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Abstract. Sparse reconstruction algorithm is one of the main research topics in compressed 
sensing. To address the shortcomings of existing iteratively reweighted 𝑙ଵ-norm minimization 
methods, which exhibit poor performance in low-frequency sound source identification and weak 
anti-interference capability, this paper proposes an improved iteratively reweighted 𝑙ଵ-norm 
minimization method. Unlike traditional methods, this method introduces a log-sum penalty 
function and constructs a surrogate function, transforming the problem into an effective form for 
solving the source strength distribution vector. Through numerical simulations comparing the two 
methods under different frequencies and signal-to-noise ratios (SNR), the results demonstrate that 
the proposed method enhances both the sound source identification accuracy and anti-interference 
capability of the algorithm, while also being able to adapt to lower frequency ranges. 
Keywords: compressed sensing, iteratively reweighted, L1 norm minimization, sound source 
localization. 

1. Introduction 

Compressed Sensing Theory [1]-[3] has attracted widespread attention from scholars due to 
its ability to achieve high-precision signal reconstruction with lower sampling rates, significantly 
reducing the required number of sensors and measurement data volume. 

Current compressed sensing reconstruction methods primarily fall into three categories: 
convex optimization algorithms [4]-[6], which leverage the equivalence between the 𝑙-norm and 𝑙₁-norm under the Restricted Isometry Property (RIP) condition of the measurement matrix, 
transforming the intractable 𝑙-norm minimization problem into a solvable 𝑙₁-norm minimization 
problem addressed through mature convex optimization techniques; greedy algorithms [7]-[9], 
which iteratively select atoms based on signal-atom correlations to gradually form a support set 
for signal vector approximation; and Bayesian sparse reconstruction algorithms [10]-[12], which 
reformulate signal reconstruction as a Bayesian inference problem by assuming signal prior 
distributions. Among these, convex optimization algorithms can obtain globally optimal solutions, 
with 𝑙₁-norm minimization emerging as one of the most widely used models due to its 
computational efficiency and sparsity guarantees. However, standard 𝑙₁-norm minimization faces 
limitations, such as inaccuracies in estimating non-Gaussian sparse coefficients. To address this, 
iteratively reweighted algorithms have gained prominence for their effectiveness in enhancing 
reconstruction accuracy.  

To improve low-frequency sound source identification accuracy and anti-interference 
capability, this study proposes an enhanced algorithm based on iteratively reweighted 𝑙₁-norm 
minimization. By introducing a log-sum penalty function into the 𝑙₁-norm minimization 
framework and constructing a surrogate function to derive weighting matrices, the method 
transforms the problem into a tractable form for solving source strength distribution vectors, 
thereby achieving sparse solutions. 

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2025.24944&domain=pdf&date_stamp=2025-05-15
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2. Fundamental theory 

2.1. Compressed sensing reconstruction algorithm 

The fundamental concept of compressed sensing theory involves three sequential operations: 
first representing the original signal as a sparse signal compatible with compressed sensing 
processing, then performing compressive sampling on the sparse signal using a measurement 
matrix to acquire measurement data and ultimately recovering the sparse signal from these 
measurements through reconstruction algorithms. In the context of sound source identification 
applications, the critical implementation challenge resides in constructing an appropriate sensing 
matrix, where successful acquisition of this matrix determines the effectiveness of spatial sound 
field reconstruction and direction-of-arrival estimation. 

A planar microphone array measurement model is initially established as shown in Fig. 1, 
comprising 𝑀 microphones (denoted by ●). With the array center as the origin, a Cartesian 
coordinate system is constructed where the Direction of Arrival (DOA) of sound sources is 
characterized by coordinates (𝜃, 𝜑). Here, 𝜃 represents the elevation angle between the incident 
direction of the 𝑖-th sound source and the 𝑧-axis, while 𝜑 denotes the azimuth angle between the 𝑥-axis and the projection of the 𝑖-th source’s incident direction onto the 𝑥-𝑦 plane, with angular 
constraints defined as 0° ≤ 𝜃 ≤ 90° and 0° ≤ 𝜑 ൏ 360°. 

 
Fig. 1. Planar array sampling acoustic signal model 

Assuming the target sound source region is discretized into 𝑁 fixed grid points, the 𝑀-
dimensional vector 𝐏 formed by the microphone-received signals can be expressed as: 𝐏 ൌ 𝐀𝐪, (1)

where, 𝐀 is the sensing matrix; 𝐪 ൌ ሾሺ𝑞ଵ,𝑞ଶ, … , 𝑞ேሻሿ் represents the source strength distribution 
vector. 

Let 𝐱 ൌ ሾሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ெሻሿ் and 𝐲 ൌ ሾሺ𝑦ଵ,𝑦ଶ, … ,𝑦ெሻሿ் represent the 𝑀-dimensional vectors 
composed of the 𝑥-axis and 𝑦-axis coordinates of all microphones, respectively. The sensing 
matrix (𝐀) can be expressed as: 𝐀 ൌ ሺ𝐝ሺ𝑡ଵଵ, 𝑡ଶଵሻ,𝐝ሺ𝑡ଵଶ, 𝑡ଶଶሻ, … ,𝐝ሺ𝑡ଵே, 𝑡ଶேሻሻ, (2)

where, 𝐝ሺ𝑡ଵ , 𝑡ଶሻ ൌ ൣexp൫𝑗2𝜋ሺ𝑥ଵ𝑡ଵ  𝑦ଵ𝑡ଶሻ൯ , exp൫𝑗2𝜋ሺ𝑥ଶ𝑡ଵ  𝑦ଶ𝑡ଶሻ൯ , … , exp൫𝑗2𝜋ሺ𝑥ெ𝑡ଵ 𝑦ெ𝑡ଶሻ൯൧், 𝑡ଵ ൌ sin𝜃cos𝜑 𝜆⁄ ; 𝑡ଶ ൌ sin𝜃sin𝜑 𝜆⁄ , 𝜆 is the wavelength. 
In practice, when 𝑀 ൈ𝑁, Eq (1) becomes an underdetermined system of linear equations, for 

which no analytical solution exists. However, if the vector 𝐪 possesses sparsity, it can be 
accurately recovered by solving the following 𝑙-norm minimization problem: min‖𝐪‖  s. t.  ‖𝐏 − 𝐀𝐪‖ଶ ≤ 𝜉, (3)

where 𝜉 represents the tolerance for the noise signal (𝐧). Although Eq. (3) is an NP-hard problem 
and generally difficult to solve, it is equivalent to the following 𝑙ଵ-norm minimization problem: 
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min‖𝐪‖ଵ  s. t.  ‖𝐏 − 𝐀𝐪‖ଶ ≤ 𝜉. (4)

For Eq. (4), it can be solved using the convex optimization toolkit CVX to obtain the source 
strength corresponding to each fixed grid point, thereby enabling sound source DOA (Direction 
of Arrival) estimation and source strength quantification. 

2.2. Improved iteratively reweighted L1 minimization method 

The output results obtained by directly solving Eq. (4) often exhibit certain deviations. IRL1 
further reduces these deviations by performing iterative optimization of the sound source 
distribution based on the L1-norm minimization solution. This method first employs a logarithmic 
sum penalty function that promotes sparsity more effectively than the 𝑙ଵ norm, specifically ∑ ln (|𝑞|ଶ + 𝜖)ேୀଵ , to construct the objective function, leading to the following optimization 
problem: 

min 𝐿(𝐪) =  ln (|𝑞|ଶ + 𝜖)ேୀଵ   s. t.  ‖𝐏 − 𝐀𝐪‖ଶ ≤ 𝜉, (5)

where, 𝜖 is a positive parameter that serves a dual role: on one hand, it ensures the logarithmic 
function is properly defined, and on the other hand, it acts as a control parameter for the iterative 
process. By initializing 𝜖 to a small value (e.g., 1) and gradually reducing it to zero during 
iterations, it guarantees that the global optimal solution of Eq. (5) converges to a neighborhood 
near the true solution. 

Let 𝐪(ఊ) = ൣ𝑞ଵ(ఊ),𝑞ଶ(ఊ), … , 𝑞ே(ఊ)൧ denote the source strength distribution vector obtained after the 𝛾-th iteration. In the 𝛾 + 1-th iteration, construct a surrogate function Ω(𝑞) for 𝐿(𝑞), satisfying Ω(𝑞) − 𝐿(𝑞) ≥ 0, where equality holds if and only if 𝐪 = 𝐪(ఊ). Here: 

Ω(𝐪) = ቌ |𝑞|ଶ + 𝜖ห𝑞(ఊ)หଶ + 𝜖 + ln ൬ቚ𝑞(ఊ)ቚଶ + 𝜖൰ − 1ቍ  s. t.  ‖𝐏 − 𝐀𝐪‖ଶ ≤ 𝜉.ே
ୀଵ  (6)

By removing the constant term in Eq. (6), we obtain: 

Γ(𝑞) = ቌ |𝑞|ଶห𝑞(ఊ)หଶ + 𝜖ቍ  s. t.  ‖𝐏 − 𝐀𝐪‖ଶ ≤ 𝜉.ே
ୀଵ  (7)

Correspondingly, Eq. (5) is reformulated into the following surrogate function form: 

min  Γ(𝑞) = ቌ |𝑞|ଶห𝑞(ఊ)หଶ + 𝜖ቍ  s. t.  ‖𝐏 − 𝐀𝐪‖ଶ ≤ 𝜉.ே
ୀଵ  (8)

Let the weighted matrix 𝐖 = diag(ሾ𝑤ଵ,𝑤ଶ, … ,𝑤ேሿ்), where the 𝑛-th weight coefficient 𝑤(ఊ) 
is expressed as follows: 

𝑤(ఊ) = ൞1,        𝛾 = 1,1ቚ𝑞(ఊିଵ)ቚଶ + 𝜖,       𝛾 > 1. (9)
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Therefore, the problem is transformed into solving the following equation: 𝐪(ఊ) = min𝐪ு𝐖(ఊ)𝐪   s. t.  ‖𝐏 − 𝐀𝐪‖ଶ ≤ 𝜉. (10)

Utilize the CVX toolbox to iteratively solve Eq. (10) for sound source DOA estimation. 
Compared to the traditional iteratively reweighted 𝑙ଵ-norm minimization algorithm, the 

proposed algorithm introduces a log-sum penalty function with enhanced sparsity-promoting 
capability, and simplifies the problem into a form that efficiently solves for the source strength 
distribution vector by constructing a surrogate function. 

3. Numerical simulation 

3.1. Performance analysis of various algorithms at different frequencies 

The numerical simulation encompassed two distinct scenarios: a single sound source and dual 
coherent sound sources. In the single-source configuration, a point source was positioned at  
(18°, 72°), while the dual-source scenario involved two equal-intensity coherent point sources 
located at (54°, 72°) and (54°, 126°) respectively. The measurement array, designed in accordance 
with compressed sensing theory, adopted a sector-wheel topology comprising 18 microphones 
strategically distributed across nodal positions within a 0.4 m×0.4 m rectangular region. This array 
maintained parallelism with the focal plane at a standoff distance of 0.5 m. The focal plane itself 
was discretized into a 6×21 grid of reconstruction points. To enhance practical relevance, Gaussian 
white noise was introduced into the acoustic pressure measurements, achieving a SNR of 30 dB 
through controlled additive noise implementation. 

Fig. 2 presents the sound source identification results of the conventional IRL1 algorithm and 
the enhanced IRL1 method at a source frequency of 1000 Hz. In the figure, “○” denotes actual 
source positions, while “*” represents identified source locations. 

  
a) IRL1 

 
b) Improved IRL1 

 
c) IRL1 

 
d) Improved IRL1 

Fig. 2. Source localization performance at a sound source frequency of 1000 Hz 

As shown in Fig. 2 for the 1000 Hz acoustic source frequency, the conventional IRL1 
algorithm in Fig. 2(a) and 2(c) yields completely erroneous identification results. In contrast, 
under both single-source (Fig. 2(b)) and dual-source (Fig. 2(d)) conditions, our enhanced IRL1 
algorithm successfully localizes all acoustic sources with positional accuracy. 

When the source frequency increases to 1500 Hz, Fig. 3(a) and Fig. 3(c) reveal that while the 
conventional IRL1 algorithm shows improved localization performance compared to lower 
frequencies, it still fails to correctly identify the single-source position. In dual-source scenarios, 
it accurately locates the right-side source but exhibits significant positional error for the left-side 
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source. Conversely, our enhanced IRL1 algorithm (Fig. 3(b) and 3(d)) demonstrates robust 
performance by accurately identifying all true source positions under both test conditions. 

 
a) IRL1 

 
b) Improved IRL1 

 
c) IRL1 

 
d) Improved IRL1 

Fig. 3. Source localization performance at a sound source frequency of 1500 Hz 

3.2. Performance analysis of algorithms under low SNR condition 

Maintaining the original simulation conditions, simulation tests were conducted with the 
frequency set to 2000 Hz and SNR at 5 dB. 

From Fig. 4(a), it can be observed that the conventional IRL1 algorithm accurately identifies 
the left-side acoustic source but still exhibits significant positional error in localizing the right-
side source. In Fig. 4(b), the enhanced IRL1 algorithm proposed in this study achieves precise 
localization of both acoustic sources at their true positions. 

 
a) IRL1 

 
b) Improved IRL1 

Fig. 4. Source localization effect diagram of two algorithms at a SNR of 5 dB 

4. Experimental validation 

To validate the correctness and effectiveness of the proposed method, experiments were 
conducted using a 30-microphone array from HBK for loudspeaker sound source identification. 
Fig. 5 illustrates the experimental setup. The loudspeaker’s DOA was set to (18°, 72°), 
corresponding to coordinates (0.0502, 0.1545, 0.500) m, with a sampling frequency of 16,348 Hz. 
The sound pressure information of the sound sources was measured, and repetitive verification 
was conducted on the MATLAB platform. The identification results of the IRL1 algorithm and its 
improved version at 1000Hz, as shown in Fig. 6, were ultimately obtained. 

As can be seen from the experimental results, under low-frequency conditions, the traditional 
IRL1 algorithm fails to accurately identify the sound source. However, the improved IRL1 
algorithm proposed in this paper can still accurately identify the location of the real sound source, 
significantly improving the performance of identifying low-frequency sound sources. 
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Fig. 5. Experimental setup diagram 

 
a) IRL1 

 
b) Improved IRL1 

Fig. 6. Experimental recognition results diagram 

5. Conclusions 

The traditional iteratively reweighted 𝑙₁-norm minimization algorithm (IRL1) suffers from 
weak low-frequency sound source identification capability and poor anti-interference 
performance. To address these limitations, this paper proposes an improved IRL1 algorithm. 
Unlike traditional methods, this method introduces a log-sum penalty function into the 
mathematical model of 𝑙₁-norm minimization. By constructing a surrogate function to derive a 
weighting matrix, the problem is transformed into a form that can effectively solve the source 
strength distribution vector, thereby obtaining its sparse solution. Numerical simulation analysis 
demonstrates that under both low-frequency and low SNR conditions, the proposed algorithm 
achieves superior identification results compared to the traditional IRL1 method. The improved 
IRL1 algorithm resolves the existing algorithm’s inability to adapt to low-frequency scenarios and 
its weak anti-interference capability. This innovation extends the applicable frequency range of 
the IRL1 algorithm while further enhancing its spatial resolution. 
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