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Abstract. Structural parameter inversion is essential for monitoring and assessing the risks of 
concrete face rockfill dams. Current parameter inversion techniques are, however, often overly 
complex, computationally demanding, and inefficient, especially when the dam is simulated with 
a 3D nonlinear finite element method. This study proposes a novel approach combining the Wild 
Horse Optimizer with Optimal Polynomial Chaos Kriging (WHO_OPCK) to tackle these issues. 
The method benefits from the low computational cost of optimal polynomial chaos kriging and 
the fast convergence of the wild horse optimizer. By incorporating statistical uncertainty in input 
parameters, the method successfully inverts four key constitutive parameters 𝜑, 𝐾௕, 𝐾, and 𝑅௙ 
based on displacement data from a complex dam. The approach proves practical and cost-effective 
in real engineering applications and has culminated in the development of specialized software 
that streamlines this structural parameter inversion process. Sensitivity analysis using Sobol’ 
indices further highlights the importance of each parameter at a low computational cost. The study 
highlights two key advantages of WHO_OPCK: (i) Unlike traditional methods that struggle with 
complex dams, WHO_OPCK significantly reduces computational costs and handles parameter 
determination efficiently. (ii) Compared to other surrogate model combinations with WHO, the 
proposed WHO_OPCK method offers superior accuracy and efficiency. This method establishes 
a solid foundation for multi-parameter inversion in concrete face rockfill dams. 
Keywords: concrete face rockfill dams, 3d nonlinear dam simulation, optimal polynomial chaos 
kriging, wild horse optimizer, multi-parameter inversion. 

1. Introduction 

Concrete Face Rockfill Dam (CFRD) are earth and rock dams with a reinforced concrete face 
slab for upstream seepage control, supported by rockfill material. Compared to traditional earth 
and rock dams, CFRDs offer several advantages, including easy access to construction materials, 
a simplified construction process, and better adaptability to terrain. CFRDs are increasingly used 
in pumped storage power stations due to their low construction costs, high adaptability to 
foundations, superior structural safety, and seismic capacity [1-3]. According to the China Society 
for Hydropower Engineering (CSHE), by the end of 2021, China had completed 360 CFRDs over 
30 meters in height, with 98 under construction and 76 more planned. The development of 
large-scale water conservancy and hydropower infrastructure has eased the spatial imbalance of 
natural resources and significantly contributed to the nation’s GDP. Given their critical role in 
water conservancy and hydropower, the safety of CFRDs is essential for the reliable operation of 
pumped storage power stations, making ongoing safety assessments crucial. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jme.2025.24915&domain=pdf&date_stamp=2025-08-09
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The first step in structural safety assessment is usually developing precise numerical models 
that accurately represent the structure’s physical response. Commonly used numerical methods 
include the Finite Element Method (FEM) [4], the eXtended Finite Element Method [5], the Scaled 
Boundary Finite Element Method [6] and the Meshless Method [7]. In this study, FEM is used to 
solve large-scale engineering problems. However, the accuracy of these models depends on 
several factors, with material uncertainty being one of the most significant. Therefore, inversing 
the unknown material parameters in the numerical model to reduce material uncertainty is a critical 
step in structural safety assessment. 

Traditional parametric inversion methods mainly rely on analytical or numerical displacement 
inversion analysis [8, 9]. These methods, developed during the early stages of computer-based 
modeling, focus on the inverse analysis of relatively simple structures. They typically require 
continuous adjustments of material parameters, which are then optimized using first-order 
methods, such as gradient descent, to minimize discrepancies between numerical simulations and 
field measurements [10]. However, this inversion approach faces a fundamental trade-off between 
accuracy and efficiency, limiting its broader applicability. 

Parameter inversion is often a high-dimensional, multi-peak optimization problem, making 
traditional methods prone to getting stuck in local minima. Over the past two decades, this issue 
has been increasingly addressed through the development of meta-heuristic optimization 
algorithms, such as Particle Swarm Optimization (PSO) [11], Whale Optimization Algorithm 
(WOA) [12]. These algorithms are generally used for parameter identification in a continuous 
iterative process, requiring multiple calls to the Finite Element (FE) model [13]. However, for 
large, complex structures like CFRDs, which have nonlinear material behaviors and high 
computational costs, applying these methods for parameter inversion can be extremely 
challenging. To overcome this limitation, many researchers have turned to machine learning 
techniques, with data-driven surrogate models showing significant potential. 

The surrogate model is a mathematical approximation that reduces the cost of stochastic 
models by replacing expensive computational models with low-cost alternatives [14]. Recently, 
surrogate models have advanced in inverse analysis, leading to the development of the Surrogate 
model-Assisted Metaheuristic Optimization Algorithm (SAMOA) for parameter inversion. 
SAMOA builds a surrogate model to map input parameters to system responses (or Quantity of 
Interests-QoIs) [15]. Popular surrogate models include Polynomial Chaos Expansion [16], Kriging 
[17], Artificial Neural Networks [18], and so on. 

Surrogate modeling approaches are widely used in dam engineering. Ghanem et al. [19] first 
applied the PCE model to embankment dams. Li et al. [20] used PCE to identify static and dynamic 
parameters of concrete arch dams, quantifying uncertainty in dam engineering. Shahzadi et al. 
[21] combined PCE and Deep Neural Networks (DNNs) to construct surrogate models for rockfill 
dams and assess the impact of soil constitutive model parameters. Hariri et al. [22] integrated 
random forests with PCE for sensitivity analysis of arch dams, identifying critical locations. Guo 
et al. [23] proposed a probabilistic analysis method for earth and rock dams using Kriging, Monte 
Carlo Simulation, and global sensitivity analysis. Wang et al. [24] optimized gravity dam shape 
by combining the Genetic Algorithm (GA) with Kriging. Abdollahi et al. [25] proposed a seismic 
optimization framework for gravity dams using Kriging, evaluating safety after earthquakes. 
Amini et al. [26] applied Polynomial Chaos Kriging (PCK) for sensitivity and reliability analysis 
of aging dams, exploring random variable dependencies. 

Monitoring data, such as measured displacements and frequencies, is often used in dam 
parameter inversion [27]. Sun et al. [28] applied the Harmony Search (HS) algorithm to optimize 
the Back-Propagation Neural Network (BPNN) for 2D rockfill dam material parameter inversion. 
Liu et al. [29] used a multi-output long short-term memory neural network with Bayesian 
optimization for inverting dynamic material parameters of arch dams. Li et al. [30] proposed an 
Extreme Learning Machine (ELM) coupled with the elitist Non-dominated Sorting Genetic 
Algorithm (NSGA-II) for inverting unsaturated seepage parameters in a soil core rockfill dam. Li 
et al. [31] combined the PCE surrogate model with Hybrid Particle Swarm Optimization and 
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Genetic Algorithm (HPSOGA) to identify static and dynamic parameters of the dam. Pan et al. 
[32] integrated BPNN with a generalized inversion method for 2D parametric inversion of core 
rockfill dams. Li et al. [33] coupled an integrated surrogate model with the Improved Termite Life 
Cycle Optimizer (ITLCO) for damage identification in large-scale structures. Bao et al. [34] 
identified dynamic and static parameters of the Jinping I arch dam using Multi-output Least 
Squares Support Vector Regression (MLSSVR) combined with an Improved Differential 
Evolution (IDE) algorithm. Li et al. [35] combined Response Surface Modeling (RSM) with GA 
for dynamic parameter inversion of high arch dams and their foundations. 

The preceding literature demonstrates the broad applicability of surrogate models in dam 
engineering. However, most studies focus on parameter sensitivity analysis and uncertainty 
propagation, with limited research on 3D CFRDs due to the high cost of modeling and numerical 
analysis. The Optimal Polynomial Chaos Kriging (OPCK) model, however, offers a cost-effective 
method for developing high-precision surrogate models for 3D CFRDs. In this work, the OPCK 
model is combined with the Wild Horse Optimizer (WHO), a novel high-performance 
optimization algorithm, to assess its effectiveness and practicality for multi-parameter inversion 
of CFRDs. This coupling method is referred to as WHO_OPCK. The main contributions of this 
work are summarized as follows: 

1) A multi-parameter inversion framework for CFRDs has been established, includes the 
construction and evaluation of the OPCK model, parameter sensitivity analysis, and the 
WHO_OPCK method for fast parameter inversion. 

2) A highly accurate and efficient parameter sensitivity analysis of CFRDs was conducted, 
along with an in-depth examination of how key factors in the OPCK model and the WHO 
algorithm affect the accuracy of the WHO_OPCK method. 

3) Compared with the existing parameter inversion methods including WHO_SPCK, 
WHO_PCE, WHO_Kriging, PSO_OPCK, SMA_OPCK, SSA_OPCK, WOA_OPCK, 
GWO_OPCK, the proposed WHO_OPCK method has greater accuracy and efficiency in dam 
parameter inversion. 

4) The traditional parameter inversion method based on pure optimization, is incompetent to 
identify parameters of 3D CFRDs, while the proposed WHO_OPCK method successfully 
determines these parameters. 

The subsequent sections of this paper are organized as follows. Section 2 provides a brief 
review of OPCK and WHO. Section 3 presents a detailed description of the proposed 
WHO_OPCK method, including its procedural steps and evaluation metrics. Section 4 introduces 
the numerical model of CFRDs. Section 5 discusses the specific application of the WHO_OPCK 
algorithm in CFRDs. Finally, Section 6 concludes the paper. 

2. Fundamentals 

2.1. Optimal polynomial chaos kriging 

The basic idea of PCE is to represent the output response as a linear combination of polynomial 
basis functions. The input variable 𝑋 is a random vector with independent components, and its 
distribution is governed by the joint Probability Density Function (PDF) 𝑓௑. The PCE is defined 
as: 𝑌 = 𝑀ሺ𝑋ሻ = ෍𝑦ఈΨఈሺ𝑋ሻఈ , (1)

where 𝑦ఈ represents the expansion coefficients, Ψఈ(𝑋) are multivariate orthogonal polynomials. 
To simplify the computation, a truncated PCE is used [36, 37]: 
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𝑌 = 𝑀(𝑋) = 𝑀(௉஼ா)(𝑋) + 𝜀௣ = ෍𝑦ఈ𝛹ఈ(𝑋)௉ିଵ
ఈୀ଴ + 𝜀௣, (2)

where 𝐴 ⊂ 𝑁ெ is the set of truncated polynomials. 
The error 𝜀௣ is estimated using the leave-one-out (LOO) cross-validation [38, 39]: 

𝐸𝑟𝑟௅ைை(௉஼ா) = ∑ ቀ𝑀(௉஼ா)(𝑋௜) − 𝜇௒෠(ು಴ಶ),(ି௜)(𝑋௜)ቁଶே௜ୀଵ∑ ቀ𝑀(௉஼ா)(𝑋௜) − 1𝑁∑ 𝑀(௉஼ா)൫𝑋௝൯ே௝ୀଵ ቁଶே௜ୀଵ , (3)

where 𝜇௒෠ (ು಴ಶ),(ି௜) represents the mean of the PCE model values obtained using all experimental 
design points 𝑋, excluding 𝑋௜. 

Kriging is an interpolation method based on Gaussian processes, where the output is a sum of 
a trend term and a variance term [40]: 𝑀(௄௥௜௚௜௡௚)(𝑥) = 𝛽்𝑓(𝑥) + 𝜎ଶ𝑍(𝑥,𝜔), (4)

where the 𝛽்𝑓(𝑥) represents the mean value (trend) of the Gaussian process, which is a linear 
combination of polynomial basis functions 𝑓(𝑥) and regression coefficients 𝛽. 𝜎ଶ𝑍(𝑥,𝜔) is a 
Gaussian process that models the correlation between input samples, it includes the variance 𝜎ଶ 
of the Gaussian process and a zero-mean stationary Gaussian process 𝑍(𝑥,𝜔). The optimal 
hyperparameters are determined via Maximum Likelihood Estimation (MLE) [17] and used to 
predict responses for new sample points. 

OPCK combines the global approximation of PCE and the local approximation of Kriging for 
a more accurate surrogate model. OPCK is defined as a universal Kriging model, with the trend 
consisting of a set of standard orthogonal polynomials [41-43]: 𝑌 = 𝑀(𝑥) ≈ 𝑀(௉஼௄)(𝑥) = ෍𝑦ఈΨఈ(𝑥)ఈ + 𝜎ଶ𝑍(𝑥,𝜔), (5)

where ∑ 𝑦ఈΨఈ(𝑥)ఈ∈஺  represents the weighted sum of standard orthogonal polynomials that 
describe the trend of the PCK model, while 𝜎ଶ𝑍(𝑥,𝜔) represent the variance of the Gaussian 
process as described in Section 2.2. 

In OPCK, the optimal polynomial set is determined using the Least Angle Regression (LAR) 
process [44] within the PCE framework [45]. Trend and correlation parameters are computed 
using Kriging equations [46, 47]. The LAR algorithm ranks the polynomials based on their 
relevance to the residuals at each iteration. Finally, different PCK models are compared using the 
LOO error (Eq. (3)), and the model with the smallest LOO error is selected. A flowchart of the 
OPCK algorithm is provided by Schobi, Sudret, and Wiart [41]. 

2.2. Wild horse optimizer 

This section describes the WHO model, inspired by wild horses’ social behaviors, as proposed 
by Naruei in 2021 [48]. WHO mimics grazing, chasing, dominance, leadership, and mating 
behaviors. 

(1) Creating the Initial Population. The initial population of size N is divided into G groups, 
with PS representing the percentage of stallions (leaders). The remaining N−G members (mares 
and foals) are distributed among these groups. 

(2) Grazing behavior. Mares and foals spend time grazing near the group leader. Their position 
is updated as follows: 
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𝑋ሜ௜,ீ௝ = 2𝑍 𝑐𝑜𝑠(2𝜋𝑅𝑍) × ൫Stallion௝ − 𝑋௜,ீ௝ ൯ + Stallion௝ , (6)

where 𝑋௜,ீ௝  is the current position of the group members, Stallion௝ is the position of the stallion 
(group leader), 𝑍 is the adaptive mechanism. 𝑅 is a random number uniformly distributed within 
[-2, 2]. The grazing radius varies due to the cosine function. 

(3) Mating behavior. Foals reach puberty and leave their groups to form or join new ones for 
mating. This behavior is modeled as: 𝑋ீ,௄௣ = Crossover൫𝑋ீ,௜௤ ,𝑋ீ,௝௭ ൯,   𝑖 ≠ 𝑗 ≠ 𝑘,   𝑝 = 𝑞 = end,Crossover = Mean,  (7)

the position of the new horse 𝑋ீ,௄௣  depends on the mating of group 𝑖 and group 𝑗 horses. 
(4) Leadership behavior. The stallion leads the group to new areas, and the rest avoid it. This 

is modeled as: 

Stallionீ೔ = ቊ2𝑍 cos( 2𝜋𝑅𝑍) × (WH − Stallionீ೔) + WH,   𝑅ଷ > 0.5,2𝑍 cos( 2𝜋𝑅𝑍) × (WH − Stallionீ೔) − WH,   𝑅ଷ ≤ 0.5, (8)

where Stallionீ೔ is the new location of the group 𝑖 stallion, WH is the current location of the 
explored area, and Stallionீ೔ is the current location of the group 𝑖 stallion. 

(5) Leader Exchange and selection. The stallion is initially random, and as iterations proceed, 
the leader’s position is determined by fitness. If a member is better adapted, their positions are 
swapped: 

Stallionீ೔ = ቊ𝑋ீ,௜ ,  cos 𝑡 ൫𝑋ீ,௜൯ < cos 𝑡 ൫Stallionீ೔൯,Stallionீ೔ ,   cos 𝑡 ൫𝑋ீ,௜൯ > cos 𝑡 ൫Stallionீ೔൯. (9)

The searching individual (the stallion) is positioned close to the optimal position as it is 
iteratively replaced. 

3. Multi-parameter inversion method: WHO_OPCK 

3.1. Framework of method 

The proposed WHO_OPCK method for parameter inversion is structured in four phases. 
Initially, a FE model is established using benchmark parameters to simulate the settlement 
behavior of a real structure, accounting for uncertainties through a probabilistic model. Following 
this, a sensitivity analysis is conducted using a surrogate model to identify critical parameters. The 
surrogate model is then combined with the WHO algorithm to minimize an objective function, 
ultimately refining the parameter inversion for accurate model updates. The framework of the 
WHO_OPCK method is illustrated in Fig. 1. 

3.2. Procedure of WHO_OPCK 

The procedure of implementing the WHO_OPCK method is detailed below. 
Phase One – Define the problem (Step A): The first step is to establish a FE model using 

benchmark parameters to characterize the settlement behavior of the real structure. It is necessary 
to define a prior probabilistic model for the unknown parameters to be determined inversely, 
including distribution type, mean, and deviation. Since real structure parameters are often random, 
incorporating uncertainty in the input parameters is more realistic. 

Phase Two – Parameter sensitivity analysis based on surrogate modeling (Step B~C): Create 
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a few input parameter datasets randomly using Latin Hypercube Sampling (LHS) method. Perform 
Finite Element Analysis (FEA) and extract the corresponding output response dataset. Construct 
the OPCK model from the “input-output” data and assess its accuracy with Leave-One-Out (LOO) 
cross-validation error. If the accuracy is satisfied, perform a parameter sensitivity analysis based 
on the Sobol’ indices and the constructed OPCK model to filter out performance parameters to be 
inverted; If the accuracy is insufficient, generate additional sampling points.  

Phase Three – Coupling the OPCK model with WHO and minimizing the objective function 
(Step D~F): According to the results of the sensitivity analysis, a certain number of inversion 
parameter datasets are randomly generated using LHS method. Subsequently, the FEA is 
executed, and the output response dataset is extracted. Then, the same method as in step C is used 
to construct the OPCK model and evaluate its accuracy. Once an accurate OPCK model is 
established, it can replace the FE model for calculating structural responses, bypassing the high 
computational cost of FE model. Finally, the OPCK model is coupled with the WHO algorithm 
by integrating the predicted and target (virtual measured) outputs into an objective function. 

Phase Four – Parameter inversion post-validation (Step G): The optimal values from the 
parameter inversion are processed and used as actual input parameters to update the FE model. 

The symmetric mean absolute percentage error (SMAPE) is a common metric employed in 
statistics for evaluating prediction accuracy. Unlike Root Mean Square Error (RMSE), it is 
expressed as absolute percentages, making it easier to interpret. In this paper, SMAPE is chosen 
as the objective function to access the accuracy of the WHO_OPCK method. The formula is as 
follows: 

𝑆𝑀𝐴𝑃𝐸 = 100𝑁 ෍ ห𝑌௩௠,௜ − 𝑌ை௉஼௄,௜ห൫ห𝑌௩௠,௜ห + ห𝑌ை௉஼௄,௜ห൯2
ே
௜ୀଵ , (10)

where 𝑌௩௠,௜ is the virtual measured value, 𝑌ை௉஼௄,௜ is the predicted value from the OPCK model, 
and 𝑁 is the number of fitted points. 

4. Nonlinear numerical modeling of CFRD 

The WHO_OPCK method is applied to a multivariate nonlinear complex structure, the ZJTT 
CFRD, to explore the applicability of the proposed method to large hydraulic structures. 

4.1. Description of ZJTT CFRD 

The ZJTT CFRD is the dam of the lower reservoir of a pumped storage power station. As 
illustrated in Fig. 2(a), it has a crest elevation of 209 m, a base elevation of 138 m, a maximum 
height of 71 m, and a total crest length of 404.25 m. The thickness of the concrete face slab is 
given by 𝑇 = 0.4 + 0.003𝐻, where 𝐻 is the height from the calculated section to the top of the 
face slab, with a slope of 1:1.405. This study focuses on the period immediately following the 
completion of dam construction. During this period, the dam’s loading is predominantly 
influenced by its self-weight. As shown in Fig. 2(b-d), the displacement of the measurement point 
is used as the QoIs. 

4.2. Simulation process 

The layered stacking process of the rockfill dam was simulated using Abaqus, incorporating 
the Duncan E-B UMAT subroutine, developed in Fortran [21], for the rockfill material. Goodman 
contact elements with zero thickness were used to model the contact between the concrete face 
slabs and the bedding layer [28]. A three-dimensional numerical model was constructed to 
determine the displacement and stress distribution patterns of the dam body during the layered 
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construction of the rockfill, as well as the stress-strain distribution patterns of the concrete face 
slab during the same period. 

 
Fig. 1. Framework to describe the WHO_OPCK method 

The material zoning consists of five parts: main rockfill, secondary rockfill, transition, cushion, 
and concrete face slab, as shown in Fig. 3(a). The main rockfill, secondary rockfill, transition and 
cushion layers were modeled using Duncan E-B model with the material parameters listed in 
Table 1. The concrete face slab was modeled with linear elasticity and the material parameters are 
shown in Table 2. The Goodman contact element parameters in Table 3 reflect the friction and 
stiffness of the contact surface, ensuring reliable simulation results. 
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The stacking process was simulated using Abaqus life and death units, with the rock mass 
stacking divided into 15 steps, one step each for the cushion layer and the concrete face slab, as 
shown in Fig. 3(b). 

 
a) Longitudinal view of the dam 

 
b) Cross-section at 𝑦 = 361.99 m 

 
c) Cross-section at 𝑦 = 229.99 m 

 
d) Cross-section at 𝑦 = 88.99 m 

Fig. 2. Dam size and measurement profiles: a) longitudinal view of the dam, showing the profile locations 
where measurement points are distributed; b) cross-section at 𝑦 = 361.99 m, showing the measurement 

point for Quantity of Interest QoI 1; c) cross-section at 𝑦 = 229.99 m, showing the measurement points for 
QoIs 2, 3, 4, and 5; d) cross-section at 𝑦 = 88.99 m, showing the measurement point for QoI 6 

Table 1. Nonlinear material parameters 
Material 𝐾 𝑛 𝑅௙ 𝑐 𝜑 ∆𝜑 𝐾௕ 𝑚 𝐾௨௥ 𝑛௨௥ 𝛾 
Cushion 1117.6 0.31 0.54 0.01 59 12.5 998.7 0.14 1900 0.31 2240 

Transition 1518.8 0.27 0.59 0.01 60.4 13.3 1039.4 0.06 1700 0.27 2210 
Main rockfill 1457.3 0.29 0.62 0.01 59.5 13.3 1028.5 0.04 2100 0.29 2220 

Secondary 
rockfill 1139.7 0.29 0.59 0.01 56.1 12.2 633.5 0.15 2000 0.29 2190 

Note: the rockfill is a discrete material cohesion is 0, in order to numerical calculation convergence take 𝑐 = 0.01 

Table 2. Linear material parameters 
 Elasticity (𝐸) Poisson’s ratio (𝜇) 

Concrete face slab 28 GPa 0.31 

Table 3. Goodman nonlinear contact parameters 
 𝐾ଵ 𝐾ଶ 𝑛 𝑅௙ 𝛿 

Goodman 4800 4800 0.56 0.74 36.6 
 

 
a) Material zoning  

b) Layered construction process 
Fig. 3. ZJTT CFRD: a) Material zoning layout of the dam, showing the distribution and classification of 

different materials used in the construction; b) Layered construction process of the dam,  
illustrating the sequence and method by which the dam is built layer by layer 

Given that the dam is still under construction, the measured data could not be obtained. To 
demonstrate the efficiency of the proposed WHO_OPCK method in engineering applications, a 
“hypothesis testing” strategy was employed to verify the method’s feasibility. First, the LHS 
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method was used to randomly generate 20 sets of material parameters for the CFRD model. The 
corresponding displacements at the measurement points were then calculated and averaged based 
on FEA. To account for the discrepancies between numerical simulations and real-world 
measurements, 20 % Gaussian noise was introduced into the mean values. Finally, one set of 
noise-containing data was randomly selected as the virtual measurement data, as described in 
Step F in Fig. 1. 

5. Multi-parameter inversion of ZJTT CFRD 

Parameter sensitivity analysis is essential before multi-parameter inversion. It helps identify 
how input parameters affect outputs and highlights the most influential parameters. This enables 
the optimization of key parameters while minimizing the impact of less critical factors in the 
inversion process. 

5.1. Parameter sensitivity analysis 

5.1.1. Parameter distribution space for sensitivity analysis 

In this study, seven key parameters – elastic modulus coefficient 𝐾, elastic modulus index 𝑛, 
damage ratio 𝑅௙, initial internal friction angle 𝜑, rate of change of internal friction angle Δ𝜑, bulk 
modulus coefficient 𝐾௕, and bulk modulus index 𝑚, are treated as unknown inputs. These 
parameters are assumed to follow a Gaussian distribution, with mean values based on average 
triaxial test results and a standard deviation set at 5 %. 

A total of 140 samples were randomly selected using Latin Hypercube Sampling (LHS), as 
shown in Fig. 4. The probabilistic distribution models for the main rockfill parameters are 
provided in Table 4. For other zonal material parameters, raw data were used, so the inverse 
analysis focused solely on the main rockfill material parameters. The same method can be applied 
to invert other zonal material parameters, though this is not addressed in this work. 

Table 4. Distribution model of the unknown parameters  
for the Duncan E-B constitutive model of the main rockfill 

Parameter Symbol Quantity Bound 
Elastic modulus coefficient 𝐾 N(1457.3,72.865) [1165.84, 1748.76] 

Elastic modulus index 𝑛 N(0.29,0.0145) [0.232, 0.348] 
Failure ratio 𝑅௙ N(0.62,0.031) [0.496, 0.744] 

Cohesion 𝑐 0.01 – 
Initial friction angle 𝜑 N(59.5,2.975) [47.6, 71.4] 

Rate of change of internal friction angle ∆𝜑 N(13.3,0.665) [10.64, 15.96] 
Bulk modulus coefficient 𝐾௕ N(1028.5,51.425) [822.8, 1234.2] 

Bulk modulus index 𝑚 N(0.04,0.002) [0.032, 0.048] 
Unloading modulus coefficient 𝐾௨௥ 2100 – 

Unloading modulus index 𝑛௨௥ 0.29 – 
Density 𝜌 2220 – 

5.1.2. Construction of the surrogate model 

This section explores how the number of experimental designs (𝑁஽ைா) affects model accuracy 
and compares the OPCK surrogate model with classical PCE and Kriging. Surrogate models were 
built using varying 𝑁஽ைா to determine the optimal values for the OPCK model. A total of 140 
initial samples were taken for the unknown parameters using LHS. Corresponding response output 
(QoI 1~6) was calculated. Then, surrogate models with different sizes of 𝑁஽ைா (i.e., 10, 20, 30, 
40, 50, 60, 70, and 80) were constructed, this yielded 24 surrogate models. The 𝐸𝑟𝑟௅ைை for the six 
output responses in each case are shown in Fig. 5. 
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Fig. 4. Seven-parameter random sampling results 

From Fig. 5 the following results can be derived: 
1) All three surrogate models show high accuracy across varying 𝑁஽ைா. ut Kriging has lower 

accuracy and greater discrepancies compared to PCE and OPCK. The OPCK model outperforms 
PCE in accuracy. 

2) For the PCE model, 𝐸𝑟𝑟௅ைை decreases significantly from 𝑁஽ைா = 10 to 40, then plateaus, 
showing no further improvement. In the OPCK model, the reduction is more pronounced between 𝑁஽ைா = 10 and 40, after which accuracy stabilizes for 𝑁஽ைா > 40. 

3) While Kriging’s 𝐸𝑟𝑟௅ைை decreases with increasing 𝑁஽ைா, it doesn’t reach the desired 
accuracy (below 5 %) until 𝑁஽ைா = 80. 

 
Fig. 5. The impact of the number of experimental designs (𝑁஽ைா)  
on output accuracy and a comparison of three surrogate models 

5.1.3. Sensitivity analysis 

The Sobol’ index method, based on variance decomposition, determines the sensitivity of input 
variables by calculating their contribution to the total output variance [49]. In this study, the 
ErrLOO of the OPCK model is less than 10-2 when 𝑁஽ைா = 50, meeting the predictive accuracy 
requirements for large hydraulic structures. Hence, parameter sensitivity analyses were conducted 
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using the OPCK model instead of the computationally expensive ZJTT CFRD model. The 
sensitivity analysis results, considering the impact of the seven unknown input parameters on the 
ZJTT CFRD model’s output, are shown in Fig. 6. Key observations include: 

1) 𝜑, 𝐾௕, 𝐾, and 𝑅௙ exhibit high sensitivity in various QoI metrics, with 𝜑 and 𝐾௕ being 
particularly influential. These parameters are crucial in CFRD deformation and should be 
prioritized for calibration and optimization. 

2) In contrast, 𝑛, Δ𝜑, and 𝑚 show low sensitivity and weak effects on QoI metrics, 
contributing minimally to CFRD deformation and are of secondary importance. 

3) Sensitivities of QoI indicators to the same parameter vary. For example, 𝜑 is significant in 
QoI 4 and 5, while 𝐾௕ is prominent in QoI 6, reflecting the system’s nonlinear response. 
Multidimensional indicators should be considered in parameter analysis. 

 
a) First-order Sobol’ indices 

 
b) Total Sobol’ indices 

Fig. 6. Results of parameter sensitivity analysis based on the OPCK model 

The sensitivity analysis revealed that 𝜑, 𝐾௕, and 𝑅௙ are crucial for CFRD. The next step is 
multi-parameter inversion for these parameters to improve model accuracy and prediction. 

5.2. Multi-parameter inversion 

After the sensitivity analysis, 𝜑, 𝐾௕, 𝐾, and 𝑅௙ were identified as key parameters. We will now 
perform a multi-parameter inversion to calibrate the model and match the virtual measured data. 

Section 5.1.2 discussed key factors influencing surrogate model accuracy. This section focuses 
on the impact of the number of search individuals (𝑁) in the WHO_OPCK method, with Niter set 
to 500. Results are shown in Fig. 7, and observations are as follows: 

1) Fig. 7(a) shows that as 𝑁 increases, convergence speed improves, particularly for 𝑁 ≥ 50, 
where the error decreases rapidly. Smaller 𝑁 values (e.g., 𝑁 = 30 or 𝑁 = 35) lead to slower 
convergence, especially at the start, due to limited search space exploration. 

2) The SMAPE value shows significant variation at lower 𝑁, dropping sharply at 𝑁 = 35 and 𝑁 = 40. For 𝑁 ≥ 40, SMAPE stabilizes, indicating improved convergence accuracy as more 
individuals help find the global optimum. 

3) Fig. 7(b) shows that computation time increases with 𝑁, as more individuals require 
processing more data. The increase stabilizes at 𝑁 = 60, where time overhead is moderate and 
accuracy remains high, offering an optimal balance. 

Based on the results, surrogate models and inversion methods with 𝑁஽ைா = 50 and 𝑁 = 60 
were chosen for comparison. 

For the computationally expensive 3D CFRD, using 𝑁஽ைா = 50 for the surrogate model results 
in a total computation time of about 28 hours (0.56 hours per run) in ABAQUS. In contrast, the 
traditional WHO algorithm with direct FE model calls for iterative inversion would take 
approximately 16,800 hours (0.56×60×500) for 𝑁 = 60 and 𝑁௜௧௘௥ = 500. This immense 
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computational demand makes the traditional method impractical for 3D CFRD parameter 
inversion, limiting its real-world engineering application. 

a) Convergence properties 
 

b) Computational time and convergence accuracy 
Fig. 7. The effect of different N on the accuracy of WHO_OPCK method 

The WHO optimization algorithm was combined with various surrogate models to compare 
the convergence of WHO_OPCK with WHO_SPCK, WHO_PCE, and WHO_Kriging. Fig. 8 
shows the convergence speeds, accuracies, and computation times, while Table 5 presents the 
inversion results. The following conclusions can be drawn: 

1) WHO_OPCK achieves faster convergence and greater robustness in parameter inversion. It 
outperforms other methods, especially WHO_SPCK and WHO_Kriging, by finding better 
solutions in fewer iterations while maintaining stability. 

2) WHO_OPCK provides more accurate inversion results than WHO_SPCK, WHO_PCE, and 
WHO_Kriging, demonstrating superior convergence accuracy. 

3) WHO_OPCK, though slightly slower than WHO_PCE, outperforms WHO_SPCK and 
WHO_Kriging in efficiency, requiring only 46 % and 16.8 % of their respective computation 
times, achieving an optimal balance between time and accuracy. 

By combining the strengths of PCE and Kriging, WHO_OPCK excels in both accuracy and 
speed while keeping computation time reasonable, offering better cost-effectiveness in practical 
applications. 

Table 5. The results of parameter inversion based on WHO combined with different surrogate models 
Method 𝐾 𝑅௙ 𝜑 𝐾௕ 

WHO_OPCK 1594.123 0.713 64.577 933.344 
WHO_SPCK 1550.424 0.609 59.377 976.841 
WHO_PCE 1437.214 0.562 59.270 1028.357 

WHO_Kriging 1426.354 0.718 65.613 953.810 

Meanwhile, we also coupled OPCK with classical optimization algorithms (PSO, SMA, SSA, 
WOA, GWO) [11, 12, 50-52] to compare convergence and computational efficiency. Fig. 9 shows 
the convergence speed, accuracy, and computation time, while Table 6 presents the inversion 
parameter results. The following conclusions can be drawn: 

1) WHO_OPCK outperforms OPCK with classical algorithms in both convergence speed and 
accuracy, showing strong performance in complex CFRD optimization. 

2) Fig. 9(b) shows that parameter inversion accuracy and convergence speed do not directly 
correlate with inversion time. Despite its high computation load, SSA does not achieve the highest 
accuracy, while WOA, with the second-highest time, has the lowest accuracy. 

3) WHO_OPCK achieves the highest accuracy and shortest inversion time, making it the most 
efficient and effective method among the comparisons. 
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a) Convergence properties and accuracy 

 
b) Computation time 

Fig. 8. Comparison of WHO combined with different surrogate models 

Table 6. The results of parameter inversion based on different  
optimization algorithms combined with OPCK 

Method 𝐾 𝑅௙ 𝜑 𝐾௕ 
WHO_OPCK 1594.123 0.713 64.577 933.344 
PSO_OPCK 1311.315 0.527 68.425 1001.838 
SMA_OPCK 1663.778 0.672 61.071 927.500 
SSA_OPCK 1675.895 0.639 56.853 996.650 

WOA_OPCK 1524.948 0.622 60.770 960.481 
GWO_OPCK 1550.042 0.571 60.778 981.066 

 

 
a) Convergence characteristics and accuracy 

 
b) Computation time 

Fig. 9. Comparison of different optimization algorithms combined with OPCK 

The parameter inversion results are used to update the FE model, which is then simulated with 
the new parameters. The output is compared to the virtual measured values, with errors assessed 
using RMSE and SMAPE. The detailed output and error results are shown in Table 7 and 8, and 
Fig. 10 provides a visual comparison. The following conclusions can be drawn: 

1) Fig. 10(a) shows that the FE model updated with WHO_OPCK achieves higher accuracy, 
with significant advantages in both RMSE and SMAPE. Among the surrogate models, 
WHO_Kriging has the greatest error and lowest accuracy. 

2) Fig. 10(b) shows that the FE model updated with WHO_OPCK has better accuracy. SMA 
and WHO show similar errors, while WOA performs the worst, with the largest error and lowest 
accuracy. 
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Table 7. Comparison of predicted and virtual measured values of WHO combined  
with different surrogate models 

Condition QoIs Virtual measured value (mm) OPCK SPCK PCE Kriging 

Deformation 

1 95.90 95.75 96.89 96.60 98.52 
2 121.44 119.35 122.07 122.03 123.18 
3 32.56 32.53 32.35 33.83 34.75 
4 102.18 103.75 103.99 102.82 105.74 
5 24.81 25.65 26.72 27.63 26.42 
6 94.46 94.41 95.23 95.00 96.82 

RMSE   1.122 1.218 1.358 2.428 
SMAPE   1.147 % 2.021 % 2.828 % 3.793 % 

Table 8. Comparison of predicted and virtual measured values  
of different optimization algorithms combined with OPCK 

Condition QoIs Virtual measured  
value (mm) WHO PSO SMA SSA WOA GWO 

Deformation 

1 95.90 95.75 96.29 96.28 96.06 97.38 94.78 
2 121.44 119.35 120.86 120.81 121.04 122.57 119.66 
3 32.56 32.53 34.73 31.27 35.36 31.56 26.67 
4 102.18 103.75 102.91 104.68 102.64 104.84 102.21 
5 24.81 25.65 26.14 25.93 26.70 26.52 26.26 
6 94.46 94.41 94.76 95.09 94.37 95.73 93.21 

RMSE   1.122 1.123 1.295 1.406 1.633 2.669 
SMAPE   1.147 % 2.260 % 2.072 % 2.774 % 2.684 % 4.926 % 

 

 
a) WHO combined with different  

surrogate models 

 
b) Different optimization algorithms  

combined with OPCK 
Fig. 10. Comparison of FEA errors based on inversion results and virtual measured data 

6. Conclusions 

Assessing CFRD deformation is challenging due to the complex construction process and large 
volume of discrete rockfill material, yet it is crucial for safe operation. 

Existing CFRD parameter inversion relies on pure optimization, directly invoking time-
consuming FE models, which limits efficiency and accuracy. This creates a challenge in balancing 
computational efficiency with accuracy. Consequently, most of these methods are restricted to 
parameter inversion for 2D CFRDs, with few studies addressing the complex and time-consuming 
task of high-precision, high-efficiency parameter inversion for 3D CFRDs. 

This work develops the efficient OPCK surrogate model for 3D CFRD inversion, combined 
with the WHO algorithm to create WHO_OPCK, enabling fast and accurate parameter inversion. 
Some conclusions are summarized below: 

1) For the WHO optimization algorithm, the number of search individuals N significantly 
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impacts its search performance, thereby affecting the accuracy of WHO_OPCK. This feature can 
be generalized to other research applications of population-based optimization algorithms. 

2) OPCK offers significant advantages in terms of computational cost, with low requirements, 
high efficiency, and minimal resource consumption. This makes WHO_OPCK not only accurate 
but also highly suitable for large-scale optimization problems where computational efficiency is 
essential. 

3) Taking the 3D CFRD as an example, traditional pure optimization approaches are unable to 
identify its parameters. In contrast, the proposed WHO_OPCK method successfully determines 
these parameters, offering a feasible solution for fast parameter inversion of the 3D CFRD. 

4) Compared to existing representative parameter inversion methods, including WHO_SPCK, 
WHO_PCE, WHO_Kriging, PSO_OPCK, SMA_OPCK, SSA_OPCK, WOA_OPCK, and 
GWO_OPCK, the proposed WHO_OPCK method demonstrates superior accuracy and efficiency 
in dam parameter inversion. This makes it a more effective and reliable approach for tackling the 
challenges posed by complex dam models. 

Although the proposed WHO_OPCK method has unrivalled efficiency advantages over 
traditional methods, it still has some limitations that need to be considered:  

1) Due to the classical “curse of dimensionality”, the predictive performance of surrogate 
model in a high-dimensional parameter space will be notably reduced. Hence, the sample size for 
constructing the surrogate model can be increased appropriately based on the complexity of the 
problem. 

2) Surrogate models offer efficient approximate computations, their overall computational 
efficiency still depends significantly on the forward computation models (such as FE models). In 
other words, generating the initial dataset typically consumes most of the time spent constructing 
the surrogate model. 

3) The number of design experiments (𝑁஽ைா) used to construct the surrogate models is 
typically not known in advance, necessitating the construction of surrogate models using different 
sizes of 𝑁஽ைா for comparison. 
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