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Abstract. When solving the path planning problem for Unmanned Aerial Vehicle (UAV) in a
three-dimensional complex environment, traditional algorithms often face issues like falling into
local optimum easily, insufficient global search ability, poor efficiency and defective optimization
result. To address these issues, a three-dimensional path planning method is proposed based on
the Starfish Optimization Algorithm (SFOA). This algorithm, inspired by the exploration, preying,
and regeneration behaviors of starfish, balances global search and local exploitation, enhancing
UAV trajectory planning in complex environments. The study constructs a complex
three-dimensional environment model and designs a comprehensive optimization objective by
covering constraints like trajectory length, safety, flight height, and smoothness. The trajectory
planning framework proposed in this study is designed for pre-mission planning, generating UAV
paths offline based on known static terrain and threat information. Comparative experimental
results with Ant Colony Optimization and Particle Swarm Optimization show that the SFOA-
based UAV trajectory planning achieves significant improvements in comprehensive cost and
convergence speed, demonstrating superior global optimization performance. This offers an
innovative solution for UAV efficiently and safe trajectory planning in complex environments.

Keywords: starfish optimization algorithm, unmanned aerial vehicle, three-dimensional
trajectory planning, obstacle-avoidance optimization.

1. Introduction

Unmanned aerial vehicles (UAVs), as emerging aerial vehicles, are becoming increasingly
prevalent in military, civilian, and commercial sectors. However, trajectory planning remains a
critical factor restricting their effectiveness. UAV trajectory planning aims to find the optimal
flight path from the current position to the target position in each three-dimensional space while
ensuring flight safety. In actual flights, UAVs' positions change constantly, and their operating
environments are often highly complex. Therefore, flight paths must be optimized in real-time
based on environmental conditions and mission requirements to handle uncertainties and avoid
collisions. Given the complex flight constraints and dynamic environments, it is essential to
develop constraint models and apply efficient optimization methods for solving.

In recent years, an increasing number of researchers have integrated UAV operation features
and low-altitude flight environment characteristics to explore UAV trajectory planning using
various algorithms [1], [2]. In complex environments, UAV trajectory planning faces multiple
challenges, such as obstacle avoidance in uncertain terrains, threat region evasion, dynamic flight
constraints including turning radius and climb angle limits, and the need for real-time path updates.
Many classical methods, such as the A* algorithm [3], artificial potential field method [4], [5],
and Voronoi diagrams [6], are extensively applied in path planning but are mainly suitable for
two-dimensional space. For complex three-dimensional path planning, intelligent methods have
gained considerable attention. Typical examples include genetic algorithms [7], artificial bee
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colonies [8], ant colony optimization [9], and particle swarm optimization [10], [11]. In UAV path
planning, the ant colony algorithm stands out for its simple coding and effective optimization
guidance [12]. Particle swarm optimization has also proven effective for UAV path planning in
known static rough terrains, offering fast convergence, global optimization, and parallel search
advantages [13].

In UAV path planning, ACO guides agents by combining pheromone trails and heuristic. Each
UAV probabilistically selects the next waypoint according to the pheromone concentration and
heuristic desirability, gradually reinforcing shorter and safer routes while weakening less efficient
ones [14]. In addressing complex problems, the ant colony algorithm has drawbacks like slow
convergence and low solution precision defined here as the residual gap between returned cost
and the theoretical optimum; typical mitigations include hybridizing ACO with local 2-opt
refinement or adaptive tuning of pheromone parameters. The particle swarm algorithm is sensitive
to parameters and prone to local optima. To tackle these issues, meta-heuristic algorithms have
emerged as an effective approach for complex optimization problems [15]. They can effectively
avoid local optima, offering strong adaptability and robustness for handling diverse and complex
optimization challenges. Three-dimensional intelligent methods refer to bio-inspired and heuristic
optimization algorithms capable of handling multi-objective UAV path planning in complex 3D
terrains. These include Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), and Starfish optimization algorithm (SFOA).

Unlike Grey Wolf Optimization (GWO) and Whale Optimization Algorithm (WOA), which
primarily relies on fixed encircling or spiral update patterns, the Starfish Optimization Algorithm
(SFOA) combines five-dimensional hybrid exploration and adaptive regeneration mechanisms
inspired by starfish arm coordination. This dual-phase search allows SFOA to balance exploration
and exploitation more flexibly in high-dimensional spaces such as 3D UAV path planning. The
Starfish Optimization Algorithm (SFOA) is a novel search strategy inspired by the exploration,
foraging, and regeneration behaviors of starfish in nature, operating in two phases: exploration
and exploitation. During the exploration phase, the selection between five-dimensional and one-
dimensional search strategies is based on the number of optimization variables (nD). When
nD > 5, a five-dimensional pattern ensures sufficient global exploration across multiple
dimensions. When nD < 5, the search space is narrower and requires more precision, so a one-
dimensional search improves convergence accuracy and reduces redundant computation, it uses a
hybrid search strategy combining five-dimensional and one-dimensional search patterns to boost
computational efficiency while maintaining strong search capabilities. In the exploitation phase,
the algorithm mimics the foraging and regeneration of starfish, employing bidirectional search
and unique movement patterns to ensure effective convergence. Through extensive testing on
benchmark functions and engineering problems, SFOA has shown remarkable advantages in
solving global optimization problems [16].

Traditional path-planning algorithms, though effective for specific problems, still suffer from
slow convergence, local optima, and high computational complexity when dealing with complex
environments, multiple constraints, and multi-objective optimization. To address these issues, this
paper proposes a UAV path-planning method based on the Starfish Optimization Algorithm. It
leverages the bio-inspired characteristics of starfish foraging and regeneration to enhance the
global search ability and local optimization precision in path planning.

The rest of this paper is structured as follows. Section 2 presents the modeling of UAV path
planning. Section 3 explains the basic principle and characteristics of the SFOA. In Section 4,
simulation verification of UAV path planning in complex environments using SFOA is carried
out, in a complex environment with nine obstacles, SFOA reduced the best cost by up to 46.84 %
and 35.81 % compared to ACO and PSO, respectively. In a simpler five-obstacle scenario, SFOA
still achieved reductions of 45.52 % and 41.24 % over ACO and PSO. These results validate the
efficiency and robustness of SFOA in multi-objective 3D path planning, offering an innovative
and effective solution for safe and efficient UAV trajectory design in diverse and challenging
environments. Finally, Section 5 offers conclusions and suggestions for future work.
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2. Modeling of UAV path planning
2.1. Three - dimensional path constraint model for UAV

UAYV path planning is a crucial task-execution step, aiming to plot a safe, feasible, and optimal
route that meets mission requirements. In complex environments, this involves obstacle
avoidance, threat evasion, and considering flight altitude, path smoothness, and maneuverability
constraints. This paper develops a 3D path maneuverability constraint model [17], which
transforms path planning into a multi-constraint optimization problem via a comprehensive cost
function.

The UAV path-planning issue is defined as an optimization problem. The goal is to generate
the optimal path that meets various constraints by minimizing the cost function F (X;).

Path Representation: Using discrete path points allows for flexible modeling of complex paths,
enables numerical optimization, and supports better visualization and evaluation of each path
segment for cost computation. The UAV path X; is represented as a collection of discrete path
points, each with 3D coordinates. Adjacent path segments are determined strictly by this
sequential order, because the cumulative path length can only be computed by summing
consecutive segments, smoothness and turning-angle constraints require consecutive points to
calculate direction changes and time-window and safety constraints are validated along the
chronological visiting sequence of nodes. Without such ordering, it would be impossible to
evaluate the feasibility or cost of a trajectory in a consistent manner [18]. As shown in Eq. (1):

Xi={P | P =(xyu2)1=12,..,n} (1
where n is the number of path points, and P; is the 3D coordinate of the path point.
2.1.1. Path length constraint

The primary optimization objective for UAV paths is to minimize the path length. The path
length F; (X;) is defined as the sum of Euclidean distances between all adjacent path points in the
path, adjacent path segments are determined by the sequential order of the discrete path points.
Each pair P;, P;,; forms one segment for cost evaluation, as shown in Eq. (2):

n-1
BOO = Y 1P = Pl @
i=1

where P; and P;,, are two adjacent path points, and ||P; — P;,4|| denotes the Euclidean distance
between these two points.

2.1.2. Safety constraints

To prevent UAV - obstacle collisions, paths must avoid threat areas modeled as cylinders, with
their projections represented by the center C;, and radius Ry,.

Threat Cost Function: For the path segment vector P,P,, 4, the threat cost F,(X;) is determined
by the minimum distance d,, to the threat center C, as shown in Eq. (3):

0, d,>S+D+Ry,
T (PPy1) ={(S+D +Ry) —dy, D4Ry <dy <S+D+Ry, (3)
0, dkSD+Rk,

where S is the safety distance, D is the collision zone width which is related with UAV diameter,
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Ry, is the threat radius, and dj, is the minimum distance between the path segment and the threat
center. To minimize the influence of noise in minimum distance calculations, such as those
introduced by discrete sampling or terrain artifacts, such as a safety buffer S is incorporated in the
cost function. Furthermore, the elevation data is preprocessed by smoothing or interpolation to
suppress local discontinuities and ensure stability in path evaluation.

The total threat cost is given by Eq. (4):

n-1

M@=Zin@ﬁa @

i=1 k=1

where K is the total number of threats.

Py Piyq

Danger
zone

Collision
zone

Fig. 1. Determination of the threat cost
2.1.3. Flight altitude constraints

The UAV’s flight altitude must be maintained within a permissible range, between h,;, and
hmax- Consequently, a flight altitude cost function is defined.
For the path point P;, the altitude cost is calculated as Eq. (5):

hmax + hmin
—— <<
Hi — h’l 2 ’ hmm = hl = hmax: (5)

0, otherwise,

where h; is the height of path point P;, hp,;, and hp,,, are the minimum and maximum allowable
flight heights, respectively. The total altitude cost is given by Eq. (6):

F(0) = ) H, (©6)
i=1

2.1.4. Smoothness constraints

Path smoothness, determined by turning angles and climb angles, better matches UAV
dynamic characteristics. In this study, both turning angle limit and climb angle limit are set to 45°,
which is a conservative estimate derived from typical dynamic constraints of fixed-wing and
rotary-wing UAV platforms. These values are selected to ensure that generated paths are
dynamically feasible and compliant with UAV maneuvering limits, including constraints on roll
rate, pitch angle, and climb performance. Fixed-wing UAVs operating at medium airspeeds often
have turning constraints ranging between 30° and 60°, and practical climb angles usually fall
within the 20°-45° range, depending on power-to-weight ratio and airframe configuration
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[19]-[22].
The smoothness cost function is then computed as Eq. (7):
n-2
F4-(Xi) = Z(maX(O, |¢l| - ¢max) + maX(O, |9i+1 - ell - Qmax)) (7)
i=1

where ¢; is the turning angle between path segments i and i + 1, is calculated via the ground
projection of the path segments and the angle between them. The climbing angle is the angle
between a path segment and the horizontal plane. 6; and 6;,, are the climb angles for path
segments i and i + 1, which are determined by the height difference and ground projection length
of the path segments. ¢, and O, represent the maximum allowable turning and climb angles,
respectively.

2.1.5. Overall cost function

By considering the optimality, safety and feasibility constraints associated with a path X;, the
overall cost function is defined as Eq. (8):

4
FOGO) = ) b F(X)), ®)
k=1

where by, is the weight for each cost component. F; (X;) to F,(X;) represents the path length (2),
threat (4), altitude constraint (6), and smoothness (7). By defining these aspects, this paper
formulates the UAV path-planning issue as a multi-objective optimization problem. The
comprehensive cost function not only reflects path optimality but also incorporates UAV dynamic
characteristics and operational constraints, thus generating safe, smooth, and efficient 3D flight
paths. The key elements in scene modeling in this study include terrain digital elevation models,
cylindrical obstacle parameters, task node coordinates and requirements, and four quantitative
constraints.

2.2. Construction of UAV 3D environmental model

To verify the optimization performance of the Starfish Optimization Algorithm in a 3D
environment, this study uses MATLAB 2019b to simulate a 3D environment, with the ground
information of the simulated mountainous map generated through the following steps.

2.2.1. Terrain construction

In this study, the 3D terrain construction process is implemented using the MATLAB
programming language. MATLAB is used for its powerful matrix processing and visualization
capabilities, which are well-suited for modeling 3D terrain and simulating UAV flight paths.
Specifically, the code first reads elevation data from a Terrain.tif file and converts it into a 2D
matrix H, where each element represents the height at the corresponding terrain location. To
ensure the validity of the elevation data, the code further processes negative values by setting all
heights below zero to zero. The size of the elevation matrix also determines the map resolution
and horizontal dimensions, which are used to construct a mesh grid via the meshgrid function.
This grid enables the 3D terrain surface to be plotted and evaluated as part of the UAV path
planning environment.

Then, the code uses the meshgrid function to generate 2D coordinate grids, the meshgrid
function generates 2D coordinate matrices from vectors, which are necessary for mapping
elevation data over a spatial grid and creating surface plots in 3D. resulting in matrices x and y,
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which represent the horizontal and vertical coordinates of the terrain data, respectively. By
mapping the height values H to each point in the terrain through processing x and y, a complete
3D terrain model is formed, as shown in Eq. (9):

z=H(x,y). )

H(x,y) indicates the terrain height, defining the elevation at each point (x,y) in a 2D plane.
This function outlines the 3D terrain’s basic structure, with terrain height determined by the (x, y)
coordinates, which are used to depict the terrain's undulations.

2.2.2. Threat region construction

Threat regions are modeled as multiple cylinders, each represented by the mathematical
function in Eq. (10):

(x - xc)z + (y - YC)Z < RZ; Zc <z< Ze + h, (10)

where (x., V., 2.) are the coordinates of the cylinder’s base center, R is the cylinder’s radius
(indicating the horizontal threat range), and h is the cylinder's height (indicating the vertical threat
range).

The function uses analytical geometry to define a cylinder’s boundary, defining its position
and extent in 3D space. By checking whether a point (x, y, z) satisfies the inequality in Eq. (10),
the function identifies whether the point lies within the threat region, thus facilitating collision
cost computation. Multiple overlapping cylinders create a complex threat environment.

The 3D map generated by MATLAB is shown in Fig. 2.

y [m] T

x [m]

Fig. 2. 3D UAV environmental model
3. Starfish optimization algorithm

With the rapid development of meta-heuristic algorithms in optimization, bio-inspired
algorithms have shown significant superiority in solving multi-dimensional and complex
problems. Among these, the Starfish Optimization Algorithm (SFOA) is an emerging bio-inspired
meta-heuristic algorithm that simulates the behavior of starfish in nature to provide an innovative
solution for global optimization problems.

The SFOA draws inspiration from the behavioral characteristics of starfish and consists of two
main phases: exploration and exploitation. In the exploration phase, it mimics the searching ability
of starfish arms, using a hybrid five-dimensional and one-dimensional search pattern to enhance
search efficiency. In the exploitation phase, it achieves global convergence through predation and
regeneration mechanisms.
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In the exploration phase, the SFOA employs a hybrid search strategy based on the problem
dimension. When the dimension nD of the optimization problem is greater than 5, the algorithm
uses a five-dimensional search pattern to balance the breadth and depth of the search space. When
nD is less than or equal to 5, it adopts a one-dimensional search pattern to improve accuracy. This
dynamic adjustment mechanism enables the SFOA to demonstrate remarkable computational
efficiency and search ability when dealing with high-dimensional nonlinear optimization
problems.

(1) The mathematical model for the exploration phase (nD > 5) is as follows, as shown in

Eq. (11):
newX(i,j) = Xpos(i,j) + pm - (xposbest(]') - Xpos(i,j)) - cos(6), (11)

where newX (i, j) is the new position of individual i in dimension j, Xpos(i,j) is the current

position of individual i in dimension j, xposbest(j) is the value of the global optimum in

dimension j for the current population, pm is the perturbation factor, defined as

pm = (2rand — 1)m, used to generate random perturbations, 6 is the angle factor, defined as

6 = % . #x-t’ used to dynamically adjust the angle, T is the current iteration count, and Max;; is
L

the maximum number of iterations.

(2) The mathematical model for the exploration phase (nD < 5) is as follows, as shown in
Eq. (12):

newX(i,j) = tEO - Xpos(i,j) T

+randl - (Xpos(im(1),)) — Xpos(i,j)) + rand2 - (Xpos(im(2),)) — Xpos(i, ))), (12)
where newX (i, j) is the new position of individual i in dimension j, Xpos(i,j) is the current
position of individual i in dimension j, tEO is the dynamic attenuation factor, defined as

tEO = % - cos(8), Xpos(im(1),j) is the position in dimension j of the first randomly
it

selected individual in the population, Xpos(im(2), j) is the position in dimension j of the second
randomly selected individual in the population, and randl, rand2 are random perturbation
factors in the range [-1, 1].

In the exploitation phase, the SFOA uses a bidirectional parallel search strategy and
regeneration mechanism to simulate starfish predation and regeneration. The predation phase
drives the approach to the global optimum through information sharing among solutions, while
the regeneration mechanism enhances the algorithm's global convergence, preventing it from
falling into a local optimum. The mathematical model of the predation behavior is shown in
Eq. (13):

newX(i,:) = Xpos(i,:) +r; - (xposbest — Xpos(df(kp(l)), : ))

47, - (xposbest — Xpos(df (kp(2)),: )) (3)
where newX (i,: ) is the new position of individual i (in vector form, including all dimensions),
Xpos(i,:) is the current position of individual i (in vector form, including all dimensions),
xposbest is the global optimum of the current population (in vector form, including all
dimensions), Xpos(df(kp(1)),:) is the position of the first randomly selected individual,
Xpos(df (kp(Z)), :) is the position of the second randomly selected individual, and ry, 1, are
random weight factors in the range [0, 1].

The mathematical model of the regeneration behavior is shown in Eq. (14):
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_TANpop 14
newX(i,:) =e M . Xpos(i,:), (14)

where T is current iteration count, Npop is number of individuals in the population, Max;, is
maximum number of iterations, and Xpos(i,:) is position of the current individual (i.e., the
current solution).

The exploitation phase is a highlight of the SFOA. It simulates starfish predation and
regeneration. The predation mechanism guides individuals to the global optimum via information
sharing, speeding up convergence. Regeneration introduces new diversity to prevent local optima
and premature convergence. This bio-inspired strategy revitalizes the population for collaborative
optimization. The bidirectional exploitation strategy balances global and local search, giving
SFOA strong convergence in complex problems.

Then comes the algorithm update phase. Here, each individual starfish's position is boundary-
constrained to stay within the search space. New fitness is calculated and compared to the original.
If better, the position and fitness are updated. If the individual's fitness surpasses the current global
optimum, the global optimum and its position are updated. This iterative process gradually
approaches the optimal solution.

In summary, Hybrid exploration combines high-dimensional and one-dimensional search
strategies to balance global and local search efficiency. Adaptive regeneration mimics the
starfish’s arm regeneration, reintroducing diversity into the population and avoiding premature
convergence. The flowchart of the Starfish Optimization Algorithm is shown in Fig. 3.

Initialize
population
|
o @ No
Calculate factor Cal?ulate th.e.dlstance between Fhe
optimal position and other starfish.
7#WN| i=N
Yes No -
Update location based Update location based on
on predatory behavior regenerative behavior
\ 4 \ 4 I |
Update location using 5- Update position using 1-
dimensional search method dimensional search method
[ J
Calculate and
evaluate fitness
T<T, 0 No M I'=T+1 [

Yes

output fitness

Fig. 3. Flowchart of the starfish optimization algorithm
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To provide a clearer understanding of the algorithm's operational logic, the flowchart in Fig. 3
illustrates the complete iterative process of the SFOA. The algorithm begins by initializing a
population of candidate solutions and evaluating their fitness based on the multi-objective cost
function. At each iteration, a decision is made to perform exploration or exploitation based on a
dynamic balance factor (GP). In the exploration phase, either a five-dimensional or one-
dimensional search pattern is selected depending on the number of problem dimensions,
enhancing adaptability and computational efficiency. When in the exploitation phase, the
algorithm mimics starfish behaviors such as predation and regeneration to refine the search around
promising regions. Throughout the process, individual positions and fitness values are updated,
and the global best solution is tracked. After convergence, the optimal trajectory is obtained. In
terms of computational complexity, the primary factors influencing performance are the
population size, the number of iterations, and the number of decision variables. Each iteration
involves operations for fitness evaluation and position updates. Consequently, the overall time
complexity of the algorithm is, which is manageable for moderate-scale problems but may require
optimization techniques such as parallelization in large-scale or real-time applications.

To cope with large-scale scenarios, SFOA can be parallelized through a two-level strategy:
(1) individual-level parallelism maps the fitness evaluation of all Npop starfish to GPU threads
within a single CUDA kernel, eliminating the Npop factor from the critical path; (ii) data-level
parallelism partitions the high-resolution DEM into tiles, each processed by an independent MPI
process, with intra-process OpenMP further accelerating per-tile calculations.

The pseudocode for the Starfish Optimization Algorithm is shown in Table 1.

Table 1. The pseudocode for the starfish optimization algorithm
Algorithm 1 SFOA Pseudo-code
Input: Npop, Max;., lb, ub, nD, fobj
Output: fvalbest, xposbest, Curve
01: Set population size Ny, and maximum iterations Max;,
02: Initialize population and calculate fitness for each individual
03: While t <= Max;;
04: Update parameters GP, theta, tEO based on t
05: If rand < GP % Exploration phase
06: Update positions for each search agent based on high or low dimension strategy
07: Else % Development phase
08: Update positions based on regeneration behavior for last agent
09: End If
10: Calculate fitness for each agent and update best solution
11: Update convergence curve (Curve)
12:t=t+1
13: End While

From a mathematical modeling perspective, the SFOA simulates the flexibility of starfish
through random factors and multi-dimensional search patterns in its exploration behavior. The
predation and regeneration mechanisms dynamically adjust individual positions during iterations,
promoting the approach to the global optimum based on the distribution of current solutions. This
mathematical framework enables the SFOA to adaptively optimize paths, offering a solid
theoretical foundation for multi-objective optimization problems.

These SFOA designs deliver outstanding optimization performance in benchmark tests and
real-world engineering problems. Literature verification shows that compared with 100
meta-heuristic algorithms, the SFOA surpasses 95 % in accuracy and 97 % in efficiency,
especially in high-dimensional optimization problems.

This paper’s experimental results further confirm the SFOA’s excellent performance in
complex optimization problems. Compared with traditional algorithms (Particle Swarm
Optimization and Ant Colony Algorithm), the SFOA offers higher computational efficiency,
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stronger global search ability, and better performance in path smoothness and threat avoidance.
This makes the SFOA ideal for high-dimensional, multi-constraint optimization problems like
UAV 3D path planning, logistics optimization, and resource allocation.

4. Starfish optimization algorithm for UAV path simulation

This chapter will conduct simulation modeling in MATLAB, with the model involving four
key elements. The digital elevation model (DEM) provides terrain elevation data to determine
feasible flight altitudes; cylindrical obstacles restrict accessible airspace and introduce safety
constraints; mission nodes represent spatial targets with mission requirements; and four
quantitative constraints — path length, safety distance, altitude range, and smoothness collectively
evaluate the feasibility and quality of the planned drone trajectory.

4.1. Simulation settings

To verify the SFOA’s capability in UAV path planning, this study conducts simulations with
detailed designs of the algorithm's key parameters and path-planning constraints, as shown in
Table 2. The parameter settings used in this study, such as population size, GP, and exploration
angle, were determined based on preliminary experiments and established references.

Table 2. Algorithm parameter settings

Category Parameter
Population size 50
Initial balance factor between global and 0.5, Parameter to control the exploration and exploitation
local search (GP) behavior of the algorithm
Number of path nodes (n) 15 (excluding the starting and ending points)
Optimization dimension (nD) 45 (nx3)
UAYV diameter (D) I m
In experiment, the start and end points are

Start = (260, 50, 150), End = (450, 850, 150)
The UAV’s flight altitude is restricted to between

set as

Flight altitude constraints of the UAV

Zmin = 100 m and z,,,,, = 200 m above the terrain surface
Maximum turning angle GPmax = 45°
Maximum climb angle Omax = 45°
Safety distance S=10m

Nine threat regions (cylinders) are arranged in the terrain, with parameters including center
coordinates, height, and radius. For specifics on all obstacles, refer to Table 3.

Table 3. Coordinates, radius and heights of all obstacles

Obstacle ID | Center points coordinates (x,y,z) | Radius | Heights
1 250, 150, 150 50 350
2 200, 650, 150 50 350
3 300, 460, 100 50 350
4 400, 700, 150 50 350
5 450, 450, 150 50 350
6 600, 200, 150 50 350
7 640, 750, 150 50 350
8 800, 600, 100 50 350
9 800, 420, 150 50 350

The UAV path objective function consists of four parts: path length cost J;, threat cost J,, flight
altitude cost J3, and smoothness cost J,. The total cost J;,¢q; 1S their weighted sum, calculated by
Eq. (15). The optimal solution is defined as the minimum comprehensive cost across all candidate
trajectories evaluated during the iterative process. SFOA updates the global best position

10 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635



THREE-DIMENSIONAL TRAJECTORY PLANNING FOR UNMANNED AERIAL VEHICLES BASED ON THE STARFISH OPTIMIZATION ALGORITHM
(SFOA). WEIQI FENG, YUJIE FU, YONG YANG, CHANGJIAN GAO, KAIJUN XU

whenever a better solution is found, and the final reported optimal cost corresponds to the lowest
cost obtained at convergence:

Jtotar = biJ1 + baJz + b3J3 + buj,. (15)

In this paper’s simulation, the weight coefficients are set as follows: b; = 0.2, b, = 0.4,
b3 = 02, b4, =0.2.

4.2. Comparison and analysis of simulation results

To assess the effectiveness and scalability of the SFOA-based drone path planning method,
we conducted two simulation experiments under different levels of environmental complexity.
The first experiment was designed in a relatively simple scenario with five static obstacles, while
the second experiment involved a more complex environment with nine obstacles. In both
experiments, we compared the performance of SFOA with two widely used meta-heuristic
algorithms: ant colony optimization (ACO) and particle swarm optimization (PSO). The
experiments collected data at 100 iterations, 500 iterations, and 1,000 iterations to assess the
baseline performance and scalability of the algorithms as problem complexity and the number of
iterations increased.

4.2.1. Experiments in a simple environment

In this scenario, the drone is tasked with navigating a 3D environment containing five
cylindrical threat zones. Environmental parameters are shown in Table 3, and SFOA parameter
settings are shown in Table 2. The population sizes for ACO and PSO are the same as those for
SFOA. These three algorithms were executed with 100, 500, and 1000 iterations, respectively. For
each case, we simultaneously present the optimized 3D flight trajectories, as shown in Fig. 4. The
corresponding convergence curves are shown in Fig. 5.

Comparison of SFOA, ACO, and PSO Paths
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Fig. 4. Trajectory planning diagram in a simple experimental environment

The convergence curve is shown in Fig. 5.
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Fig. 5. Algorithm fitness convergence curve diagram

Algorithm fitness convergence curve diagram Fig. 4 shows the 3D path planning results and
convergence curves of ACO, PSO, and SFOA under three different iteration settings. The subplots
on the far left of each row display the top-down trajectories on the terrain, while the subplots on
the right show the corresponding 3D flight paths between obstacles. In all cases, SFOA paths
consistently achieve shorter and smoother routes, more efficiently avoiding obstacles while
maintaining a balanced altitude distribution. Especially at low iteration counts, SFOA can find
competitive paths as early as 100 iterations, while ACO and PSO produce longer and less
optimized trajectories. This indicates that SFOA exhibits superior convergence performance in
the early stages

The convergence plot in Fig. 5 further supports this observation. At 100 iterations, SFOA
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exhibits the fastest trend of decreasing total cost, significantly outperforming ACO and PSO. At
500 and 1000 iterations, SFOA continues to improve steadily and reaches the lowest final cost,
while ACO stagnates early on and PSO converges at a slower rate. As the number of iterations
increases, the gap between SFOA and the other two algorithms widens further, highlighting
SFOA's robustness and scalability.

Specific experimental data are shown in Table 4.

Table 4. Comparison of simulation results

Iteration | Algorithm | Time taken (s) | Average | Standard deviation | Optimal value

SFOA 0.69 220.0087 37.4293 196.1974

100 ACO 0.74 319.4148 26.7407 307.3099
PSO 0.71 238.7353 34.7276 221.4830

SFOA 3.58 191.6742 34.6347 171.6709

500 ACO 3.94 295.6567 18.1126 315.2578
PSO 3.99 228.8928 20.5604 292.1947

SFOA 6.18 204.9176 51.0014 185.1284

1000 ACO 6.87 302.8948 4.7793 302.2744
PSO 6.73 267.3955 14.6430 265.1127

Table 4 summarizes the best cost achieved by SFOA, ACO, and PSO in the simple
environment with five obstacles. SFOA significantly outperforms both comparison algorithms. At
100 iterations, SFOA reduces costs by 36.15 % compared to ACO and 11.42 % compared to PSO.
With increased iterations, the performance advantage remains stable or improves — at
500 iterations, the improvement reaches 45.52 % (vs ACO) and 41.24 % (vs PSO). These results
demonstrate SFOA’s superior search efficiency and optimization accuracy even in relatively
simple terrain configurations.

Overall, trajectory visualization and convergence behavior indicate that SFOA can quickly and
reliably generate high-quality paths in simple environments, making it a powerful optimization
algorithm for real-time or time-constrained drone missions.

4.2.2. Experiment in a complex environment

To further evaluate scalability, we conducted a second experiment in a more complex scenario
with higher obstacle density, which included nine obstacles and increased spatial constraints and
solution search space. The test settings used in the experiment are shown in Tables 2 and 3. For
each case, we present the optimized 3D flight trajectories, as shown in Fig. 6. The corresponding
convergence curves are shown in Fig. 7.

The convergence curve is shown in Fig. 7.
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Comparison of SFOA, ACO, and PSO Paths.
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Fig. 6. Trajectory planning diagram in a Complex experimental environment
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Fig. 6 shows the simulation results in a more challenging 3D terrain containing nine cylindrical
obstacles. The results show three iteration settings for the ACO, PSO, and proposed SFOA
algorithms. Like the previous section, each row shows the top-view paths, 3D flights trajectories,
and convergence curves for the three algorithms.

As can be seen from the figure, the superiority of SFOA becomes even more evident under
these more constrained conditions. Even in complex environments, the SFOA trajectory adopts
shorter, smoother, and more obstacle-avoidant paths across all iteration settings.

In the convergence curve plot, the SFOA curve rapidly decreases and converges to a lower
final cost than the other two algorithms, and this holds true at all iteration levels. The red curve
also exhibits lower volatility, indicating better stability and fewer local minimum traps.
Additionally, a visual comparison of 3D paths shows that SFOA navigates more effectively in
narrow spaces between obstacles. This supports the conclusion that SFOA has stronger global
search and constraint handling capabilities, especially as environmental complexity increases.

Specific experimental data are shown in Table 4.

Table 5. Comparison of simulation results

Iteration | Algorithm | Time taken (s) | Average | Standard deviation | Optimal value
SFOA 0.89 299.5491 43.9956 264.7615
100 ACO 0.98 367.8600 43.5554 339.1565
PSO 1.01 335.1795 55.7187 312.0123
SFOA 4.43 214.0971 66.4972 171.6709
500 ACO 5.11 323.1564 26.7845 315.2578
PSO 4.97 299.9072 21.4181 292.1947
SFOA 8.52 173.0144 14.0124 164.3933
1000 ACO 9.86 312.5457 16.2351 309.1856
PSO 9.90 259.6608 17.3646 256.1049

The quantitative comparison in Table 5 highlights the performance advantage of SFOA over
ACO and PSO in the complex environment. At 100 iterations, SFOA reduces the best cost by
21.91 % and 15.12 % compared to ACO and PSO, respectively. With more iterations, the
advantage becomes more pronounced — at 1000 iterations, SFOA outperforms ACO and PSO by
46.84 % and 35.81 %, respectively. These results affirm the algorithm’s superior global search
capability and convergence performance, particularly in high-dimensional, obstacle-dense
environments.

The two simulation experiments conducted in this study comprehensively evaluated the
performance of the SFOA-based path planning algorithm in environments of varying complexity.
In a simple scenario with five obstacles, SFOA demonstrated faster convergence speed and better
path quality even with a limited number of iterations. Compared to ACO and PSO, SFOA
consistently generates shorter, smoother trajectories with lower cost values and better obstacle
avoidance performance. In a complex environment involving nine obstacles, the advantages of
SFOA become even more pronounced. As the number of dimensions and obstacle density
increase, the algorithm maintains robust performance. It demonstrates strong global search
capabilities and is less prone to premature convergence. Convergence curves further confirm its
efficiency and stability at different iteration levels.

In both cases, SFOA achieves the lowest optimal cost, smallest standard deviation, and fastest
convergence speed in most test settings, not only demonstrating its effectiveness but also
consistency. Additionally, its performance scales well with increasing problem complexity and
iteration counts, supporting its application in constrained and large-scale drone mission planning.
These results validate the effectiveness, robustness, and scalability of the SFOA algorithm in
multi-objective 3D drone trajectory planning tasks, making it a competitive choice for real-world
deployment.
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5. Conclusions

This study proposes and validates a three-dimensional UAV path-planning method based on
the Starfish Optimization Algorithm tailored for complex environments. A comprehensive cost
function is formulated, integrating multiple constraints, such as path length, flight altitude,
obstacle avoidance, and path smoothness to address the multi-objective nature of the problem. A
detailed 3D environmental model is constructed, incorporating terrain undulations and threat
regions, and multiple optimization objectives are designed accordingly.

Experimental results demonstrate that SFOA exhibits strong global and local optimization
capabilities, enabling it to efficiently generate safe, smooth, and optimal flight paths in complex
3D environments. Compared to Ant Colony Optimization and Particle Swarm Optimization,
SFOA achieves superior performance in terms of path smoothness, convergence speed, and
overall cost. During the optimization process, it effectively avoids obstacles, shortens flight time,
and reduces energy consumption, thereby validating its effectiveness in multi-objective path
planning.

Despite its promising performance, the current implementation of SFOA has certain
limitations. The high iteration count, and computational complexity of the cost function limit its
applicability in real-time scenarios. Moreover, the algorithm relies on manually tuned parameters,
which may require adjustment for different operational environments, reducing its adaptability.
Additionally, the current model assumes static threat configurations; its performance may degrade
in dynamic environments involving moving obstacles.

Future research will focus on improving the real-time responsiveness, robustness, and
scalability of SFOA. Key directions include integrating adaptive parameter tuning mechanisms,
employing parallel computing for real-time execution, extending the model to handle dynamic
environmental changes, and exploring its applicability in multi-UAV coordination and real-time
path adjustment in dynamic mission contexts.
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