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Abstract. When solving the path planning problem for Unmanned Aerial Vehicle (UAV) in a 
three-dimensional complex environment, traditional algorithms often face issues like falling into 
local optimum easily, insufficient global search ability, poor efficiency and defective optimization 
result. To address these issues, a three-dimensional path planning method is proposed based on 
the Starfish Optimization Algorithm (SFOA). This algorithm, inspired by the exploration, preying, 
and regeneration behaviors of starfish, balances global search and local exploitation, enhancing 
UAV trajectory planning in complex environments. The study constructs a complex 
three-dimensional environment model and designs a comprehensive optimization objective by 
covering constraints like trajectory length, safety, flight height, and smoothness. The trajectory 
planning framework proposed in this study is designed for pre-mission planning, generating UAV 
paths offline based on known static terrain and threat information. Comparative experimental 
results with Ant Colony Optimization and Particle Swarm Optimization show that the SFOA-
based UAV trajectory planning achieves significant improvements in comprehensive cost and 
convergence speed, demonstrating superior global optimization performance. This offers an 
innovative solution for UAV efficiently and safe trajectory planning in complex environments.  
Keywords: starfish optimization algorithm, unmanned aerial vehicle, three-dimensional 
trajectory planning, obstacle-avoidance optimization. 

1. Introduction 

Unmanned aerial vehicles (UAVs), as emerging aerial vehicles, are becoming increasingly 
prevalent in military, civilian, and commercial sectors. However, trajectory planning remains a 
critical factor restricting their effectiveness. UAV trajectory planning aims to find the optimal 
flight path from the current position to the target position in each three-dimensional space while 
ensuring flight safety. In actual flights, UAVs' positions change constantly, and their operating 
environments are often highly complex. Therefore, flight paths must be optimized in real-time 
based on environmental conditions and mission requirements to handle uncertainties and avoid 
collisions. Given the complex flight constraints and dynamic environments, it is essential to 
develop constraint models and apply efficient optimization methods for solving. 

In recent years, an increasing number of researchers have integrated UAV operation features 
and low-altitude flight environment characteristics to explore UAV trajectory planning using 
various algorithms [1], [2]. In complex environments, UAV trajectory planning faces multiple 
challenges, such as obstacle avoidance in uncertain terrains, threat region evasion, dynamic flight 
constraints including turning radius and climb angle limits, and the need for real-time path updates. 
Many classical methods, such as the A* algorithm [3], artificial potential field method [4], [5], 
and Voronoi diagrams [6], are extensively applied in path planning but are mainly suitable for 
two-dimensional space. For complex three-dimensional path planning, intelligent methods have 
gained considerable attention. Typical examples include genetic algorithms [7], artificial bee 
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colonies [8], ant colony optimization [9], and particle swarm optimization [10], [11]. In UAV path 
planning, the ant colony algorithm stands out for its simple coding and effective optimization 
guidance [12]. Particle swarm optimization has also proven effective for UAV path planning in 
known static rough terrains, offering fast convergence, global optimization, and parallel search 
advantages [13]. 

In UAV path planning, ACO guides agents by combining pheromone trails and heuristic. Each 
UAV probabilistically selects the next waypoint according to the pheromone concentration and 
heuristic desirability, gradually reinforcing shorter and safer routes while weakening less efficient 
ones [14]. In addressing complex problems, the ant colony algorithm has drawbacks like slow 
convergence and low solution precision defined here as the residual gap between returned cost 
and the theoretical optimum; typical mitigations include hybridizing ACO with local 2-opt 
refinement or adaptive tuning of pheromone parameters. The particle swarm algorithm is sensitive 
to parameters and prone to local optima. To tackle these issues, meta-heuristic algorithms have 
emerged as an effective approach for complex optimization problems [15]. They can effectively 
avoid local optima, offering strong adaptability and robustness for handling diverse and complex 
optimization challenges. Three-dimensional intelligent methods refer to bio-inspired and heuristic 
optimization algorithms capable of handling multi-objective UAV path planning in complex 3D 
terrains. These include Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant 
Colony Optimization (ACO), and Starfish optimization algorithm (SFOA). 

Unlike Grey Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA), which 
primarily relies on fixed encircling or spiral update patterns, the Starfish Optimization Algorithm 
(SFOA) combines five-dimensional hybrid exploration and adaptive regeneration mechanisms 
inspired by starfish arm coordination. This dual-phase search allows SFOA to balance exploration 
and exploitation more flexibly in high-dimensional spaces such as 3D UAV path planning. The 
Starfish Optimization Algorithm (SFOA) is a novel search strategy inspired by the exploration, 
foraging, and regeneration behaviors of starfish in nature, operating in two phases: exploration 
and exploitation. During the exploration phase, the selection between five-dimensional and one-
dimensional search strategies is based on the number of optimization variables (nD). When  
nD > 5, a five-dimensional pattern ensures sufficient global exploration across multiple 
dimensions. When nD ≤ 5, the search space is narrower and requires more precision, so a one-
dimensional search improves convergence accuracy and reduces redundant computation, it uses a 
hybrid search strategy combining five-dimensional and one-dimensional search patterns to boost 
computational efficiency while maintaining strong search capabilities. In the exploitation phase, 
the algorithm mimics the foraging and regeneration of starfish, employing bidirectional search 
and unique movement patterns to ensure effective convergence. Through extensive testing on 
benchmark functions and engineering problems, SFOA has shown remarkable advantages in 
solving global optimization problems [16]. 

Traditional path-planning algorithms, though effective for specific problems, still suffer from 
slow convergence, local optima, and high computational complexity when dealing with complex 
environments, multiple constraints, and multi-objective optimization. To address these issues, this 
paper proposes a UAV path-planning method based on the Starfish Optimization Algorithm. It 
leverages the bio-inspired characteristics of starfish foraging and regeneration to enhance the 
global search ability and local optimization precision in path planning. 

The rest of this paper is structured as follows. Section 2 presents the modeling of UAV path 
planning. Section 3 explains the basic principle and characteristics of the SFOA. In Section 4, 
simulation verification of UAV path planning in complex environments using SFOA is carried 
out, in a complex environment with nine obstacles, SFOA reduced the best cost by up to 46.84 % 
and 35.81 % compared to ACO and PSO, respectively. In a simpler five-obstacle scenario, SFOA 
still achieved reductions of 45.52 % and 41.24 % over ACO and PSO. These results validate the 
efficiency and robustness of SFOA in multi-objective 3D path planning, offering an innovative 
and effective solution for safe and efficient UAV trajectory design in diverse and challenging 
environments. Finally, Section 5 offers conclusions and suggestions for future work. 
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2. Modeling of UAV path planning 

2.1. Three - dimensional path constraint model for UAV 

UAV path planning is a crucial task-execution step, aiming to plot a safe, feasible, and optimal 
route that meets mission requirements. In complex environments, this involves obstacle 
avoidance, threat evasion, and considering flight altitude, path smoothness, and maneuverability 
constraints. This paper develops a 3D path maneuverability constraint model [17], which 
transforms path planning into a multi-constraint optimization problem via a comprehensive cost 
function. 

The UAV path-planning issue is defined as an optimization problem. The goal is to generate 
the optimal path that meets various constraints by minimizing the cost function 𝐹ሺ𝑋௜ሻ. 

Path Representation: Using discrete path points allows for flexible modeling of complex paths, 
enables numerical optimization, and supports better visualization and evaluation of each path 
segment for cost computation. The UAV path 𝑋௜ is represented as a collection of discrete path 
points, each with 3D coordinates. Adjacent path segments are determined strictly by this 
sequential order, because the cumulative path length can only be computed by summing 
consecutive segments, smoothness and turning-angle constraints require consecutive points to 
calculate direction changes and time-window and safety constraints are validated along the 
chronological visiting sequence of nodes. Without such ordering, it would be impossible to 
evaluate the feasibility or cost of a trajectory in a consistent manner [18]. As shown in Eq. (1): 𝑋௜ = ሼ 𝑃௜ ∣∣ 𝑃௜ = ሺ𝑥௜ ,𝑦௜ , 𝑧௜ሻ, 𝑖 = 1,2, … ,𝑛 ሽ, (1)

where 𝑛 is the number of path points, and 𝑃௜ is the 3D coordinate of the path point. 

2.1.1. Path length constraint 

The primary optimization objective for UAV paths is to minimize the path length. The path 
length 𝐹ଵሺ𝑋௜ሻ is defined as the sum of Euclidean distances between all adjacent path points in the 
path, adjacent path segments are determined by the sequential order of the discrete path points. 
Each pair 𝑃௜, 𝑃௜ାଵ forms one segment for cost evaluation, as shown in Eq. (2): 

𝐹ଵሺ𝑋௜ሻ = ෍‖𝑃௜ − 𝑃௜ାଵ‖௡ିଵ
௜ୀଵ , (2)

where 𝑃௜ and 𝑃௜ାଵ are two adjacent path points, and ‖𝑃௜ − 𝑃௜ାଵ‖ denotes the Euclidean distance 
between these two points. 

2.1.2. Safety constraints  

To prevent UAV - obstacle collisions, paths must avoid threat areas modeled as cylinders, with 
their projections represented by the center 𝐶௞ and radius 𝑅௞. 

Threat Cost Function: For the path segment vector 𝑃ప𝑃పାଵሬሬሬሬሬሬሬሬሬሬሬ⃗ , the threat cost 𝐹ଶሺ𝑋௜ሻ is determined 
by the minimum distance 𝑑௞ to the threat center 𝐶௞, as shown in Eq. (3):  

𝑇௞൫𝑃ప𝑃పାଵሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯ = ቐ0, 𝑑௞ > 𝑆 + 𝐷 + 𝑅௞,ሺ𝑆 + 𝐷 + 𝑅௞ሻ − 𝑑௞, 𝐷 + 𝑅௞ < 𝑑௞ ≤ 𝑆 + 𝐷 + 𝑅௞,∞,   𝑑௞ ≤ 𝐷 + 𝑅௞ ,  (3)

where 𝑆 is the safety distance, 𝐷 is the collision zone width which is related with UAV diameter, 
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𝑅௞ is the threat radius, and 𝑑௞ is the minimum distance between the path segment and the threat 
center. To minimize the influence of noise in minimum distance calculations, such as those 
introduced by discrete sampling or terrain artifacts, such as a safety buffer 𝑆 is incorporated in the 
cost function. Furthermore, the elevation data is preprocessed by smoothing or interpolation to 
suppress local discontinuities and ensure stability in path evaluation. 

The total threat cost is given by Eq. (4): 

𝐹ଶሺ𝑋௜ሻ = ෍෍𝑇௞௄
௞ୀଵ

௡ିଵ
௜ୀଵ ൫𝑃ప𝑃పାଵሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯, (4)

where 𝐾 is the total number of threats. 

 
Fig. 1. Determination of the threat cost 

2.1.3. Flight altitude constraints 

The UAV’s flight altitude must be maintained within a permissible range, between ℎ୫୧୬ and ℎ୫ୟ୶. Consequently, a flight altitude cost function is defined. 
For the path point 𝑃௜, the altitude cost is calculated as Eq. (5): 

𝐻௜ = ቐฬℎ௜ − ℎ୫ୟ୶ + ℎ୫୧୬2 ฬ , ℎ୫୧୬ ≤ ℎ௜ ≤ ℎ୫ୟ୶,∞, otherwise,  (5)

where ℎ௜ is the height of path point 𝑃௜, ℎ୫୧୬ and ℎ୫ୟ୶ are the minimum and maximum allowable 
flight heights, respectively. The total altitude cost is given by Eq. (6): 

𝐹ଷሺ𝑋௜ሻ = ෍𝐻௜௡
௜ୀଵ . (6)

2.1.4. Smoothness constraints 

Path smoothness, determined by turning angles and climb angles, better matches UAV 
dynamic characteristics. In this study, both turning angle limit and climb angle limit are set to 45°, 
which is a conservative estimate derived from typical dynamic constraints of fixed-wing and 
rotary-wing UAV platforms. These values are selected to ensure that generated paths are 
dynamically feasible and compliant with UAV maneuvering limits, including constraints on roll 
rate, pitch angle, and climb performance. Fixed-wing UAVs operating at medium airspeeds often 
have turning constraints ranging between 30° and 60°, and practical climb angles usually fall 
within the 20°-45° range, depending on power-to-weight ratio and airframe configuration  
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[19]-[22]. 
The smoothness cost function is then computed as Eq. (7): 

𝐹ସሺ𝑋௜ሻ = ෍൫maxሺ0, |𝜙௜| − 𝜙୫ୟ୶ሻ + maxሺ0, |𝜃௜ାଵ − 𝜃௜| − 𝜃୫ୟ୶ሻ൯௡ିଶ
௜ୀଵ  (7)

where 𝜙௜ is the turning angle between path segments 𝑖 and 𝑖 + 1, is calculated via the ground 
projection of the path segments and the angle between them. The climbing angle is the angle 
between a path segment and the horizontal plane. 𝜃௜ and 𝜃௜ାଵ are the climb angles for path 
segments 𝑖 and 𝑖 + 1, which are determined by the height difference and ground projection length 
of the path segments. 𝜙୫ୟ୶ and 𝜃୫ୟ୶ represent the maximum allowable turning and climb angles, 
respectively. 

2.1.5. Overall cost function 

By considering the optimality, safety and feasibility constraints associated with a path 𝑋௜, the 
overall cost function is defined as Eq. (8): 

𝐹ሺ𝑋௜ሻ = ෍𝑏௞ସ
௞ୀଵ 𝐹௞ሺ𝑋௜ሻ, (8)

where 𝑏௞ is the weight for each cost component. 𝐹ଵሺ𝑋௜ሻ to 𝐹ସሺ𝑋௜ሻ represents the path length (2), 
threat (4), altitude constraint (6), and smoothness (7). By defining these aspects, this paper 
formulates the UAV path-planning issue as a multi-objective optimization problem. The 
comprehensive cost function not only reflects path optimality but also incorporates UAV dynamic 
characteristics and operational constraints, thus generating safe, smooth, and efficient 3D flight 
paths. The key elements in scene modeling in this study include terrain digital elevation models, 
cylindrical obstacle parameters, task node coordinates and requirements, and four quantitative 
constraints. 

2.2. Construction of UAV 3D environmental model 

To verify the optimization performance of the Starfish Optimization Algorithm in a 3D 
environment, this study uses MATLAB 2019b to simulate a 3D environment, with the ground 
information of the simulated mountainous map generated through the following steps. 

2.2.1. Terrain construction 

In this study, the 3D terrain construction process is implemented using the MATLAB 
programming language. MATLAB is used for its powerful matrix processing and visualization 
capabilities, which are well-suited for modeling 3D terrain and simulating UAV flight paths. 
Specifically, the code first reads elevation data from a Terrain.tif file and converts it into a 2D 
matrix 𝐻, where each element represents the height at the corresponding terrain location. To 
ensure the validity of the elevation data, the code further processes negative values by setting all 
heights below zero to zero. The size of the elevation matrix also determines the map resolution 
and horizontal dimensions, which are used to construct a mesh grid via the meshgrid function. 
This grid enables the 3D terrain surface to be plotted and evaluated as part of the UAV path 
planning environment. 

Then, the code uses the meshgrid function to generate 2D coordinate grids, the meshgrid 
function generates 2D coordinate matrices from vectors, which are necessary for mapping 
elevation data over a spatial grid and creating surface plots in 3D. resulting in matrices 𝑥 and 𝑦, 
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which represent the horizontal and vertical coordinates of the terrain data, respectively. By 
mapping the height values 𝐻 to each point in the terrain through processing 𝑥 and 𝑦, a complete 
3D terrain model is formed, as shown in Eq. (9): 𝑧 = 𝐻ሺ𝑥,𝑦ሻ. (9)𝐻ሺ𝑥,𝑦ሻ indicates the terrain height, defining the elevation at each point ሺ𝑥,𝑦ሻ in a 2D plane. 
This function outlines the 3D terrain’s basic structure, with terrain height determined by the ሺ𝑥,𝑦ሻ 
coordinates, which are used to depict the terrain's undulations. 

2.2.2. Threat region construction 

Threat regions are modeled as multiple cylinders, each represented by the mathematical 
function in Eq. (10): ሺ𝑥 − 𝑥௖ሻଶ + ሺ𝑦 − 𝑦௖ሻଶ ≤ 𝑅ଶ, 𝑧௖ ≤ 𝑧 ≤ 𝑧௖ + ℎ, (10)

where ሺ𝑥௖ ,𝑦௖ , 𝑧௖ሻ are the coordinates of the cylinder’s base center, 𝑅 is the cylinder’s radius 
(indicating the horizontal threat range), and ℎ is the cylinder's height (indicating the vertical threat 
range).  

The function uses analytical geometry to define a cylinder’s boundary, defining its position 
and extent in 3D space. By checking whether a point ሺ𝑥,𝑦, 𝑧ሻ satisfies the inequality in Eq. (10), 
the function identifies whether the point lies within the threat region, thus facilitating collision 
cost computation. Multiple overlapping cylinders create a complex threat environment. 

The 3D map generated by MATLAB is shown in Fig. 2. 

 
Fig. 2. 3D UAV environmental model 

3. Starfish optimization algorithm 

With the rapid development of meta-heuristic algorithms in optimization, bio-inspired 
algorithms have shown significant superiority in solving multi-dimensional and complex 
problems. Among these, the Starfish Optimization Algorithm (SFOA) is an emerging bio-inspired 
meta-heuristic algorithm that simulates the behavior of starfish in nature to provide an innovative 
solution for global optimization problems. 

The SFOA draws inspiration from the behavioral characteristics of starfish and consists of two 
main phases: exploration and exploitation. In the exploration phase, it mimics the searching ability 
of starfish arms, using a hybrid five-dimensional and one-dimensional search pattern to enhance 
search efficiency. In the exploitation phase, it achieves global convergence through predation and 
regeneration mechanisms. 
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In the exploration phase, the SFOA employs a hybrid search strategy based on the problem 
dimension. When the dimension 𝑛𝐷 of the optimization problem is greater than 5, the algorithm 
uses a five-dimensional search pattern to balance the breadth and depth of the search space. When 𝑛𝐷 is less than or equal to 5, it adopts a one-dimensional search pattern to improve accuracy. This 
dynamic adjustment mechanism enables the SFOA to demonstrate remarkable computational 
efficiency and search ability when dealing with high-dimensional nonlinear optimization 
problems. 

(1) The mathematical model for the exploration phase (𝑛𝐷 > 5) is as follows, as shown in 
Eq. (11): 𝑛𝑒𝑤𝑋ሺ𝑖, 𝑗ሻ = 𝑋𝑝𝑜𝑠ሺ𝑖, 𝑗ሻ + 𝑝𝑚 ⋅ ൫𝑥𝑝𝑜𝑠𝑏𝑒𝑠𝑡ሺ𝑗ሻ − 𝑋𝑝𝑜𝑠ሺ𝑖, 𝑗ሻ൯ ⋅ cosሺ𝜃ሻ, (11)

where 𝑛𝑒𝑤𝑋ሺ𝑖, 𝑗ሻ is the new position of individual 𝑖 in dimension 𝑗, 𝑋𝑝𝑜𝑠ሺ𝑖, 𝑗ሻ is the current 
position of individual 𝑖 in dimension 𝑗, 𝑥𝑝𝑜𝑠𝑏𝑒𝑠𝑡ሺ𝑗ሻ is the value of the global optimum in 
dimension 𝑗 for the current population, 𝑝𝑚 is the perturbation factor, defined as  𝑝𝑚 = ሺ2𝑟𝑎𝑛𝑑 − 1ሻ𝜋, used to generate random perturbations, 𝜃 is the angle factor, defined as  𝜃 = గଶ ⋅ ்ெ௔௫೔೟, used to dynamically adjust the angle, 𝑇 is the current iteration count, and 𝑀𝑎𝑥௜௧ is 
the maximum number of iterations. 

(2) The mathematical model for the exploration phase (𝑛𝐷 ≤ 5) is as follows, as shown in 
Eq. (12): 𝑛𝑒𝑤𝑋ሺ𝑖, 𝑗ሻ = 𝑡𝐸𝑂 ⋅ 𝑋𝑝𝑜𝑠ሺ𝑖, 𝑗ሻ        +𝑟𝑎𝑛𝑑1 ⋅ ൫𝑋𝑝𝑜𝑠ሺ𝑖𝑚ሺ1ሻ, 𝑗ሻ − 𝑋𝑝𝑜𝑠ሺ𝑖, 𝑗ሻ൯ + 𝑟𝑎𝑛𝑑2 ⋅ ൫𝑋𝑝𝑜𝑠ሺ𝑖𝑚ሺ2ሻ, 𝑗ሻ − 𝑋𝑝𝑜𝑠ሺ𝑖, 𝑗ሻ൯, (12)

where 𝑛𝑒𝑤𝑋ሺ𝑖, 𝑗ሻ is the new position of individual 𝑖 in dimension 𝑗, 𝑋𝑝𝑜𝑠ሺ𝑖, 𝑗ሻ is the current 
position of individual 𝑖 in dimension 𝑗, 𝑡𝐸𝑂 is the dynamic attenuation factor, defined as  𝑡𝐸𝑂 = ሺெ௔௫೔௧ି்ሻெ௔௫೔೟ ⋅ cosሺ𝜃ሻ, 𝑋𝑝𝑜𝑠ሺ𝑖𝑚ሺ1ሻ, 𝑗ሻ is the position in dimension 𝑗 of the first randomly 
selected individual in the population, 𝑋𝑝𝑜𝑠ሺ𝑖𝑚ሺ2ሻ, 𝑗ሻ is the position in dimension 𝑗 of the second 
randomly selected individual in the population, and 𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2 are random perturbation 
factors in the range [–1, 1]. 

In the exploitation phase, the SFOA uses a bidirectional parallel search strategy and 
regeneration mechanism to simulate starfish predation and regeneration. The predation phase 
drives the approach to the global optimum through information sharing among solutions, while 
the regeneration mechanism enhances the algorithm's global convergence, preventing it from 
falling into a local optimum. The mathematical model of the predation behavior is shown in 
Eq. (13): 𝑛𝑒𝑤𝑋ሺ𝑖, : ሻ = 𝑋𝑝𝑜𝑠ሺ𝑖, : ሻ + 𝑟ଵ ⋅ ቀ𝑥𝑝𝑜𝑠𝑏𝑒𝑠𝑡 − 𝑋𝑝𝑜𝑠൫𝑑𝑓൫𝑘𝑝ሺ1ሻ൯, : ൯ቁ        +𝑟ଶ ⋅ ቀ𝑥𝑝𝑜𝑠𝑏𝑒𝑠𝑡 − 𝑋𝑝𝑜𝑠൫𝑑𝑓൫𝑘𝑝ሺ2ሻ൯, : ൯ቁ, (13)

where 𝑛𝑒𝑤𝑋ሺ𝑖, : ሻ is the new position of individual 𝑖 (in vector form, including all dimensions), 𝑋𝑝𝑜𝑠ሺ𝑖, : ሻ is the current position of individual 𝑖 (in vector form, including all dimensions), 𝑥𝑝𝑜𝑠𝑏𝑒𝑠𝑡 is the global optimum of the current population (in vector form, including all 
dimensions), 𝑋𝑝𝑜𝑠൫𝑑𝑓൫𝑘𝑝ሺ1ሻ൯, : ൯ is the position of the first randomly selected individual, 𝑋𝑝𝑜𝑠൫𝑑𝑓൫𝑘𝑝ሺ2ሻ൯, : ൯ is the position of the second randomly selected individual, and 𝑟ଵ, 𝑟ଶ are 
random weight factors in the range [0, 1]. 

The mathematical model of the regeneration behavior is shown in Eq. (14): 
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𝑛𝑒𝑤𝑋ሺ𝑖, : ሻ = 𝑒ି்⋅ே௣௢௣ெ௔௫೔೟ ⋅ 𝑋𝑝𝑜𝑠ሺ𝑖, : ሻ, (14)

where 𝑇 is current iteration count, 𝑁𝑝𝑜𝑝 is number of individuals in the population, 𝑀𝑎𝑥௜௧ is 
maximum number of iterations, and 𝑋𝑝𝑜𝑠ሺ𝑖, : ሻ is position of the current individual (i.e., the 
current solution). 

The exploitation phase is a highlight of the SFOA. It simulates starfish predation and 
regeneration. The predation mechanism guides individuals to the global optimum via information 
sharing, speeding up convergence. Regeneration introduces new diversity to prevent local optima 
and premature convergence. This bio-inspired strategy revitalizes the population for collaborative 
optimization. The bidirectional exploitation strategy balances global and local search, giving 
SFOA strong convergence in complex problems. 

Then comes the algorithm update phase. Here, each individual starfish's position is boundary-
constrained to stay within the search space. New fitness is calculated and compared to the original. 
If better, the position and fitness are updated. If the individual's fitness surpasses the current global 
optimum, the global optimum and its position are updated. This iterative process gradually 
approaches the optimal solution. 

In summary, Hybrid exploration combines high-dimensional and one-dimensional search 
strategies to balance global and local search efficiency. Adaptive regeneration mimics the 
starfish’s arm regeneration, reintroducing diversity into the population and avoiding premature 
convergence. The flowchart of the Starfish Optimization Algorithm is shown in Fig. 3. 

 
Fig. 3. Flowchart of the starfish optimization algorithm 
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To provide a clearer understanding of the algorithm's operational logic, the flowchart in Fig. 3 
illustrates the complete iterative process of the SFOA. The algorithm begins by initializing a 
population of candidate solutions and evaluating their fitness based on the multi-objective cost 
function. At each iteration, a decision is made to perform exploration or exploitation based on a 
dynamic balance factor (GP). In the exploration phase, either a five-dimensional or one-
dimensional search pattern is selected depending on the number of problem dimensions, 
enhancing adaptability and computational efficiency. When in the exploitation phase, the 
algorithm mimics starfish behaviors such as predation and regeneration to refine the search around 
promising regions. Throughout the process, individual positions and fitness values are updated, 
and the global best solution is tracked. After convergence, the optimal trajectory is obtained. In 
terms of computational complexity, the primary factors influencing performance are the 
population size, the number of iterations, and the number of decision variables. Each iteration 
involves operations for fitness evaluation and position updates. Consequently, the overall time 
complexity of the algorithm is, which is manageable for moderate-scale problems but may require 
optimization techniques such as parallelization in large-scale or real-time applications.  

To cope with large-scale scenarios, SFOA can be parallelized through a two-level strategy: 
(i) individual-level parallelism maps the fitness evaluation of all Npop starfish to GPU threads 
within a single CUDA kernel, eliminating the Npop factor from the critical path; (ii) data-level 
parallelism partitions the high-resolution DEM into tiles, each processed by an independent MPI 
process, with intra-process OpenMP further accelerating per-tile calculations.  

The pseudocode for the Starfish Optimization Algorithm is shown in Table 1. 

Table 1. The pseudocode for the starfish optimization algorithm 
Algorithm 1 SFOA Pseudo-code 
Input: 𝑁𝑝𝑜𝑝, 𝑀𝑎𝑥௜௧, 𝑙𝑏, 𝑢𝑏, 𝑛𝐷, 𝑓𝑜𝑏𝑗 
Output: 𝑓𝑣𝑎𝑙𝑏𝑒𝑠𝑡, 𝑥𝑝𝑜𝑠𝑏𝑒𝑠𝑡, Curve 
01: Set population size 𝑁௣௢௣ and maximum iterations 𝑀𝑎𝑥௜௧ 
02: Initialize population and calculate fitness for each individual 
03: While 𝑡 <= 𝑀𝑎𝑥௜௧ 
04: Update parameters 𝐺𝑃, theta, 𝑡𝐸𝑂 based on 𝑡 
05: If rand < 𝐺𝑃 % Exploration phase 
06: Update positions for each search agent based on high or low dimension strategy 
07: Else % Development phase 
08: Update positions based on regeneration behavior for last agent 
09: End If 
10: Calculate fitness for each agent and update best solution 
11: Update convergence curve (Curve) 
12: 𝑡 = 𝑡 + 1 
13: End While 

From a mathematical modeling perspective, the SFOA simulates the flexibility of starfish 
through random factors and multi-dimensional search patterns in its exploration behavior. The 
predation and regeneration mechanisms dynamically adjust individual positions during iterations, 
promoting the approach to the global optimum based on the distribution of current solutions. This 
mathematical framework enables the SFOA to adaptively optimize paths, offering a solid 
theoretical foundation for multi-objective optimization problems. 

These SFOA designs deliver outstanding optimization performance in benchmark tests and 
real-world engineering problems. Literature verification shows that compared with 100 
meta-heuristic algorithms, the SFOA surpasses 95 % in accuracy and 97 % in efficiency, 
especially in high-dimensional optimization problems. 

This paper’s experimental results further confirm the SFOA’s excellent performance in 
complex optimization problems. Compared with traditional algorithms (Particle Swarm 
Optimization and Ant Colony Algorithm), the SFOA offers higher computational efficiency, 
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stronger global search ability, and better performance in path smoothness and threat avoidance. 
This makes the SFOA ideal for high-dimensional, multi-constraint optimization problems like 
UAV 3D path planning, logistics optimization, and resource allocation. 

4. Starfish optimization algorithm for UAV path simulation 

This chapter will conduct simulation modeling in MATLAB, with the model involving four 
key elements. The digital elevation model (DEM) provides terrain elevation data to determine 
feasible flight altitudes; cylindrical obstacles restrict accessible airspace and introduce safety 
constraints; mission nodes represent spatial targets with mission requirements; and four 
quantitative constraints – path length, safety distance, altitude range, and smoothness collectively 
evaluate the feasibility and quality of the planned drone trajectory. 

4.1. Simulation settings 

To verify the SFOA’s capability in UAV path planning, this study conducts simulations with 
detailed designs of the algorithm's key parameters and path-planning constraints, as shown in 
Table 2. The parameter settings used in this study, such as population size, GP, and exploration 
angle, were determined based on preliminary experiments and established references. 

Table 2. Algorithm parameter settings 
Category Parameter 

Population size 50 
Initial balance factor between global and 

local search (GP) 
0.5, Parameter to control the exploration and exploitation 

behavior of the algorithm 
Number of path nodes (n) 15 (excluding the starting and ending points) 

Optimization dimension (nD) 45 (𝑛×3) 
UAV diameter (D) 1 m 

In experiment, the start and end points are 
set as Start = (260, 50, 150), End = (450, 850, 150) 

Flight altitude constraints of the UAV The UAV’s flight altitude is restricted to between  𝑧௠௜௡ = 100 m and 𝑧௠௔௫ = 200 m above the terrain surface 
Maximum turning angle 𝜙௠௔௫ = 45° 
Maximum climb angle 𝜃௠௔௫ = 45° 

Safety distance 𝑆 = 10 m 

Nine threat regions (cylinders) are arranged in the terrain, with parameters including center 
coordinates, height, and radius. For specifics on all obstacles, refer to Table 3. 

Table 3. Coordinates, radius and heights of all obstacles 
Obstacle ID Center points coordinates ሺ𝑥, 𝑦, 𝑧ሻ Radius Heights 

1 250, 150, 150 50 350 
2 200, 650, 150 50 350 
3 300, 460, 100 50 350 
4 400, 700, 150 50 350 
5 450, 450, 150 50 350 
6 600, 200, 150 50 350 
7 640, 750, 150 50 350 
8 800, 600, 100 50 350 
9 800, 420, 150 50 350 

The UAV path objective function consists of four parts: path length cost 𝐽ଵ, threat cost 𝐽ଶ, flight 
altitude cost 𝐽ଷ, and smoothness cost 𝐽ସ. The total cost 𝐽௧௢௧௔௟ is their weighted sum, calculated by 
Eq. (15). The optimal solution is defined as the minimum comprehensive cost across all candidate 
trajectories evaluated during the iterative process. SFOA updates the global best position 
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whenever a better solution is found, and the final reported optimal cost corresponds to the lowest 
cost obtained at convergence: 𝐽௧௢௧௔௟ = 𝑏ଵ𝐽ଵ + 𝑏ଶ𝐽ଶ + 𝑏ଷ𝐽ଷ + 𝑏ସ𝐽ସ. (15)

In this paper’s simulation, the weight coefficients are set as follows: 𝑏ଵ = 0.2, 𝑏ଶ = 0.4,  𝑏ଷ = 0.2, 𝑏ସ = 0.2. 

4.2. Comparison and analysis of simulation results 

To assess the effectiveness and scalability of the SFOA-based drone path planning method, 
we conducted two simulation experiments under different levels of environmental complexity. 
The first experiment was designed in a relatively simple scenario with five static obstacles, while 
the second experiment involved a more complex environment with nine obstacles. In both 
experiments, we compared the performance of SFOA with two widely used meta-heuristic 
algorithms: ant colony optimization (ACO) and particle swarm optimization (PSO). The 
experiments collected data at 100 iterations, 500 iterations, and 1,000 iterations to assess the 
baseline performance and scalability of the algorithms as problem complexity and the number of 
iterations increased. 

4.2.1. Experiments in a simple environment 

In this scenario, the drone is tasked with navigating a 3D environment containing five 
cylindrical threat zones. Environmental parameters are shown in Table 3, and SFOA parameter 
settings are shown in Table 2. The population sizes for ACO and PSO are the same as those for 
SFOA. These three algorithms were executed with 100, 500, and 1000 iterations, respectively. For 
each case, we simultaneously present the optimized 3D flight trajectories, as shown in Fig. 4. The 
corresponding convergence curves are shown in Fig. 5. 

 
a) Top view of flight path planning after  

100 iterations of different algorithms 

 
b) Side view of flight path planning after  

100 iterations of different algorithms 

 
c) Top view of flight path planning after  

500 iterations of different algorithms 

 
d) Side view of flight path planning after  

500 iterations of different algorithms 
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e) Top view of flight path planning after  
1000 iterations of different algorithms 

 
f) Side view of flight path planning after  
1000 iterations of different algorithms 

Fig. 4. Trajectory planning diagram in a simple experimental environment 

The convergence curve is shown in Fig. 5. 

 
a) Fitness convergence curve diagram when 
different algorithms are iterated 100 times 

 
b) Fitness convergence curve diagram when  
different algorithms are iterated 500 times 

 
c) Fitness convergence curve diagram when different algorithms are iterated 1000 times 

Fig. 5. Algorithm fitness convergence curve diagram 

Algorithm fitness convergence curve diagram Fig. 4 shows the 3D path planning results and 
convergence curves of ACO, PSO, and SFOA under three different iteration settings. The subplots 
on the far left of each row display the top-down trajectories on the terrain, while the subplots on 
the right show the corresponding 3D flight paths between obstacles. In all cases, SFOA paths 
consistently achieve shorter and smoother routes, more efficiently avoiding obstacles while 
maintaining a balanced altitude distribution. Especially at low iteration counts, SFOA can find 
competitive paths as early as 100 iterations, while ACO and PSO produce longer and less 
optimized trajectories. This indicates that SFOA exhibits superior convergence performance in 
the early stages 

The convergence plot in Fig. 5 further supports this observation. At 100 iterations, SFOA 
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exhibits the fastest trend of decreasing total cost, significantly outperforming ACO and PSO. At 
500 and 1000 iterations, SFOA continues to improve steadily and reaches the lowest final cost, 
while ACO stagnates early on and PSO converges at a slower rate. As the number of iterations 
increases, the gap between SFOA and the other two algorithms widens further, highlighting 
SFOA's robustness and scalability. 

Specific experimental data are shown in Table 4. 

Table 4. Comparison of simulation results 
Iteration Algorithm Time taken (s) Average Standard deviation Optimal value 

100 
SFOA 0.69 220.0087 37.4293 196.1974 
ACO 0.74 319.4148 26.7407 307.3099 
PSO 0.71 238.7353 34.7276 221.4830 

500 
SFOA 3.58 191.6742 34.6347 171.6709 
ACO 3.94 295.6567 18.1126 315.2578 
PSO 3.99 228.8928 20.5604 292.1947 

1000 
SFOA 6.18 204.9176 51.0014 185.1284 
ACO 6.87 302.8948 4.7793 302.2744 
PSO 6.73 267.3955 14.6430 265.1127 

Table 4 summarizes the best cost achieved by SFOA, ACO, and PSO in the simple 
environment with five obstacles. SFOA significantly outperforms both comparison algorithms. At 
100 iterations, SFOA reduces costs by 36.15 % compared to ACO and 11.42 % compared to PSO. 
With increased iterations, the performance advantage remains stable or improves – at 
500 iterations, the improvement reaches 45.52 % (vs ACO) and 41.24 % (vs PSO). These results 
demonstrate SFOA’s superior search efficiency and optimization accuracy even in relatively 
simple terrain configurations. 

Overall, trajectory visualization and convergence behavior indicate that SFOA can quickly and 
reliably generate high-quality paths in simple environments, making it a powerful optimization 
algorithm for real-time or time-constrained drone missions. 

4.2.2. Experiment in a complex environment 

To further evaluate scalability, we conducted a second experiment in a more complex scenario 
with higher obstacle density, which included nine obstacles and increased spatial constraints and 
solution search space. The test settings used in the experiment are shown in Tables 2 and 3. For 
each case, we present the optimized 3D flight trajectories, as shown in Fig. 6. The corresponding 
convergence curves are shown in Fig. 7. 

The convergence curve is shown in Fig. 7. 

 
a) Top view of flight path planning after  

100 iterations of different algorithms 

 
b) Side view of flight path planning after  

100 iterations of different algorithms 
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c) Top view of flight path planning after  

500 iterations of different algorithms 

 
d) Side view of flight path planning after  

500 iterations of different algorithms 

 
e) Top view of flight path planning after  
1000 iterations of different algorithms 

 
f) Side view of flight path planning after  
1000 iterations of different algorithms 

Fig. 6. Trajectory planning diagram in a Complex experimental environment 

 
a) Fitness convergence curve diagram when 
different algorithms are iterated 100 times 

 
b) Fitness convergence curve diagram when  
different algorithms are iterated 500 times 

 
c) Fitness convergence curve diagram when different algorithms are iterated 1000 times 

Fig. 7. Algorithm fitness convergence curve diagram 
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Fig. 6 shows the simulation results in a more challenging 3D terrain containing nine cylindrical 
obstacles. The results show three iteration settings for the ACO, PSO, and proposed SFOA 
algorithms. Like the previous section, each row shows the top-view paths, 3D flights trajectories, 
and convergence curves for the three algorithms. 

As can be seen from the figure, the superiority of SFOA becomes even more evident under 
these more constrained conditions. Even in complex environments, the SFOA trajectory adopts 
shorter, smoother, and more obstacle-avoidant paths across all iteration settings. 

In the convergence curve plot, the SFOA curve rapidly decreases and converges to a lower 
final cost than the other two algorithms, and this holds true at all iteration levels. The red curve 
also exhibits lower volatility, indicating better stability and fewer local minimum traps. 
Additionally, a visual comparison of 3D paths shows that SFOA navigates more effectively in 
narrow spaces between obstacles. This supports the conclusion that SFOA has stronger global 
search and constraint handling capabilities, especially as environmental complexity increases. 

Specific experimental data are shown in Table 4. 

Table 5. Comparison of simulation results 
Iteration Algorithm Time taken (s) Average Standard deviation Optimal value 

100 
SFOA 0.89 299.5491 43.9956 264.7615 
ACO 0.98 367.8600 43.5554 339.1565 
PSO 1.01 335.1795 55.7187 312.0123 

500 
SFOA 4.43 214.0971 66.4972 171.6709 
ACO 5.11 323.1564 26.7845 315.2578 
PSO 4.97 299.9072 21.4181 292.1947 

1000 
SFOA 8.52 173.0144 14.0124 164.3933 
ACO 9.86 312.5457 16.2351 309.1856 
PSO 9.90 259.6608 17.3646 256.1049 

The quantitative comparison in Table 5 highlights the performance advantage of SFOA over 
ACO and PSO in the complex environment. At 100 iterations, SFOA reduces the best cost by 
21.91 % and 15.12 % compared to ACO and PSO, respectively. With more iterations, the 
advantage becomes more pronounced – at 1000 iterations, SFOA outperforms ACO and PSO by 
46.84 % and 35.81 %, respectively. These results affirm the algorithm’s superior global search 
capability and convergence performance, particularly in high-dimensional, obstacle-dense 
environments. 

The two simulation experiments conducted in this study comprehensively evaluated the 
performance of the SFOA-based path planning algorithm in environments of varying complexity. 
In a simple scenario with five obstacles, SFOA demonstrated faster convergence speed and better 
path quality even with a limited number of iterations. Compared to ACO and PSO, SFOA 
consistently generates shorter, smoother trajectories with lower cost values and better obstacle 
avoidance performance. In a complex environment involving nine obstacles, the advantages of 
SFOA become even more pronounced. As the number of dimensions and obstacle density 
increase, the algorithm maintains robust performance. It demonstrates strong global search 
capabilities and is less prone to premature convergence. Convergence curves further confirm its 
efficiency and stability at different iteration levels. 

In both cases, SFOA achieves the lowest optimal cost, smallest standard deviation, and fastest 
convergence speed in most test settings, not only demonstrating its effectiveness but also 
consistency. Additionally, its performance scales well with increasing problem complexity and 
iteration counts, supporting its application in constrained and large-scale drone mission planning. 
These results validate the effectiveness, robustness, and scalability of the SFOA algorithm in 
multi-objective 3D drone trajectory planning tasks, making it a competitive choice for real-world 
deployment. 
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5. Conclusions 

This study proposes and validates a three-dimensional UAV path-planning method based on 
the Starfish Optimization Algorithm tailored for complex environments. A comprehensive cost 
function is formulated, integrating multiple constraints, such as path length, flight altitude, 
obstacle avoidance, and path smoothness to address the multi-objective nature of the problem. A 
detailed 3D environmental model is constructed, incorporating terrain undulations and threat 
regions, and multiple optimization objectives are designed accordingly. 

Experimental results demonstrate that SFOA exhibits strong global and local optimization 
capabilities, enabling it to efficiently generate safe, smooth, and optimal flight paths in complex 
3D environments. Compared to Ant Colony Optimization and Particle Swarm Optimization, 
SFOA achieves superior performance in terms of path smoothness, convergence speed, and 
overall cost. During the optimization process, it effectively avoids obstacles, shortens flight time, 
and reduces energy consumption, thereby validating its effectiveness in multi-objective path 
planning. 

Despite its promising performance, the current implementation of SFOA has certain 
limitations. The high iteration count, and computational complexity of the cost function limit its 
applicability in real-time scenarios. Moreover, the algorithm relies on manually tuned parameters, 
which may require adjustment for different operational environments, reducing its adaptability. 
Additionally, the current model assumes static threat configurations; its performance may degrade 
in dynamic environments involving moving obstacles. 

Future research will focus on improving the real-time responsiveness, robustness, and 
scalability of SFOA. Key directions include integrating adaptive parameter tuning mechanisms, 
employing parallel computing for real-time execution, extending the model to handle dynamic 
environmental changes, and exploring its applicability in multi-UAV coordination and real-time 
path adjustment in dynamic mission contexts. 

Acknowledgements 

This study has been supported by the Open Fund Project of Key Laboratory of Civil Aviation 
Flight Technology and Fight Safety (Grant No. FZ2021ZZ06). This work has also been supported 
by Central University Basic Research Projects (Grant No. 24CAFUC04002) and the Sichuan 
Engineering Research Center for Smart Operation and Maintenance of Civil Aviation Airports 
(Grant No. JCZX2023ZZ07 and No. JCZX2024ZZ25). This work has also been supported by 
Sichuan Flight Engineering Technology Research Center Project (Grant No. GY2024-30D). This 
work has also been supported by Student Innovation and Entrepreneurship Training Program 
(Grant No. 202510624005). 

Data availability 

The datasets generated during and/or analyzed during the current study are available from the 
corresponding author on reasonable request. 

Author contributions 

Weiqi Feng was responsible for the conceptualization, formal analysis of this research, data 
curation, writing-original draft preparation. Yujie Fu and Yong Yang were responsible for the 
research methodology, formal analysis, and visualized the experimental results. Changjian Gao 
and Kaijun Xu validated the effectiveness of the experimental results and contributed to the 
manuscript writing. 



THREE-DIMENSIONAL TRAJECTORY PLANNING FOR UNMANNED AERIAL VEHICLES BASED ON THE STARFISH OPTIMIZATION ALGORITHM 
(SFOA). WEIQI FENG, YUJIE FU, YONG YANG, CHANGJIAN GAO, KAIJUN XU 

 JOURNAL OF MEASUREMENTS IN ENGINEERING 17 

Conflict of interest 

The authors declare that they have no conflict of interest. 

References 

[1] Y. Yang, Y. Fu, D. Lu, H. Xiang, and K. Xu, “Three-dimensional unmanned aerial vehicle trajectory 
planning based on the improved whale optimization algorithm,” Symmetry, Vol. 16, No. 12, p. 1561, 
Nov. 2024, https://doi.org/10.3390/sym16121561 

[2] Y. Song, X.-L. Ding, and C. Cheng, “UAV path planning based on improved ant colony algorithm,” 
Manufacturing Automation, Vol. 46, No. 12, pp. 61–67, Dec. 2024, https://doi.org/10.3969/j.issn.1009-
0134.2024.12.009 

[3] G. Nannicini, D. Delling, D. Schultes, and L. Liberti, “BidirectionalA* search on time‐dependent road 
networks,” Networks, Vol. 59, No. 2, pp. 240–251, May 2011, https://doi.org/10.1002/net.20438 

[4] R. A. Conn and M. Kam, “On the moving-obstacle path-planning algorithm of Shih, Lee, and Gruver,” 
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 27, No. 1,  
pp. 136–138, Feb. 1997, https://doi.org/10.1109/3477.552194 

[5] M. G. Park, J. H. Jeon, and M. C. Lee, “Obstacle avoidance for mobile robots using artificial potential 
field approach with simulated annealing,” in IEEE International Symposium on Industrial Electronics 
Proceedings, Vol. 3, pp. 1530–1535, Nov. 2025, https://doi.org/10.1109/isie.2001.931933 

[6] F. Aurenhammer, “Voronoi diagrams-a survey of a fundamental geometric data structure,” ACM 
Computing Surveys, Vol. 23, No. 3, pp. 345–405, Sep. 1991, https://doi.org/10.1145/116873.116880 

[7] Y. Chen, J. Yu, Y. Mei, S. Zhang, X. Ai, and Z. Jia, “Trajectory optimization of multiple quad-rotor 
UAVs in collaborative assembling task,” Chinese Journal of Aeronautics, Vol. 29, No. 1, pp. 184–201, 
Feb. 2016, https://doi.org/10.1016/j.cja.2015.12.008 

[8] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: 
artificial bee colony (ABC) algorithm,” Journal of Global Optimization, Vol. 39, No. 3, pp. 459–471, 
Oct. 2007, https://doi.org/10.1007/s10898-007-9149-x 

[9] C. Mou, W. Qing-Xian, and J. Chang-Sheng, “A modified ant optimization algorithm for path planning 
of UCAV,” Applied Soft Computing, Vol. 8, No. 4, pp. 1712–1718, Sep. 2008, 
https://doi.org/10.1016/j.asoc.2007.10.011 

[10] Y. Liu, X. Zhang, Y. Zhang, and X. Guan, “Collision free 4D path planning for multiple UAVs based 
on spatial refined voting mechanism and PSO approach,” Chinese Journal of Aeronautics, Vol. 32, 
No. 6, pp. 1504–1519, Jun. 2019, https://doi.org/10.1016/j.cja.2019.03.026 

[11] Y. Hao, W. Zu, and Y. Zhao, “Real-time obstacle avoidance method based on polar coordination 
particle swarm optimization in dynamic environment,” in 2nd IEEE Conference on Industrial 
Electronics and Applications, pp. 1612–1617, May 2007, https://doi.org/10.1109/iciea.2007.4318681 

[12] C. Zhang, Z. Zhen, D. Wang, and M. Li, “UAV path planning method based on ant colony 
optimization,” in Chinese Control and Decision Conference (CCDC), pp. 3790–3792, May 2010, 
https://doi.org/10.1109/ccdc.2010.5498477 

[13] Z. Xu, “Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective 
particle swarm optimization,” Journal of Systems Engineering and Electronics, Vol. 31, No. 1,  
pp. 130–141, Jan. 2020, https://doi.org/10.21629/jsee.2020.01.14 

[14] Z. Xu, Y. Wang, and Q. Xiong, “Research on photomask defects path optimization based on ant colony 
algorithm mixed with 2-opt,” Optoelectronic Technology, Vol. 41, No. 4, pp. 274–279, 2021. 

[15] J. Zhan, C. Niu, and X. Wan, “Grey wolf optimization algorithm based on optimal individual 
information fusion strategy,” Journal of Information Engineering University, Vol. 25, No. 6,  
pp. 710–716, Dec. 2024. 

[16] C. Zhong, G. Li, Z. Meng, H. Li, A. R. Yildiz, and S. Mirjalili, “Starfish optimization algorithm 
(SFOA): a bio-inspired metaheuristic algorithm for global optimization compared with 100 
optimizers,” Neural Computing and Applications, Vol. 37, No. 5, pp. 3641–3683, Dec. 2024, 
https://doi.org/10.1007/s00521-024-10694-1 

[17] M. D. Phung and Q. P. Ha, “Safety-enhanced UAV path planning with spherical vector-based particle 
swarm optimization,” Applied Soft Computing, Vol. 107, p. 107376, Aug. 2021, 
https://doi.org/10.1016/j.asoc.2021.107376 



THREE-DIMENSIONAL TRAJECTORY PLANNING FOR UNMANNED AERIAL VEHICLES BASED ON THE STARFISH OPTIMIZATION ALGORITHM 
(SFOA). WEIQI FENG, YUJIE FU, YONG YANG, CHANGJIAN GAO, KAIJUN XU 

18 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

[18] Y. Yang, Y. Fu, R. Xin, W. Feng, and K. Xu, “Multi-UAV trajectory planning based on a two-layer 
algorithm under four-dimensional constraints,” Drones, Vol. 9, No. 7, p. 471, Jul. 2025, 
https://doi.org/10.3390/drones9070471 

[19] J. Akshya et al., “Geometric optimisation of unmanned aerial vehicle trajectories in uncertain 
environments,” Vehicular Communications, Vol. 54, p. 100938, Aug. 2025, 
https://doi.org/10.1016/j.vehcom.2025.100938 

[20] R. Li, G. Chen, Y. Lu, K. Qin, T. Zhou, and W. Wang, “Longitudinal perching trajectory planning for 
a fixed-wing unmanned aerial vehicle at high angle of attack based on the estimation of region of 
attraction,” Drones, Vol. 9, No. 2, p. 87, Jan. 2025, https://doi.org/10.3390/drones9020087 

[21] T. Zhang, J. Yu, J. Li, and J. Wei, “Upgraded trajectory planning method deployed in autonomous 
exploration for unmanned aerial vehicle,” International Journal of Advanced Robotic Systems, Vol. 19, 
No. 4, Jul. 2022, https://doi.org/10.1177/17298806221109697 

[22] S. Lee, H. Kang, J. Lee, and Y. Kim, “Optimal policy of pitch-hold phase for mine detection of UAV 
based on mixed-integer linear programming,” International Journal of Aeronautical and Space 
Sciences, Vol. 23, No. 4, pp. 746–754, Mar. 2022, https://doi.org/10.1007/s42405-022-00454-7 

 

Weiqi Feng received the B.S. degree in information countermeasures technology from 
Southwest University of Science and Technology, and the M.S. degree in transportation 
planning and management from the Civil Aviation Flight University of China. Currently, 
he is a lecturer at the Civil Aviation Flight University of China. His current main research 
interests include flight operational safety, airport electromagnetic environment, intelligent 
transportation and transportation informatization. 

 

Yujie Fu received her B.S. degree in Electrical Engineering and Automation from Suzhou 
Institute of Technology, Jiangsu University of Science and Technology, and her current 
M.S. degree is in Transportation, Civil Aviation Flight University of China. Her current 
research interests include intelligent transportation, intelligent optimization algorithms, 
and trajectory planning. 

 

Yong Yang received the B.S. degree in fluid mechanics from Northwestern Polytechnical 
University, the M.S. degree in fluid mechanics from Northwestern Polytechnical 
University, and the Ph.D. degree in transportation planning and management from 
Southwest Jiaotong University. Now, he is an associate professor and serves as a Master’s 
tutor for the Civil Aviation Flight University of China. His current main research interests 
include aviation networks, flight operation safety, intelligent transportation and 
transportation informatization, and information fusion theory. 

 

Changjian Gao received the B.S degree in flight technology from the Civil Aviation Flight 
University of China. His current main research interests include intelligent algorithms and 
track planning. 

 

Kaijun Xu received the B.S. degree in communication engineering and Ph.D. degree in 
traffic information engineering and control from Southwest Jiaotong University, China, in 
2004 and 2010, respectively. He was a post-doctoral fellow with XX, Beihang University 
from 2012 to 2016. He was a visiting scholar with the department Queen Marry University 
of London, UK, from 2021 to 2022. Now he is a professor with the school of Civil Aviation 
Flight University of China, Gaughan, China. His current main research interests include 
unmanned aerial vehicle communications, modern navigation technology, flight 
technology and flight safety. 

 




