
energy production data was read from the gross kWh-meter in the Local Control Room. The heat 
rate and compressor efficiency were calculated from data obtained from the measured parameters. 

Syverud et al. [19] conducted an investigation to determine the effect of saltwater ingestion on 
the performance of a General Electric J85-13 turbojet engine. Salt ingestion was achieved by 
spraying atomized droplets of saltwater into the engine intake, leading to the fouling of salt 
deposits on the axial compressor. To obtain more detailed data than what was available from the 
existing test instrumentation, additional sensors were deployed. Figures 5 and 6 show the General 
Electric J85-13 turbojet engine and test equipment mounted at the inlet screen of the engine 
respectively. Four sensors positioned at the engine inlet screen measured the compressor inlet 
temperature. The compressor inlet total pressure was measured using three pitot tubes located in 
the bellmouth, while the static pressure at the same location was measured using three static ports. 
Static pressure at stage 5 was recorded via a 1 mm tap located at a single point on the 
circumference within the bleed channel. Gas path temperatures were measured using unshielded 
Resistance Temperature Detectors (RTDs) installed at stator rows 1, 3, 4, 6, and 8. Ambient 
temperature and relative humidity were manually recorded outside the test cell at the same 
location. The compressor inlet temperature was observed to be higher than the ambient 
temperature and varied with engine load, attributed to test cell recirculation. A minimum of 60 
data points were collected at each setting, using a 2 Hz sampling rate, to reduce data scatter. The 
average of these readings was taken as the steady-state data point. All performance data were 
corrected to standard ISO reference conditions (15°C ambient temperature and 101,325 kPa 
barometric pressures). The authors reported that the largest shift in mean value occurred in the 
compressor discharge pressure, which resulted in partial overlap of the measurement uncertainties. 

  
Fig. 5. Single spool turbojet engine [19] 

 
Fig. 6. GE J85-13 with test equipment mounted at the inlet screen [19] 

It is evident from the foregoing that numerous studies have been conducted using traditional 
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methods of industrial gas turbine performance testing. Table 1 provides a summary of the key 
references reviewed for this research, highlighting the key performance parameters measured, the 
equipment used, and the objectives achieved in the respective tests. From the reviewed literature, 
it is evident that field performance testing requires considerable human effort for data collection 
and analysis. Also, accurate calibration of instruments is also required to reduce errors in the 
measured results. In addition, the personnel conducting the test must have a strong understanding 
of gas turbine performance calculations to estimate parameters that cannot be measured directly. 
In light of these challenges associated with traditional performance testing, it has become 
necessary to integrate emerging technologies, such as artificial intelligence, to address these issues 
and optimize the testing process for improved accuracy and efficiency. 

3.1. Limitations of traditional gas turbine performance testing 

In the recent past, traditional testing procedures have been used to evaluate the performance 
of gas turbines and provide guidance for maintenance actions. However, these methods face 
several challenges and limitations, including high costs and time requirements for comprehensive 
testing, limited flexibility in adapting to new turbine designs, the potential for human errors in 
data collection and analysis, and the inability to predict long-term performance and degradation 
trends. These limitations and challenges have necessitated the exploration of more robust and 
sophisticated methods that use artificial intelligence that can affect their effectiveness [1]. Some 
of the limitations associated with traditional performance testing are presented below: 

1. Manual Data Analysis. 
– Time-consuming and prone to human error. 
– Limited to steady-state conditions and snapshot data. 
2. Delayed Fault Detection. 
– Anomalies often detected only after performance deviation becomes significant. 
3. Limited Adaptability. 
– Performance results do not easily adapt to changing operational environments (e.g., ambient 

conditions, fuel variability). 
4. Reactive Approach. 
– Testing focuses on assessing current state rather than predicting future issues or optimization 

opportunities. 

3.2. Integrating emerging technologies in IGT performance testing 

Advancements in diagnostic tools have significantly improved the accuracy and efficiency of 
performance tests [20]. As a result, there is growing interest in leveraging emerging technologies 
such as AI-based models for predictive analytics, anomaly detection, and performance 
optimization. Data collection has also been significantly improved through the development of 
high-precision, wireless, and self-calibrating sensors [21]. Another pivotal technology in 
performance testing is digital twins, which use virtual replicas to enable real-time simulation and 
performance analysis of gas turbines [22]. Also, a digital twin models are capable of providing 
early warning for gas-path faults. The ability to process vast amounts of data and identify patterns 
that are not readily apparent to human analysts has positioned AI and machine learning as pivotal 
tools in performance testing. 

3.3. Application of emerging technologies for gas turbine performance diagnostics 

Industrial gas turbine performance testing can be revolutionized by employing advanced 
technologies, such as AI, for data acquisition, data analysis, and system behavior prediction. With 
AI, the process of data acquisition can be automated, and data analysis can be enhanced [23]. Key 
AI technologies, such as Machine Learning, Deep Learning, Natural Language Processing, and 
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the Internet of Things (IoT), can be employed to achieve automated data acquisition and enhanced 
data analysis, as mentioned.  

Table 1. Key references for traditional testing cases studies 

Reference Key parameters measured/ 
calculated Equipment employed Overall target 

Diakunchak 
[9] 

Compressor inlet pressure 
and temperature, relative 

humidity, Exhaust 
temperature and pressure, 

Power output - Performance 
Combustor Metal 

Temperature, fuel flow 

K-type thermocouples, 
digital pressure indicator, 

Reuter Stokes, Pressure Test 
Gauge, station meters, Tube 

Manometer 

To verify the performance and 
mechanical integrity of a new 

engine model 

Bustos et al. 
[10] 

Vibration levels in the power 
turbine 

Performance Test 
Mechanical run test (MRT) To verify mechanical integrity 

and performance 

Lee et al. 
[11] 

Temperature, pressure, and 
flow rate at different sections 

of the engine 

T-type and K-type 
thermocouples-for 

temperature 
Thermal mass flow meter 

for Fuel flow 
Pressure probe 

Performance test on a micro 
gas turbine 

Decker and 
Pathak [12] 

Net electrical output and heat 
rate 

Permanent plant 
Instrumentation 

Performance test on 
Combustion Turbine 

Generators under base load 
condition to ascertain the 
facility-wide unfired net 

electrical output and heat rate 

Purvis [13] Torque, Exhaust 
Temperature, Power Output 

Thermocouple for 
temperature 

Magnetic Flux Torque meter 

On-site performance 
acceptance test 

Pachidis et 
al. [16] 

Fuel flow, Pressure, 
temperature 

K-type thermocouples 
Ball flow meter 

Pressure tubes connected to 
a digital meter 

To provide insight on gas 
turbine engine testing and test 
data collection and assessment 

Sitanggang 
et al. [18] 

Inlet air temperature, air filter 
pressure differential, fuel 

flow rate, exhaust gas 
temperature, self-use 
electrical energy, and 
electricity production 

gross kWh-meter 
Analyse the performance of 
Gas Turbine Units in Jambi, 

Indonesia 

Cong et al. 
[17] 

Flow, pressure, temperature, 
humidity, and smoke 

composition 

AS847 split-type meter 
An infrared smoke analyzer 

(MGA5) 

Analyse the performance of 
micro gas turbines under 

different intake environmental 
conditions 

Syverud et 
al. [19] 

Ambient temperature, relative 
humidity, Compressor Inlet 
Pressure and temperature, 
Exhaust temperature and 

pressure 

Pitot tubes, static ports. 
Static pressure ,1 mm tap, 

unshielded resistance 
temperature detectors 

(RTDs) 

To determine the effect of 
saltwater ingestion on the 
performance of a General 

Electric J85-13 turbojet engine 

3.3.1. Machine learning 

A tool which is known as machine learning has gain significant recognition for solving 
physical problems by learning from data [24]. Trained ML models, which typically work without 
the need of solving physical governing equations, are computationally efficient [25]. Machine 
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learning methods are data-driven approaches that use interconnected sensor systems to transmit 
real-time measurements from machines to the cloud. These systems create datasets for the models, 
which analyze large amounts of data to detect patterns and alert users when something is not right 
[20]. For instance, large volumes of test data can be analyzed using machine learning algorithms 
to identify patterns and correlations that may be difficult to detect with traditional methods [21]. 
Shen and Khorasani [26] proposed a data driven fault diagnostic system to monitor engine health 
status. A hybrid multi-mode machine learning strategies was used to develop the system. The 
hybrid system comprised the supervised recurrent neural networks and the unsupervised self-
organizing maps. The authors reported that the proposed framework and methodology can also be 
applied for assessing the health status of multiple components by only having access to the 
input/output sensor data. 

A machine learning-based technique was employed to predict gas turbine performance for 
power generation [27]. Two surrogate models based on High Dimensional Model Representation 
(HDMR) and Artificial Neural Networks (ANN) were developed using real operational data. The 
authors reported that the operating characteristics of the air compressor and turbine were 
effectively predicted by the developed models, demonstrating the potential of AI in predicting the 
performance of gas turbines. Liu et al. [28] developed a physics-informed machine learning 
methodology that incorporated thermodynamic heat balancing mechanisms, component 
characteristics, multi-source data, and neural network models to predict gas turbine degradation. 
The study provided insights into parameters that are difficult to measure directly through the 
simulation of the thermodynamic performance model under different conditions. The study 
demonstrated that the complex dynamics of gas turbines can be effectively captured by combining 
physics-based models with machine learning techniques. 

3.3.2. Artificial neural networks 

Asgari et al. [29] developed a methodology based on ANN for an offline system identification 
of a gas turbine. Different ANN models with two-layer feed-forward multi-layer perceptron 
(MLP) structure were created and trained using a comprehensive computer program code, 
generated and run on MATLAB environment. The resulting model predicted the performance of 
the system with high accuracy. The authors reported that a comprehensive view of the 
performance of different ANN models for system identification of a single shaft GT was achieved 
using the proposed methodology. Osigwe et al. [30] presented an integrated gas turbine system 
diagnostic tool, based on ANN diagnostic system, for quantifying gas turbine component and 
sensor fault. Also, Omoniabipi et al [31]) developed an ANN system to detect deteriorations in 
transmission cables. Neural networks were employed using MATLAB R2021a and Python, 
implemented in Visual Studio Code. Data from 132 kV overhead line (OHL) transmission cables, 
provided by the Transmission Company of Nigeria (TCN), were utilized in the study. The authors 
reported that the modeled ANN system successfully identified transmission cable deterioration 
caused by electric overloading, achieving an accuracy of 77.9 % in recognizing overload patterns.  

3.3.3. Digital twin technology 

Digital twin technology has emerged as a pivotal tool for monitoring and enhancing gas turbine 
performance. By creating virtual replicas of physical turbines, digital twins enable real-time data 
analysis, facilitating predictive maintenance and performance optimization [32-34]. This 
technology collects and processes real-time data from numerous sensors embedded in gas turbines, 
providing valuable insights that enhance operational efficiency and reliability. Through digital 
twin solutions, organizations can proactively identify issues, reduce downtime, and optimize 
turbine performance. Panov and Cruz-Manzo [32] opined that gas turbine performance can be 
virtually simulated under various conditions using digital twins, which have the capacity to 
provide insights for optimization. Zhang et al. [35] proposed a digital twin approach to fuse 
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physical mechanisms and big data by integrating machine learning, performance adaptation and 
component matching methods. Panov and Cruz-Manzo [32] conducted an investigation on a field 
trial of the Performance of a Digital Twin system deployed onto a PC-based platform at an 
operational site. Field data collected covering several months were analysed to assess performance 
of the deployed Digital Twin. The Digital Twin utilized various gas turbine sensors to detect 
variations in predicted engine health conditions, which served as indicators of common gas path 
faults and degradation patterns. The authors highlighted that the Digital Twin system successfully 
fulfilled its intended functions, particularly in tracking gas turbine performance and performing 
diagnostics. 

3.3.4. Other technologies 

Deep Learning models are particularly suited for handling complex, non-linear relationships 
in test data. These models are especially effective for visual inspections and monitoring turbine 
performance over time due to their superior image recognition and time-series analysis 
capabilities. A deep learning approach was explored by Yan and Yu [36] to detect anomalies in 
gas turbine combustors. The authors stated that the deep learning approach, which involved 
hierarchically learning features from exhaust gas temperature sensor measurements, demonstrated 
improved combustor performance anomaly detection, highlighting the efficacy of deep learning 
in diagnostics. Also, Natural Language Processing (NLP) can be used to extract valuable insights 
that provide necessary information for test planning and execution by analysing test reports and 
maintenance logs. The Internet of Things, on the other hand, enables real-time monitoring of IGT 
parameters through a network of interconnected sensors, facilitating continuous data acquisition; 
thereby reducing the need for periodic testing. In recent years, the integration of the Internet of 
Things (IoT) into gas turbines for monitoring engine performance has gained significant attention 
[20]. IoT technologies are playing a pivotal role in achieving enhanced efficiency and reliability 
in gas turbine operations by enabling real-time data acquisition, advanced analytics, and predictive 
maintenance. 

Togni et al. [37] proposed a performance-based diagnostic system for detecting single and 
multiple failures in a two-spool engine, utilizing a combination of methodologies. To enhance the 
system’s success rate, Kalman Filter (KF), Artificial Neural Network (ANN), and Fuzzy Logic 
(FL) techniques were integrated. The system targeted specific failure types, including compressor 
fouling, turbine fouling, and turbine erosion. In random simulations involving varying 
deterioration magnitudes and failure types, the system achieved success rates exceeding 92.0 % 
for quantification and 95.1 % for classification. 

Ma et al. [21] presented a novel approach for anomaly detection in gas turbines using a digital 
twin framework. The developed system consisted of an Uncertain Performance Digital Twin 
(UPDT) and a fault detection component. The UPDT modeled the expected performance behavior 
of real-world gas turbine engines operating under varying conditions. The fault detection module 
was designed to identify UPDT outputs that exhibit low probability under the training distribution. 
To train and test the UPDT model, a real full-flight operation data of a turbofan engine was used. 
Seven parameters namely static air temperature, altitude, Mach number, low pressure rotor speed, 
Thrust Lever Angle resolver, Selected VSV Position, Selected VBV position, which are used to 
characterize the engine operating conditions and thrust setting were used as input data, while 
Exhaust gas temperature, fuel flow and high pressure rotor speed were considered as the target 
outputs. The study demonstrated that the proposed method effectively detects abnormal samples, 
thereby improving fault detection once anomalies are identified. Table 2 presents key references 
reviewed for the application emerging technologies including AI for gas turbine performance 
diagnostics. 
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Table 2. Case studies involving technologies deployed for gas turbine performance diagnostics 
Reference Type of AI technologies employed Overall target 

Liu et al. [28] Physics-informed machine learning methodology To predict gas turbine 
degradation 

Liu, Z. and 
Karimi [24] Machine learning-based technique To predict gas turbine 

performance 

Yan and Yu [36] A deep learning approach To detect anomalies in gas 
turbine combustors 

Omoniabipi et al. 
[31] Artificial Neural Networks To detect deteriorations in 

transmission cables 

Panov and Cruz-
Manzo [32] Digital Twin system 

To detect variations in 
predicted engine health 

conditions 

Togni et al. [37] 
Combination of methodologies: Kalman Filter 
(KF), Artificial Neural Network (ANN), and 

Fuzzy Logic (FL) techniques 

For detecting single and 
multiple failures in a two-

spool engine 

Ma et al. [21] Digital Twin framework For anomaly detection in gas 
turbines 

Shen and 
Khorasani [26] Hybrid multi-mode machine learning strategies to monitor engine health 

status 

4. Findings 

From the literature review conducted on industrial gas turbine performance testing, including 
the assessment of various test procedures, key considerations, and the transformative role of 
emerging technologies, a detailed combination of findings is presented. Traditional testing 
methods outline standard procedures for evaluating the performance of gas turbines. These 
methods include steady-state, transient, and emission testing. Steady-state testing involves 
measuring parameters such as temperature, pressure, and fuel flow under stable operating 
conditions, while transient testing entails monitoring dynamic responses to load changes or 
operational events. For emission testing, the exhaust gas composition is examined to ensure 
compliance with environmental regulations. 

The study revealed that it is essential to monitor key parameters such as, efficiency, power 
output, exhaust temperature and gas flow rate, air temperature, pressure ratios, and airflow rates, 
to assess the performance of gas turbines. These parameters provide valuable insights into the 
turbine’s condition, enabling operators to identify issues related to efficiency degradation. With 
this information, operators can take appropriate measures to optimize the turbine’s performance. 
To optimize the operation and performance of IGTs, it is imperative to ensure that the efficiency, 
fuel flow, power output, capacity, and all control installations are adequately verified. 

The study revealed that traditional methods provided a reliable foundation for performance 
testing. However, they are associated with numerous challenges, including being labor-intensive 
and prone to inaccuracies due to sensor limitations and variations in environmental conditions. 
These limitations highlight the need for integrating advanced technologies such as Artificial 
Intelligence, for a more automated and adaptive testing solutions to improve accuracy and 
efficiency. 

It is evident from the reviewed studies that measured data were essential wherever emerging 
technologies were applied to assess gas turbine performance. Standard performance test data, 
obtained through established ASME or ISO procedures, provided key parameters such as turbine 
inlet temperature (TIT), compressor pressure ratio, exhaust temperature, fuel flow, shaft speed, 
and vibration. These parameters form the foundation upon which artificial intelligence (AI) 
methods rely to optimize performance testing. Data generated through traditional testing 
approaches also serves as training input for machine learning models. The studies indicate that 
emerging technologies like AI build upon these traditional methods-especially in data-rich, 
repeatable processes such as instrumentation, logging, and normalization. These features form the 
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basis for AI technologies to make the entire testing cycle faster, smarter, and more adaptive. 
The study further revealed that gas turbine performance testing can be significantly optimized 

by integrating artificial intelligence (AI) techniques such as machine learning, digital twins, deep 
learning, and artificial neural networks into traditional testing methods. AI enhances efficiency by 
enabling better planning, reducing unnecessary tests, and minimizing delays caused by weather or 
load conditions. This is possible because machine learning models, trained on historical 
operational data, can recommend optimal testing conditions and accurately detect faulty readings, 
data noise, and instrument drift. Also, AI can simulate ideal turbine behavior for comparison with 
actual test data, allowing for more precise evaluation. It can also track test results over time to 
identify trends that may indicate issues such as compressor fouling, turbine blade degradation, or 
seal leakage. 

While the review provides valuable insights, several limitations must be acknowledged. The 
rapid development of AI and sensor technologies may render some findings out-dated. In addition, 
limited access to proprietary industry data constrained the analysis, and the focus on peer-
reviewed literature may have excluded relevant grey literature. 

Key findings from the study which highlight the significance of the integration emerging 
technologies such as Artificial Intelligence into traditional gas turbine performance testing 
methodologies are presented in Table 3. 

Table 3. Comparison tradition methods only and application AI technologies 
Traditional testing approach Application AI technologies Resulting benefit 

Manual log review AI-driven time-series analysis Faster, more reliable data insights 
Limited detection of transient 

issues 
Real-time anomaly detection 

algorithms 
Early warning of performance 

degradation 
Standard-only baseline 

comparison 
Digital twin modeling and adaptive 

baselines 
Context-aware performance 

evaluation 

Post-test fault identification Predictive analytics using historical 
data Proactive issue resolution 

Static test conditions AI optimization under variable 
conditions 

Better test representativeness and 
output 

5. Conclusions 

This study provides a comprehensive review of established procedures, key considerations, 
and emerging trends in gas turbine performance assessment to improve testing practices. 
Traditional methodologies for measuring critical performance indicators, such as power output 
and efficiency, remain fundamental but face limitations in precision and adaptability under diverse 
operating conditions. 

Key considerations, including accurate instrumentation, standardized testing protocols, and 
comprehensive data collection, are essential for reliable assessments. The integration of emerging 
technologies with traditional methods has shown great potential in advancing industrial gas 
turbine performance testing. 

AI-driven solutions enable predictive analytics, automated anomaly detection, and 
optimization of operational parameters, thereby significantly reducing downtime and maintenance 
costs. Additionally, machine learning models enhance data processing, providing deeper insights 
into turbine performance trends.  

To achieve optimized performance testing and further minimize downtime and maintenance 
costs, a hybrid approach that combines traditional methods with data-driven analytics and 
emerging sensor technologies must be adopted. 
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