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Abstract. Structural parameter inversion is essential for monitoring and assessing the risks of
concrete face rockfill dams. Current parameter inversion techniques are, however, often overly
complex, computationally demanding, and inefficient, especially when the dam is simulated with
a 3D nonlinear finite element method. This study proposes a novel approach combining the Wild
Horse Optimizer with Optimal Polynomial Chaos Kriging (WHO OPCK) to tackle these issues.
The method benefits from the low computational cost of optimal polynomial chaos kriging and
the fast convergence of the wild horse optimizer. By incorporating statistical uncertainty in input
parameters, the method successfully inverts four key constitutive parameters ¢, Kj, K, and R
based on displacement data from a complex dam. The approach proves practical and cost-effective
in real engineering applications and has culminated in the development of specialized software
that streamlines this structural parameter inversion process. Sensitivity analysis using Sobol’
indices further highlights the importance of each parameter at a low computational cost. The study
highlights two key advantages of WHO_OPCK: (i) Unlike traditional methods that struggle with
complex dams, WHO OPCK significantly reduces computational costs and handles parameter
determination efficiently. (ii)) Compared to other surrogate model combinations with WHO, the
proposed WHO_OPCK method offers superior accuracy and efficiency. This method establishes
a solid foundation for multi-parameter inversion in concrete face rockfill dams.

Keywords: concrete face rockfill dams, 3d nonlinear dam simulation, optimal polynomial chaos
kriging, wild horse optimizer, multi-parameter inversion.

1. Introduction

Concrete Face Rockfill Dam (CFRD) are earth and rock dams with a reinforced concrete face
slab for upstream seepage control, supported by rockfill material. Compared to traditional earth
and rock dams, CFRDs offer several advantages, including easy access to construction materials,
a simplified construction process, and better adaptability to terrain. CFRDs are increasingly used
in pumped storage power stations due to their low construction costs, high adaptability to
foundations, superior structural safety, and seismic capacity [1-3]. According to the China Society
for Hydropower Engineering (CSHE), by the end of 2021, China had completed 360 CFRDs over
30 meters in height, with 98 under construction and 76 more planned. The development of
large-scale water conservancy and hydropower infrastructure has eased the spatial imbalance of
natural resources and significantly contributed to the nation’s GDP. Given their critical role in
water conservancy and hydropower, the safety of CFRDs is essential for the reliable operation of
pumped storage power stations, making ongoing safety assessments crucial.
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The first step in structural safety assessment is usually developing precise numerical models
that accurately represent the structure’s physical response. Commonly used numerical methods
include the Finite Element Method (FEM) [4], the eXtended Finite Element Method [5], the Scaled
Boundary Finite Element Method [6] and the Meshless Method [7]. In this study, FEM is used to
solve large-scale engineering problems. However, the accuracy of these models depends on
several factors, with material uncertainty being one of the most significant. Therefore, inversing
the unknown material parameters in the numerical model to reduce material uncertainty is a critical
step in structural safety assessment.

Traditional parametric inversion methods mainly rely on analytical or numerical displacement
inversion analysis [8, 9]. These methods, developed during the early stages of computer-based
modeling, focus on the inverse analysis of relatively simple structures. They typically require
continuous adjustments of material parameters, which are then optimized using first-order
methods, such as gradient descent, to minimize discrepancies between numerical simulations and
field measurements [10]. However, this inversion approach faces a fundamental trade-off between
accuracy and efficiency, limiting its broader applicability.

Parameter inversion is often a high-dimensional, multi-peak optimization problem, making
traditional methods prone to getting stuck in local minima. Over the past two decades, this issue
has been increasingly addressed through the development of meta-heuristic optimization
algorithms, such as Particle Swarm Optimization (PSO) [11], Whale Optimization Algorithm
(WOA) [12]. These algorithms are generally used for parameter identification in a continuous
iterative process, requiring multiple calls to the Finite Element (FE) model [13]. However, for
large, complex structures like CFRDs, which have nonlinear material behaviors and high
computational costs, applying these methods for parameter inversion can be extremely
challenging. To overcome this limitation, many researchers have turned to machine learning
techniques, with data-driven surrogate models showing significant potential.

The surrogate model is a mathematical approximation that reduces the cost of stochastic
models by replacing expensive computational models with low-cost alternatives [14]. Recently,
surrogate models have advanced in inverse analysis, leading to the development of the Surrogate
model-Assisted Metaheuristic Optimization Algorithm (SAMOA) for parameter inversion.
SAMOA builds a surrogate model to map input parameters to system responses (or Quantity of
Interests-Qols) [15]. Popular surrogate models include Polynomial Chaos Expansion [16], Kriging
[17], Artificial Neural Networks [18], and so on.

Surrogate modeling approaches are widely used in dam engineering. Ghanem et al. [19] first
applied the PCE model to embankment dams. Li et al. [20] used PCE to identify static and dynamic
parameters of concrete arch dams, quantifying uncertainty in dam engineering. Shahzadi et al.
[21] combined PCE and Deep Neural Networks (DNNs) to construct surrogate models for rockfill
dams and assess the impact of soil constitutive model parameters. Hariri et al. [22] integrated
random forests with PCE for sensitivity analysis of arch dams, identifying critical locations. Guo
et al. [23] proposed a probabilistic analysis method for earth and rock dams using Kriging, Monte
Carlo Simulation, and global sensitivity analysis. Wang et al. [24] optimized gravity dam shape
by combining the Genetic Algorithm (GA) with Kriging. Abdollahi et al. [25] proposed a seismic
optimization framework for gravity dams using Kriging, evaluating safety after earthquakes.
Amini et al. [26] applied Polynomial Chaos Kriging (PCK) for sensitivity and reliability analysis
of aging dams, exploring random variable dependencies.

Monitoring data, such as measured displacements and frequencies, is often used in dam
parameter inversion [27]. Sun et al. [28] applied the Harmony Search (HS) algorithm to optimize
the Back-Propagation Neural Network (BPNN) for 2D rockfill dam material parameter inversion.
Liu et al. [29] used a multi-output long short-term memory neural network with Bayesian
optimization for inverting dynamic material parameters of arch dams. Li et al. [30] proposed an
Extreme Learning Machine (ELM) coupled with the elitist Non-dominated Sorting Genetic
Algorithm (NSGA-II) for inverting unsaturated seepage parameters in a soil core rockfill dam. Li
et al. [31] combined the PCE surrogate model with Hybrid Particle Swarm Optimization and

JOURNAL OF MEASUREMENTS IN ENGINEERING. DECEMBER 2025, VOLUME 13, ISSUE 4 805



MULTI-PARAMETER INVERSION OF CONCRETE FACE ROCKFILL DAM USING WILD HORSE OPTIMIZER AND OPTIMAL POLYNOMIAL CHAOS
KRIGING. LIURUI LI, SHUPING LIU, LINNA L1, FAN LIU, YIFEI LI, XIN ZHANG, MAOSEN CAO

Genetic Algorithm (HPSOGA) to identify static and dynamic parameters of the dam. Pan et al.
[32] integrated BPNN with a generalized inversion method for 2D parametric inversion of core
rockfill dams. Li et al. [33] coupled an integrated surrogate model with the Improved Termite Life
Cycle Optimizer (ITLCO) for damage identification in large-scale structures. Bao et al. [34]
identified dynamic and static parameters of the Jinping I arch dam using Multi-output Least
Squares Support Vector Regression (MLSSVR) combined with an Improved Differential
Evolution (IDE) algorithm. Li et al. [35] combined Response Surface Modeling (RSM) with GA
for dynamic parameter inversion of high arch dams and their foundations.

The preceding literature demonstrates the broad applicability of surrogate models in dam
engineering. However, most studies focus on parameter sensitivity analysis and uncertainty
propagation, with limited research on 3D CFRDs due to the high cost of modeling and numerical
analysis. The Optimal Polynomial Chaos Kriging (OPCK) model, however, offers a cost-effective
method for developing high-precision surrogate models for 3D CFRDs. In this work, the OPCK
model is combined with the Wild Horse Optimizer (WHO), a novel high-performance
optimization algorithm, to assess its effectiveness and practicality for multi-parameter inversion
of CFRDs. This coupling method is referred to as WHO_OPCK. The main contributions of this
work are summarized as follows:

1) A multi-parameter inversion framework for CFRDs has been established, includes the
construction and evaluation of the OPCK model, parameter sensitivity analysis, and the
WHO OPCK method for fast parameter inversion.

2) A highly accurate and efficient parameter sensitivity analysis of CFRDs was conducted,
along with an in-depth examination of how key factors in the OPCK model and the WHO
algorithm affect the accuracy of the WHO OPCK method.

3) Compared with the existing parameter inversion methods including WHO SPCK,
WHO PCE, WHO Kriging, PSO OPCK, SMA OPCK, SSA OPCK, WOA OPCK,
GWO_OPCK, the proposed WHO OPCK method has greater accuracy and efficiency in dam
parameter inversion.

4) The traditional parameter inversion method based on pure optimization, is incompetent to
identify parameters of 3D CFRDs, while the proposed WHO_OPCK method successfully
determines these parameters.

The subsequent sections of this paper are organized as follows. Section 2 provides a brief
review of OPCK and WHO. Section 3 presents a detailed description of the proposed
WHO_OPCK method, including its procedural steps and evaluation metrics. Section 4 introduces
the numerical model of CFRDs. Section 5 discusses the specific application of the WHO OPCK
algorithm in CFRDs. Finally, Section 6 concludes the paper.

2. Fundamentals
2.1. Optimal polynomial chaos kriging

The basic idea of PCE is to represent the output response as a linear combination of polynomial
basis functions. The input variable X is a random vector with independent components, and its
distribution is governed by the joint Probability Density Function (PDF) fy. The PCE is defined
as:

Y= M) = ) W), (1)

where y, represents the expansion coefficients, ¥, (X) are multivariate orthogonal polynomials.
To simplify the computation, a truncated PCE is used [36, 37]:
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P-1
Y =MX) = MEE(X) + ¢, = Z Yo (O + £, 2)

a=0

where A € NM is the set of truncated polynomials.
The error &, is estimated using the leave-one-out (LOO) cross-validation [38, 39]:

2
(PCE) ?’=1 (M(PCE) X)) — Hy®PcE) (i (XL'))
Errpe " = 1 7 3)
T, (MR (X)) - g I, MCECD(X)))

where Uy (pcE) (_;y Tepresents the mean of the PCE model values obtained using all experimental
design points X, excluding X;.

Kriging is an interpolation method based on Gaussian processes, where the output is a sum of
a trend term and a variance term [40]:

M(Kri.ging) (x) = ﬁTf(x) + O-ZZ(xJ (1)), (4)

where the BT f(x) represents the mean value (trend) of the Gaussian process, which is a linear
combination of polynomial basis functions f(x) and regression coefficients 8. 02Z(x, w) is a
Gaussian process that models the correlation between input samples, it includes the variance o2
of the Gaussian process and a zero-mean stationary Gaussian process Z(x, ). The optimal
hyperparameters are determined via Maximum Likelihood Estimation (MLE) [17] and used to
predict responses for new sample points.

OPCK combines the global approximation of PCE and the local approximation of Kriging for
a more accurate surrogate model. OPCK is defined as a universal Kriging model, with the trend
consisting of a set of standard orthogonal polynomials [41-43]:

Y= MG = MEPG) = )y, Wy (0) + 0°2(x,0), 5)

where Y ,ea VoW (x) represents the weighted sum of standard orthogonal polynomials that
describe the trend of the PCK model, while 62Z(x, w) represent the variance of the Gaussian
process as described in Section 2.2.

In OPCK, the optimal polynomial set is determined using the Least Angle Regression (LAR)
process [44] within the PCE framework [45]. Trend and correlation parameters are computed
using Kriging equations [46, 47]. The LAR algorithm ranks the polynomials based on their
relevance to the residuals at each iteration. Finally, different PCK models are compared using the
LOO error (Eq. (3)), and the model with the smallest LOO error is selected. A flowchart of the
OPCK algorithm is provided by Schobi, Sudret, and Wiart [41].

2.2. Wild horse optimizer

This section describes the WHO model, inspired by wild horses’ social behaviors, as proposed
by Naruei in 2021 [48]. WHO mimics grazing, chasing, dominance, leadership, and mating
behaviors.

(1) Creating the Initial Population. The initial population of size N is divided into G groups,
with PS representing the percentage of stallions (leaders). The remaining N—G members (mares
and foals) are distributed among these groups.

(2) Grazing behavior. Mares and foals spend time grazing near the group leader. Their position
is updated as follows:
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X/, = 2Z cos(2nRZ) x (Stallion — X/ .) + Stallion/, (6)

where Xl] ¢ is the current position of the group members, Stallion’ is the position of the stallion

(group leader), Z is the adaptive mechanism. R is a random number uniformly distributed within
[-2, 2]. The grazing radius varies due to the cosine function.

(3) Mating behavior. Foals reach puberty and leave their groups to form or join new ones for
mating. This behavior is modeled as:

Xgx = Crossover(XZ,XZ,), i#j#k p=q=end, ™
Crossover = Mean,
the position of the new horse X g_K depends on the mating of group i and group j horses.

(4) Leadership behavior. The stallion leads the group to new areas, and the rest avoid it. This
is modeled as:

— (2Zcos(2mRZ) x (WH — Stalliong,) + WH, R; > 0.5,
Stallion;, = .t (3)
i 27 cos(2mRZ) x (WH — Stalliong,) — WH, R; < 0.5,

where Stalliong, is the new location of the group i stallion, WH is the current location of the
explored area, and Stalliong, is the current location of the group i stallion.

(5) Leader Exchange and selection. The stallion is initially random, and as iterations proceed,
the leader’s position is determined by fitness. If a member is better adapted, their positions are
swapped:

Xgu cost (Xg;) < cost (Stalliong,),

9
Stalliong,, cost (XG,i) > cost (Stallionai). ©)

Stalliong, = {

The searching individual (the stallion) is positioned close to the optimal position as it is
iteratively replaced.

3. Multi-parameter inversion method: WHO_OPCK
3.1. Framework of method

The proposed WHO_ OPCK method for parameter inversion is structured in four phases.
Initially, a FE model is established using benchmark parameters to simulate the settlement
behavior of a real structure, accounting for uncertainties through a probabilistic model. Following
this, a sensitivity analysis is conducted using a surrogate model to identify critical parameters. The
surrogate model is then combined with the WHO algorithm to minimize an objective function,
ultimately refining the parameter inversion for accurate model updates. The framework of the
WHO_OPCK method is illustrated in Fig. 1.

3.2. Procedure of WHO_OPCK

The procedure of implementing the WHO OPCK method is detailed below.

Phase One — Define the problem (Step A): The first step is to establish a FE model using
benchmark parameters to characterize the settlement behavior of the real structure. It is necessary
to define a prior probabilistic model for the unknown parameters to be determined inversely,
including distribution type, mean, and deviation. Since real structure parameters are often random,
incorporating uncertainty in the input parameters is more realistic.

Phase Two — Parameter sensitivity analysis based on surrogate modeling (Step B~C): Create
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a few input parameter datasets randomly using Latin Hypercube Sampling (LHS) method. Perform
Finite Element Analysis (FEA) and extract the corresponding output response dataset. Construct
the OPCK model from the “input-output” data and assess its accuracy with Leave-One-Out (LOO)
cross-validation error. If the accuracy is satisfied, perform a parameter sensitivity analysis based
on the Sobol’ indices and the constructed OPCK model to filter out performance parameters to be
inverted; If the accuracy is insufficient, generate additional sampling points.

Phase Three — Coupling the OPCK model with WHO and minimizing the objective function
(Step D~F): According to the results of the sensitivity analysis, a certain number of inversion
parameter datasets are randomly generated using LHS method. Subsequently, the FEA is
executed, and the output response dataset is extracted. Then, the same method as in step C is used
to construct the OPCK model and evaluate its accuracy. Once an accurate OPCK model is
established, it can replace the FE model for calculating structural responses, bypassing the high
computational cost of FE model. Finally, the OPCK model is coupled with the WHO algorithm
by integrating the predicted and target (virtual measured) outputs into an objective function.

Phase Four — Parameter inversion post-validation (Step G): The optimal values from the
parameter inversion are processed and used as actual input parameters to update the FE model.

The symmetric mean absolute percentage error (SMAPE) is a common metric employed in
statistics for evaluating prediction accuracy. Unlike Root Mean Square Error (RMSE), it is
expressed as absolute percentages, making it easier to interpret. In this paper, SMAPE is chosen
as the objective function to access the accuracy of the WHO OPCK method. The formula is as
follows:

N
100 |vai - YOPCKil
SMAPE = _Z : il
N = (|Yomi| + [Yorex.i|) (10)
2

where Y,,,,,; is the virtual measured value, Yypck ; is the predicted value from the OPCK model,
and N is the number of fitted points.

4. Nonlinear numerical modeling of CFRD

The WHO_OPCK method is applied to a multivariate nonlinear complex structure, the ZJTT
CFRD, to explore the applicability of the proposed method to large hydraulic structures.

4.1. Description of ZJTT CFRD

The ZJTT CFRD is the dam of the lower reservoir of a pumped storage power station. As
illustrated in Fig. 2(a), it has a crest elevation of 209 m, a base elevation of 138 m, a maximum
height of 71 m, and a total crest length of 404.25 m. The thickness of the concrete face slab is
given by T = 0.4 + 0.003H, where H is the height from the calculated section to the top of the
face slab, with a slope of 1:1.405. This study focuses on the period immediately following the
completion of dam construction. During this period, the dam’s loading is predominantly
influenced by its self-weight. As shown in Fig. 2(b-d), the displacement of the measurement point
is used as the Qols.

4.2. Simulation process

The layered stacking process of the rockfill dam was simulated using Abaqus, incorporating
the Duncan E-B UMAT subroutine, developed in Fortran [21], for the rockfill material. Goodman
contact elements with zero thickness were used to model the contact between the concrete face
slabs and the bedding layer [28]. A three-dimensional numerical model was constructed to
determine the displacement and stress distribution patterns of the dam body during the layered
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construction of the rockfill, as well as the stress-strain distribution patterns of the concrete face
slab during the same period.

Phase One Phase Three
a
Step A Step D
Constructing a finite element model based on the According to the result of sensitivity analysis, to
initial parameters to characterize the deformation generate the inversion parameter sample set based
pattern of the real structure. on LHS method

FE analysis and extract
corresponding outputs

 J [ Establishing output response sample sets for ]
structural systems
Determining the type of probability distribution
for the seven unknown input parameters based on +

the priori knowledge

Constructing the "input-output" sample spectrum
of the structural system based on the
aforementioned two sample sets

Phase Two ~ =
Step B
Generationg the unknown input parameter sample
set based on LHS method Generationg OPCK model based on structural
system sample spectrum
FE analysis and extract
corresponding outputs
\
Establishing output response sample sets for
structural systems
4 R
Y Step F
Constructing the "input-output" sample spectrum —
of I}]e structgral system based on the SPSTICC?]IICE‘E\;C Z:]"Sl‘:tl;‘al’:eld Virtual measured value
aforementioned two sample sets Y P! of structural system
) on OPCK metamodel
response [ Y,,,]
[ y()l’( ‘l\']
I v ]
( Step C ! Objective function
- \ 100 & |Ywn/ —Yopex l‘
Generationg OPCK model based on structural SMAPE = _z—
system sample spectrum N ‘T (|Y\=m.i| +|YUP(_KJ|)’/2
A /)
Phase Four
Step G  /
[ Optimal values for parameter inversion ]
Perform sensitivity analyses based on OPCK | + Model updating
model and Sobol’ indices to filter out ] o
performance parameters to be inverted ’ High-fidelity finite element model

Fig. 1. Framework to describe the WHO_OPCK method

The material zoning consists of five parts: main rockfill, secondary rockfill, transition, cushion,
and concrete face slab, as shown in Fig. 3(a). The main rockfill, secondary rockfill, transition and
cushion layers were modeled using Duncan E-B model with the material parameters listed in
Table 1. The concrete face slab was modeled with linear elasticity and the material parameters are
shown in Table 2. The Goodman contact element parameters in Table 3 reflect the friction and
stiffness of the contact surface, ensuring reliable simulation results.
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The stacking process was simulated using Abaqus life and death units, with the rock mass
stacking divided into 15 steps, one step each for the cushion layer and the concrete face slab, as
shown in Fig. 3(b).

404.25m

3
209m 361.99m 229.99m . T —
\ )

< 138m » T

a) Longitudinal view of the dam

< 183m

+ Qol 3

183m %001 1 Qol4 QoI5 *

183m |Qol 6
1

T

==
b) Cross-section at y = 361.99 m c¢) Cross-section at y =229.99 m  d) Cross-section at y = 88.99 m
Fig. 2. Dam size and measurement profiles: a) longitudinal view of the dam, showing the profile locations

where measurement points are distributed; b) cross-section at y = 361.99 m, showing the measurement
point for Quantity of Interest Qol 1; ¢) cross-section at y = 229.99 m, showing the measurement points for

Qols 2, 3, 4, and 5; d) cross-section at y = 88.99 m, showing the measurement point for Qol 6

Table 1. Nonlinear material parameters

Material K n R c 1) A K, m Ky | Ny y
Cushion 1117.6 | 0.31 | 0.54 | 0.01 | 59 | 12.5 | 998.7 | 0.14 | 1900 | 0.31 | 2240
Transition 1518.8 | 0.27 | 0.59 | 0.01 | 60.4 | 13.3 | 10394 | 0.06 | 1700 | 0.27 | 2210
Main rockfill | 1457.3 | 0.29 | 0.62 | 0.01 | 59.5 | 13.3 | 1028.5 | 0.04 | 2100 | 0.29 | 2220
Secondary | 1397 | 029 | 0.59 | 0.01 | 56.1 | 122 | 6335 | 0.15 | 2000 | 0.29 | 2190
rockfill
Note: the rockfill is a discrete material cohesion is 0, in order to numerical calculation convergence take

¢ =0.01

Table 2. Linear material parameters
Elasticity (E) | Poisson’s ratio (i)
Concrete face slab 28 GPa 0.31

Table 3. Goodman nonlinear contact parameters
Kl KZ n R f )
Goodman | 4800 | 4800 | 0.56 | 0.74 | 36.6

Step-16 7 siep14 P
7 step13
Stepi2
stept1
Step-10
Step-9
Steps
Step-7
Sep6
Step-s

Concrete face slab

Cushion

Main Rockfill Secondary Rockfill

Transition

a) Material zoning b) Layered construction process
Fig. 3. ZJTT CFRD: a) Material zoning layout of the dam, showing the distribution and classification of
different materials used in the construction; b) Layered construction process of the dam,

illustrating the sequence and method by which the dam is built layer by layer

Given that the dam is still under construction, the measured data could not be obtained. To
demonstrate the efficiency of the proposed WHO OPCK method in engineering applications, a
“hypothesis testing” strategy was employed to verify the method’s feasibility. First, the LHS
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method was used to randomly generate 20 sets of material parameters for the CFRD model. The
corresponding displacements at the measurement points were then calculated and averaged based
on FEA. To account for the discrepancies between numerical simulations and real-world
measurements, 20 % Gaussian noise was introduced into the mean values. Finally, one set of
noise-containing data was randomly selected as the virtual measurement data, as described in
Step F in Fig. 1.

5. Multi-parameter inversion of ZJTT CFRD

Parameter sensitivity analysis is essential before multi-parameter inversion. It helps identify
how input parameters affect outputs and highlights the most influential parameters. This enables
the optimization of key parameters while minimizing the impact of less critical factors in the
inversion process.

5.1. Parameter sensitivity analysis
5.1.1. Parameter distribution space for sensitivity analysis

In this study, seven key parameters — elastic modulus coefficient K, elastic modulus index n,
damage ratio Ry, initial internal friction angle ¢, rate of change of internal friction angle A¢, bulk
modulus coefficient Kj,, and bulk modulus index m, are treated as unknown inputs. These
parameters are assumed to follow a Gaussian distribution, with mean values based on average
triaxial test results and a standard deviation set at 5 %.

A total of 140 samples were randomly selected using Latin Hypercube Sampling (LHS), as
shown in Fig. 4. The probabilistic distribution models for the main rockfill parameters are
provided in Table 4. For other zonal material parameters, raw data were used, so the inverse
analysis focused solely on the main rockfill material parameters. The same method can be applied
to invert other zonal material parameters, though this is not addressed in this work.

Table 4. Distribution model of the unknown parameters
for the Duncan E-B constitutive model of the main rockfill

Parameter Symbol Quantity Bound
Elastic modulus coefficient K N(1457.3,72.865) | [1165.84, 1748.76]
Elastic modulus index n N(0.29,0.0145) [0.232, 0.348]
Failure ratio R¢ N(0.62,0.031) [0.496, 0.744]
Cohesion c 0.01 -
Initial friction angle [4) N(59.5,2.975) [47.6,71.4]
Rate of change of internal friction angle Ag N(13.3,0.665) [10.64, 15.96]
Bulk modulus coefficient K, N(1028.5,51.425) [822.8, 1234.2]
Bulk modulus index m N(0.04,0.002) [0.032, 0.048]
Unloading modulus coefficient K. 2100
Unloading modulus index Ny 0.29
Density p 2220

5.1.2. Construction of the surrogate model

This section explores how the number of experimental designs (Npqg) affects model accuracy
and compares the OPCK surrogate model with classical PCE and Kriging. Surrogate models were
built using varying Npog to determine the optimal values for the OPCK model. A total of 140
initial samples were taken for the unknown parameters using LHS. Corresponding response output
(Qol 1~6) was calculated. Then, surrogate models with different sizes of Npyj (i.e., 10, 20, 30,
40, 50, 60, 70, and 80) were constructed, this yieclded 24 surrogate models. The Erry( for the six
output responses in each case are shown in Fig. 5.
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&

Fig. 4. Seven-parameter random sampling results

From Fig. 5 the following results can be derived:

1) All three surrogate models show high accuracy across varying Np 5. ut Kriging has lower
accuracy and greater discrepancies compared to PCE and OPCK. The OPCK model outperforms
PCE in accuracy.

2) For the PCE model, Erry, decreases significantly from Npop = 10 to 40, then plateaus,
showing no further improvement. In the OPCK model, the reduction is more pronounced between
Npog = 10 and 40, after which accuracy stabilizes for Nz > 40.

3) While Kriging’s Er7y, decreases with increasing Npog, it doesn’t reach the desired

accuracy (below 5 %) until Npop = 80.

i i [ Kriging|
107! i I [—1PCE
10PCK

Erro0
S
&

[, s——

10

10°

10°¢

100 20 30 40 50 60 70 80
NI)()I:'

Fig. 5. The impact of the number of experimental designs (Npog)
on output accuracy and a comparison of three surrogate models

5.1.3. Sensitivity analysis

The Sobol’ index method, based on variance decomposition, determines the sensitivity of input
variables by calculating their contribution to the total output variance [49]. In this study, the
ErrLOO of the OPCK model is less than 10-2 when Npop = 50, meeting the predictive accuracy
requirements for large hydraulic structures. Hence, parameter sensitivity analyses were conducted
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using the OPCK model instead of the computationally expensive ZJTT CFRD model. The
sensitivity analysis results, considering the impact of the seven unknown input parameters on the
ZJTT CFRD model’s output, are shown in Fig. 6. Key observations include:

1) ¢, Kp, K, and Ry exhibit high sensitivity in various Qol metrics, with ¢ and K, being
particularly influential. These parameters are crucial in CFRD deformation and should be
prioritized for calibration and optimization.

2)In contrast, n, Ap, and m show low sensitivity and weak effects on Qol metrics,
contributing minimally to CFRD deformation and are of secondary importance.

3) Sensitivities of Qol indicators to the same parameter vary. For example, ¢ is significant in
Qol 4 and 5, while K} is prominent in Qol 6, reflecting the system’s nonlinear response.
Multidimensional indicators should be considered in parameter analysis.

0.7 0.7
0.6/ B QoI 2f - e 0.6}

£0.5 805

= §

Eﬁ 0.4 (BB Qol6f . Wi ;é’o.4»

5 2

£03 203

2 =

S %]! (HE BRSNS (|| S— S o2l
(AFTY | (|} ECEEEEEESN A || S 0.1
0.0 K n R, 1) Agp K, m 0.0 K n R, 1) Agp K, m

a) First-order Sobol’ indices b) Total Sobol’ indices
Fig. 6. Results of parameter sensitivity analysis based on the OPCK model

The sensitivity analysis revealed that ¢, K, and Ry are crucial for CFRD. The next step is
multi-parameter inversion for these parameters to improve model accuracy and prediction.

5.2. Multi-parameter inversion

After the sensitivity analysis, @, Kp, K, and Ry were identified as key parameters. We will now
perform a multi-parameter inversion to calibrate the model and match the virtual measured data.

Section 5.1.2 discussed key factors influencing surrogate model accuracy. This section focuses
on the impact of the number of search individuals (N) in the WHO OPCK method, with Niter set
to 500. Results are shown in Fig. 7, and observations are as follows:

1) Fig. 7(a) shows that as N increases, convergence speed improves, particularly for N > 50,
where the error decreases rapidly. Smaller N values (e.g., N =30 or N =35) lead to slower
convergence, especially at the start, due to limited search space exploration.

2) The SMAPE value shows significant variation at lower N, dropping sharply at N = 35 and
N =40. For N =40, SMAPE stabilizes, indicating improved convergence accuracy as more
individuals help find the global optimum.

3) Fig. 7(b) shows that computation time increases with N, as more individuals require
processing more data. The increase stabilizes at N = 60, where time overhead is moderate and
accuracy remains high, offering an optimal balance.

Based on the results, surrogate models and inversion methods with Npor = 50 and N = 60
were chosen for comparison.

For the computationally expensive 3D CFRD, using N = 50 for the surrogate model results
in a total computation time of about 28 hours (0.56 hours per run) in ABAQUS. In contrast, the
traditional WHO algorithm with direct FE model calls for iterative inversion would take
approximately 16,800 hours (0.56x60x500) for N =60 and Nz, = 500. This immense
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computational demand makes the traditional method impractical for 3D CFRD parameter
inversion, limiting its real-world engineering application.

20, 220, 0 0 0 : : 14
—— N=30 N=35 —— N=40 i A ‘+Ca]culation time +Accuracy‘ |
L N-4s N=50 N=s5 200 ‘ ‘ ‘ 12
—— N=60 N=65 —— N=70
1515 L-_"L 180 10
— Wl = —
T [t Z 160 g =
< £140 <
= = 6 S
w = w
= 120
4
100
2
80 | ! : !
0 0
30 35 40 45 50 55 60 65 70

50 100 150 200 250 300 350 400 450 500
Niter N
a) Convergence properties b) Computational time and convergence accuracy
Fig. 7. The effect of different N on the accuracy of WHO_OPCK method

The WHO optimization algorithm was combined with various surrogate models to compare
the convergence of WHO_OPCK with WHO SPCK, WHO_PCE, and WHO Kriging. Fig. 8
shows the convergence speeds, accuracies, and computation times, while Table 5 presents the
inversion results. The following conclusions can be drawn:

1) WHO_OPCK achieves faster convergence and greater robustness in parameter inversion. It
outperforms other methods, especially WHO SPCK and WHO Kriging, by finding better
solutions in fewer iterations while maintaining stability.

2) WHO_OPCK provides more accurate inversion results than WHO_SPCK, WHO_ PCE, and
WHO Kiriging, demonstrating superior convergence accuracy.

3) WHO_OPCK, though slightly slower than WHO_PCE, outperforms WHO_SPCK and
WHO Kiriging in efficiency, requiring only 46 % and 16.8 % of their respective computation
times, achieving an optimal balance between time and accuracy.

By combining the strengths of PCE and Kriging, WHO_OPCK excels in both accuracy and
speed while keeping computation time reasonable, offering better cost-effectiveness in practical
applications.

Table 5. The results of parameter inversion based on WHO combined with different surrogate models

Method K Ry 1] K
WHO OPCK | 1594.123 | 0.713 | 64.577 | 933.344
WHO SPCK | 1550.424 | 0.609 | 59.377 | 976.841
WHO PCE 1437.214 | 0.562 | 59.270 | 1028.357
WHO Kriging | 1426.354 | 0.718 | 65.613 | 953.810

Meanwhile, we also coupled OPCK with classical optimization algorithms (PSO, SMA, SSA,
WOA, GWO) [11, 12, 50-52] to compare convergence and computational efficiency. Fig. 9 shows
the convergence speed, accuracy, and computation time, while Table 6 presents the inversion
parameter results. The following conclusions can be drawn:

1) WHO_OPCK outperforms OPCK with classical algorithms in both convergence speed and
accuracy, showing strong performance in complex CFRD optimization.

2) Fig. 9(b) shows that parameter inversion accuracy and convergence speed do not directly
correlate with inversion time. Despite its high computation load, SSA does not achieve the highest
accuracy, while WOA, with the second-highest time, has the lowest accuracy.

3) WHO_OPCK achieves the highest accuracy and shortest inversion time, making it the most
efficient and effective method among the comparisons.
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Fig. 8. Comparison of WHO combined with different surrogate models

Table 6. The results of parameter inversion based on different
optimization algorithms combined with OPCK
Method K R 1) K,
WHO OPCK | 1594.123 | 0.713 | 64.577 | 933.344
PSO OPCK | 1311.315 | 0.527 | 68.425 | 1001.838
SMA_OPCK | 1663.778 | 0.672 | 61.071 | 927.500
SSA OPCK | 1675.895 | 0.639 | 56.853 | 996.650
WOA _OPCK | 1524.948 | 0.622 | 60.770 | 960.481
GWO_OPCK | 1550.042 | 0.571 | 60.778 | 981.066
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Fig. 9. Comparison of different optimization algorithms combined with OPCK

The parameter inversion results are used to update the FE model, which is then simulated with
the new parameters. The output is compared to the virtual measured values, with errors assessed
using RMSE and SMAPE. The detailed output and error results are shown in Table 7 and 8, and
Fig. 10 provides a visual comparison. The following conclusions can be drawn:

1) Fig. 10(a) shows that the FE model updated with WHO_OPCK achieves higher accuracy,
with significant advantages in both RMSE and SMAPE. Among the surrogate models,
WHO Kriging has the greatest error and lowest accuracy.

2) Fig. 10(b) shows that the FE model updated with WHO OPCK has better accuracy. SMA
and WHO show similar errors, while WOA performs the worst, with the largest error and lowest
accuracy.
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Table 7. Comparison of predicted and virtual measured values of WHO combined
with different surrogate models

Condition Qols | Virtual measured value (mm) OPCK SPCK PCE Kriging
1 95.90 95.75 96.89 96.60 98.52
2 121.44 119.35 122.07 122.03 123.18
Deformation 3 32.56 32.53 32.35 33.83 34.75
4 102.18 103.75 103.99 102.82 105.74
5 24.81 25.65 26.72 27.63 26.42
6 94.46 94.41 95.23 95.00 96.82
RMSE 1.122 1.218 1.358 2.428
SMAPE 1.147% | 2.021% | 2.828% | 3.793 %
Table 8. Comparison of predicted and virtual measured values
of different optimization algorithms combined with OPCK
Condition | Qols | ¥irualmeasured | yrn | pgo | SMA | SSA | WOA | GWO
value (mm)
1 95.90 95.75 96.29 96.28 96.06 97.38 94.78
2 121.44 119.35 | 120.86 | 120.81 | 121.04 | 122.57 | 119.66
Deformation 3 32.56 32.53 34.73 31.27 35.36 31.56 26.67
4 102.18 103.75 | 102.91 | 104.68 | 102.64 | 104.84 | 102.21
5 24.81 25.65 26.14 25.93 26.70 26.52 26.26
6 94.46 94.41 94.76 95.09 94.37 95.73 93.21
RMSE 1.122 1.123 1.295 1.406 1.633 2.669
SMAPE 1.147 % | 2.260 % | 2.072 % | 2.774 % | 2.684 % | 4.926 %
3.0 5 30
25+ 25

20F

RMSE
&

0.5 0.5F

0.0 0 00
OPCK SPCK PCE Kriging WHO PSO SMA  SSA  WOA GWO
a) WHO combined with different b) Different optimization algorithms
surrogate models combined with OPCK

Fig. 10. Comparison of FEA errors based on inversion results and virtual measured data
6. Conclusions

Assessing CFRD deformation is challenging due to the complex construction process and large
volume of discrete rockfill material, yet it is crucial for safe operation.

Existing CFRD parameter inversion relies on pure optimization, directly invoking time-
consuming FE models, which limits efficiency and accuracy. This creates a challenge in balancing
computational efficiency with accuracy. Consequently, most of these methods are restricted to
parameter inversion for 2D CFRDs, with few studies addressing the complex and time-consuming
task of high-precision, high-efficiency parameter inversion for 3D CFRDs.

This work develops the efficient OPCK surrogate model for 3D CFRD inversion, combined
with the WHO algorithm to create WHO_OPCK, enabling fast and accurate parameter inversion.
Some conclusions are summarized below:

1) For the WHO optimization algorithm, the number of search individuals N significantly
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impacts its search performance, thereby affecting the accuracy of WHO_OPCK. This feature can
be generalized to other research applications of population-based optimization algorithms.

2) OPCK offers significant advantages in terms of computational cost, with low requirements,
high efficiency, and minimal resource consumption. This makes WHO_OPCK not only accurate
but also highly suitable for large-scale optimization problems where computational efficiency is
essential.

3) Taking the 3D CFRD as an example, traditional pure optimization approaches are unable to
identify its parameters. In contrast, the proposed WHO OPCK method successfully determines
these parameters, offering a feasible solution for fast parameter inversion of the 3D CFRD.

4) Compared to existing representative parameter inversion methods, including WHO SPCK,
WHO PCE, WHO Kriging, PSO OPCK, SMA OPCK, SSA OPCK, WOA OPCK, and
GWO_OPCK, the proposed WHO OPCK method demonstrates superior accuracy and efficiency
in dam parameter inversion. This makes it a more effective and reliable approach for tackling the
challenges posed by complex dam models.

Although the proposed WHO OPCK method has unrivalled efficiency advantages over
traditional methods, it still has some limitations that need to be considered:

1) Due to the classical “curse of dimensionality”, the predictive performance of surrogate
model in a high-dimensional parameter space will be notably reduced. Hence, the sample size for
constructing the surrogate model can be increased appropriately based on the complexity of the
problem.

2) Surrogate models offer efficient approximate computations, their overall computational
efficiency still depends significantly on the forward computation models (such as FE models). In
other words, generating the initial dataset typically consumes most of the time spent constructing
the surrogate model.

3) The number of design experiments (Npoz) used to construct the surrogate models is
typically not known in advance, necessitating the construction of surrogate models using different
sizes of Npop for comparison.
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