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Abstract. With the increasing complexity of urban transportation systems, object detection and 
pedestrian pose estimation play a crucial role in intelligent traffic management and autonomous 
driving technologies. However, existing feature compilation networks are often designed for 
single tasks and perform poorly in small object detection and high occlusion pedestrian pose 
estimation tasks. To address the above issues, this paper proposes an efficient feature compilation 
network with Dual-aggregation, compatible with both object detection and pedestrian pose 
estimation. This network adopts a transfer learning-like training strategy in the feature extraction 
network, using a micro-complex convolution structure during training to bring the training results 
as close as possible to global optimization. During inference, a single simple convolution is used 
to inherit the training results, improving the model performance while ensuring model lightweight. 
The feature fusion employs a global-local dual aggregation structure, simultaneously considering 
multi-scale global and local features. Additionally, we use multiple public datasets to create a 
hybrid dataset under various scenarios to validate the robustness of the network. The experiments 
show that the proposed method outperforms existing mainstream methods in detection accuracy 
for urban object detection and pedestrian pose estimation tasks, especially demonstrating better 
robustness in complex urban traffic scenarios.  
Keywords: urban traffic, deep learning, object detection, pose estimation, vision transformer. 

1. Introduction 

With the rapid development of urbanization and the increasing demand for intelligent 
transportation systems (ITS), robust and efficient object detection and pedestrian pose estimation 
have become crucial for ensuring traffic safety and optimizing transportation management. Object 
detection algorithms play a vital role in identifying vehicles, pedestrians, and other traffic entities, 
while pose estimation enhances the understanding of human behavior and interactions in urban 
scenarios. Together, these technologies form the backbone of advanced driver-assistance systems 
(ADAS) and autonomous driving applications. 

Currently, most mainstream approaches for urban traffic object detection and pedestrian pose 
estimation rely on deep learning [1-4]. These methods extract relevant features from images using 
feature compilation networks, which are then fed into different downstream detectors for either 
object detection or pose estimation. Therefore, an efficient and compatible feature compilation 
network plays a vital role in both object detection and pedestrian pose estimation tasks. The feature 
compilation network consists of a feature extraction network and a feature fusion network. In the 
feature extraction component, Krizhevsky et al. [5] were the first to propose using convolution for 
feature extraction. However, this approach is limited to capturing local features and lacks the 
ability to model long-range dependencies. Studies [6, 7] enhanced feature extraction performance 
by increasing network depth or introducing highly complex architectures. However, these 
approaches often overlooked the importance of lightweight design, resulting in excessive 
computational redundancy. Research efforts in [8, 9] focused on designing lightweight 
convolutional structures to reduce computational cost and model size. Nevertheless, these methods 
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often compromised accuracy in pursuit of efficiency, performing poorly in complex tasks. Studies 
[10-12] have explored combining Transformer architectures with convolutional networks to 
enable more efficient feature extraction. However, these hybrid methods require more intricate 
hyperparameter tuning, and often underperform traditional convolutional models on small-scale 
datasets. In the feature fusion component, Lin et al. [13] were the first to propose using a feature 
pyramid structure to achieve multi-scale feature fusion. This top-down fusion approach 
significantly improves the detection of small objects. However, during the fusion process, 
high-level features may overwhelm low-level detail information. Liu et al. [14] introduced a 
bottom-up path aggregation strategy, known as the Path Aggregation Network (PAN), to 
supplement missing low-level details. Nonetheless, this method handles redundant information 
inadequately, leading to suboptimal fusion efficiency. Ghiasi et al. [15] leveraged Neural 
Architecture Search (NAS) to automatically design an optimal feature pyramid structure. 
However, this approach requires significant computational resources during training, making 
rapid deployment challenging. Chen et al. [16] proposed a bidirectional feature pyramid fusion 
strategy based on PAN, achieving efficient multi-scale fusion with a more lightweight 
architecture. Although weighted fusion improves performance, it introduces additional 
computational overhead. Studies [17-19] enhanced feature fusion effectiveness by employing 
attention mechanisms and dynamically assigning weights to emphasize critical features. However, 
Transformer-based approaches often struggle to effectively capture local features. 

In response to the specific feature requirements of urban traffic object detection and pedestrian 
pose estimation tasks, Li et al. [20] integrated spatial and channel attention mechanisms within 
the feature compilation network to enhance the network's focus on critical spatial locations and 
feature channels in the domain of object detection. They also employed dilated convolutions to 
expand the receptive field. However, the efficiency of attention mechanisms and dilated 
convolutions remains limited, particularly under complex environmental conditions, resulting in 
insufficient robustness. Han et al. [21] proposed a lightweight symmetric data fusion network, 
Epurate-Net, which merges spatial responses into visual features and aggregates contextual 
information to adaptively refine road contours. This approach improves the delineation accuracy 
of road boundaries. Nevertheless, it exhibits limitations in feature representation and 
generalization during boundary optimization and context aggregation. Furthermore, balancing 
lightweight design and model complexity remains a challenge. In pedestrian pose estimation tasks, 
Li et al. [22] adopted a Transformer-based approach, utilizing a self-attention mechanism to label 
each keypoint and learn the constraints among them within the image. Despite its effectiveness, 
the Transformer-based method suffers from high computational complexity, increased memory 
usage, and longer inference time due to the large number of parameters. 

In summary, object detection and pedestrian pose estimation tasks place different emphases 
on image feature processing. Object detection focuses more on the fusion of multi-scale 
information and global contextual cues to facilitate the recognition of diverse objects and the 
complex relationships between scenes. In contrast, pedestrian pose estimation emphasizes fine-
grained local features and the precise localization of keypoints. As a result, current feature 
compilation networks struggle to balance the distinct feature requirements of these two tasks. To 
address the aforementioned issues, this paper proposes a Dual-Aggregation Feature Compilation 
Network (DAFCN) based on YOLOv8s, which is suitable for both urban traffic object detection 
and pedestrian pose estimation. DAFCN comprises a Multi-Branch Feature Learning Network 
(MBLNet) and a multidimensional spatial feature aggregation network (MS-FAN). MBLNet 
employs a micro-complex convolution structure during training to bring the model's convergence 
closer to global optimization. During inference, a single simple convolution inherits the trained 
parameters, achieving more accurate feature extraction in a lightweight manner. The feature 
extraction network effectively reduces model complexity through a class-transfer training 
strategy, thereby accelerating feature compilation to meet the demands of real-time systems. The 
MS-FAN incorporates our proposed global and local aggregation module (GLAM), which focuses 
on global and local features of the multi-scale features extracted by MBLNet and filters out noisy 
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features through a parallel fusion strategy, achieving the integration of global and local image 
features. 

The main contributions of the paper are as follows: 
(1) An efficient feature compilation network architecture, DAFCN, is proposed, which 

balances multi-scale, global, and local detailed features. It demonstrates excellent performance in 
both urban traffic object detection and pedestrian pose estimation tasks. 

(2) A Multi-Branch Feature Learning Network (MBLNet) is proposed for the feature 
extraction network. MBLNet adopts a strategy of complex training and lightweight inference, 
maximizing feature extraction performance while ensuring network efficiency. 

(3) A multidimensional spatial feature aggregation network (MS-FAN) for feature fusion is 
proposed, which utilizes the Global and Local Aggregation Module (GLAM) to balance the global 
and local information within the extracted multi-scale features. A parallel fusion strategy is 
employed to achieve efficient feature fusion. 

2. Materials and methods 

2.1. Overview of DAFCN 

The state-of-the-art feature compilation architecture, the YOLO series, achieves high feature 
compilation performance with relatively low parameter and computational costs. However, its 
performance in detecting distant small objects in object detection tasks is suboptimal. In action 
recognition tasks, it struggles to accurately estimate the pose of occluded pedestrians. Therefore, 
in this paper, DAFCN is developed based on the feature compilation architecture of YOLOv8s. 
By designing a feature input strategy and a global-local feature aggregation module, and 
optimizing the overall network structure, it effectively achieves multi-scale feature compilation, 
as well as the processing of detailed texture features and the capture of global semantic 
information. 

The overall structure of DAFCN is shown in Fig. 1. DAFCN consists of a feature extraction 
network named MBLNet and a feature fusion network named MS-FAN. In MBLNet, for the input 
RGB image, it is first converted into a grayscale image with 64 channels using a convolution layer. 
Then, a four-stage multi-scale feature extraction architecture is applied, resulting in features with 
channel dimensions of 128, 256, 512, and 512, respectively. The three lowest-resolution features, 
namely those with channel dimensions of 256, 512, and 512, are fed into the feature fusion 
network. The detailed structure of MBLNet will be elaborated in Section 3.2 of the paper. 

 
Fig. 1. The overall structure of DAFCN 

In MS-FAN, the three input feature layers are first aggregated for their global and local features 
using the GLAM module. Then, the Feature Pyramid Network (FPN) structure and the Path 
Aggregation Network (PAN) structure are used, respectively, to perform a second round of feature 
fusion, from bottom to top and top to bottom, for the three feature layers. Finally, three fused 
feature maps with channel dimensions of 256, 512, and 512 are output. The detailed structure of 
MS-FAN will be elaborated in Section 3.3 of the paper. 
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2.2. Multi-branch feature learning network 

The multi-branch feature learning network, as shown in Fig. 2(a), consists of four feature 
learning stages with varying dimensions.  

 
Fig. 2. a) Structure of multi-branch feature learning network,  

b) Conv operation, c) multi-branch feature learning (MBFL) module 

In each stage, a Conv operation is first applied to downsample the feature map. Then, a multi-
branch feature learning (MBFL) module is employed to learn diverse feature representations or 
perform specific tasks. The Conv operation, as shown in Fig. 2(b), consists of a 3×3 convolution, 
a Batch Normalization layer, and a SiLU activation function. The specific calculation method is 
as follows: 𝐶𝑜𝑛𝑣ሺ•ሻ = 𝑆𝑖𝐿𝑈 ቀ𝐵𝑁൫𝑐𝑜𝑛𝑣2𝑑ሺ•ሻ൯ቁ, (1)

where BN refers to the Batch Normalization operation, 𝑐𝑜𝑛𝑣2𝑑denotes the two-dimensional 
convolution operation. 

The MBFL structure, as shown in Fig. 2(c), adopts a residual network architecture. for the 
input feature 𝑓௜. It is first split into 𝑓௜ଵ and 𝑓௜ଶ along the channel dimension. The 𝑓௜ଶ is then fed into 
the multi-branch feature processing block (MBFP) for feature compilation. Finally, the features 
are concatenated and processed with a Conv operation to obtain the output 𝑂௜. The specific 
calculation method is as follows: 𝑓௜ଵ,𝑓௜ଶ = 𝑆𝑝𝑙𝑖𝑡൫𝐶𝑜𝑛𝑣ሺ𝑓௜ሻ൯, 𝑂௜ = 𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡(𝑓௜ଵ,𝑀𝐵𝐹𝑃(𝑓௜ଶሻ,𝑀𝐵𝐹𝑃ቀ𝑀𝐵𝑃𝐹(𝑓௜ଶሻቁ, (2)

where each MBFP Block consists of two layers of multi-branch feature learning operations, 
connected in series via a residual structure, as illustrated in Fig. 2(c). Each multi-branch feature 
learning (MBFP) operation, shown in Fig. 3, adopts a multi-branch training and single-path 
inference strategy to enhance testing performance while reducing model complexity. 

We generally aim for the model to achieve global optimization during training to ensure 
maximum effectiveness during inference. Simultaneously, we desire the model to be lightweight 
enough to enhance inference speed. Inspired by study [23], MBFP introduces additional 
convolution types during the training phase to bring the training performance closer to the global 
optimum. During inference, it employs only a single 𝑘 × 𝑘 convolution to inherit the training 
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parameters, thereby reducing inference complexity while improving training performance. As 
shown in Fig. 3(a), MBFP utilizes six types of convolutions during training, namely conv-BN, 
sequential convolutions, average pooling and three types of multi-scale convolutions. During 
inference, all these convolutions can be replaced by a single 𝑘 × 𝑘 convolution. The underlying 
principle is as follows: 

(1) Conv-BN. 
For conv-BN, a convolution is typically followed by a batch normalization operation. For an 

input 𝐼 and a convolution operation 𝐹, the computation process is as follows: 

𝑂௝ = (𝐼 ∗ 𝐹)௝ − 𝜇௝𝛿௝ 𝛾௝ + 𝛽௝ , (3)

where ∗ represents the standard convolution operation. 𝜇௝ and 𝛿௝ denote the normalization mean 
and standard deviation for the 𝑗 channel, while 𝛾௝ and 𝛽௝ represent the batch normalization scaling 
factor and bias. By merging these, the convolution kernel 𝐹 and BN parameters are recalculated 
into 𝐹′ and 𝑏′, allowing the BN layer to be removed during inference while achieving the same 
functionality with a single convolution. The specific computation method is as follows: 𝐹௝ᇱ = 𝛾௝𝛿௝ 𝐹௝ ,     𝑏௝ᇱ = −𝜇௝𝛾௝𝛿௝ + 𝛽௝ . (4)

 
Fig. 3. Multi-branch feature processing operation (MBFP): a) the MBFP structure during training,  

b) equivalent substitution diagram of each branch, c) MBFP structure during inference 

(2) Sequential convolutions. 
The sequential convolutions structure consists of a 1×1 convolution kernel for channel 

adjustment and a 𝐾 × 𝐾 convolution kernel for feature extraction. The computation process is as 
follows: 𝑂 = (𝐼 ∗ 𝐹ଵ+bଵ) ∗ 𝐹ଶ + 𝑏ଶ, (5)

where 𝐹ଵ, 𝐹ଶ, 𝑏ଵ, and 𝑏ଶ represent the 1×1 convolution, 𝐾 × 𝐾 convolution, and their respective 
biases. The combined effect of these two convolution layers can be represented by an equivalent 𝐾 × 𝐾 convolution kernel and bias. The calculation methods for the new convolution kernel 𝐹′ 
and bias 𝑏′ are as follows: 𝐹ᇱ = 𝐹ଶ ∗ 𝑇𝑅𝐴𝑁𝑆(𝐹ଵ),   𝑏ᇱ = 𝑏ଵ ∗ 𝐹ଶ + 𝑏ଶ, (6)

where 𝑇𝑅𝐴𝑁𝑆(𝐹ଵ) represents the transposed version of the 1×1 convolution kernel, used for 
channel combination. 

(3) Average pooling. 
The average pooling operation is equivalent to a special convolution. When the pooling kernel 

1×1

BN

1×1

BN

K×K

BN

1×1

BN

AVG

BN

K×K

BN

1×K

BN

K×1

BN

ADD

SiLU

Input

output

M
ul

ti-
sc

al
e 

co
nv

ol
ut

io
ns

Se
qu

en
ce

 c
on

vo
lu

tio
ns

Av
er

ag
e 

po
ol

in
g

C
on

v-
BN

ADD

SiLU

Input

output

K×K K×K K×K K×K K×K K×K

Active Value

Padding Value

Step1

Convolution 
kernel 

transformation

Reparameterization

Conv2d

Batch
Normalization

K×K

SiLU

Input

output

Step2

Convolution 
kernel addition

Reparameterization

Average
Pooling

Nonlinearity

Training Inference Inference(a) (b)

(c)



DUAL-AGGREGATION FEATURE COMPILATION NETWORK FOR URBAN TRAFFIC OBJECT DETECTION AND PEDESTRIAN POSE ESTIMATION.  
HUANG XIAO, HANQING JIAN 

906 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

is 𝐾, the replaced convolution kernel becomes a smoothed version of the identity matrix, 
represented by 1/𝐾ଶ for averaging. This allows average pooling operations to be replaced with 
convolutions, unifying the computational framework as follows: 

𝐹′ௗ,௖,௨,௩ = ൝ 1𝐾ଶ ,    𝑑 = 𝑐,0,        𝑑 ≠ 𝑐, (7)

where 𝑑 and 𝑐 represent the output and input channel indices, while 𝑢 and 𝑣 denote the row and 
column indices of the convolution kernel. 

(4) Multi-scale convolutions. 
For multi-scale convolutions, smaller kernels can be expanded into larger ones via zero 

padding, enabling unified representation of multi-scale features. The calculation for the new 
convolution kernel is as follows: 𝐹′ௗ,௖,௨,௩ = ൜𝐹ௗ,௖,௨,௩,     𝑢 < 𝑘௛,    𝑣 < 𝑘௪ ,0,     otherwise,                       (8)

where 𝑘௛ and 𝑘௪ represents the height and width of the original convolution kernel. 
During inference, as shown in Fig. 3(b), the series of convolutions in the six branches can all 

be replaced with 𝐾 × 𝐾convolutions. Since multiple 𝐾 × 𝐾 convolutions in parallel are 
equivalent to a single-channel 𝐾 × 𝐾 convolution, the final inference adopts the 𝐾 × 𝐾 
Conv-SiLU structure shown in Fig. 3(c). 

2.3. Multidimensional spatial feature aggregation network 

As shown in Fig. 4, the multidimensional spatial feature aggregation network adopts an 
FPN-PAN feature fusion architecture. For the three smallest-resolution feature layers input by the 
feature extraction network, the Global and Local Aggregation Module (GLAM) is applied to fuse 
their global and local information. The fused three feature layers are then further processed for 
multi-scale fusion using a bottom-up Feature Pyramid Network (FPN) [13] structure. To prevent 
information loss during the FPN cascading process and to retain more detailed information, a Path 
Aggregation Network (PAN) [14] structure is employed to cascade and concatenate the features 
in a top-down manner. 

 
Fig. 4. Multidimensional spatial feature aggregation network (MS-FAN) 

The GLAM module, as shown in Fig. 5, divides the input feature 𝑋 ∈ 𝑅஼×ு×ௐ evenly along 
the channel dimension into sub-features 𝑋ଵ, 𝑋ଶ ∈ 𝑅಴మ×ு×ௐ. These sub-features are then fed into 
the global feature extraction module (GFE) and local feature extraction module (LFE), 
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respectively, for feature compilation. The compiled features 𝑋ଵ′, 𝑋ଶ′ ∈ 𝑅಴మ×ு×ௐ are obtained. 
They are concatenated and further fused using a 1×1 convolution. The specific calculation method 
is as follows: 𝑋ଵ,𝑋ଶ = 𝑆𝑝𝑙𝑖𝑡(𝑋), (9)𝑌 = 𝐶𝑜𝑛𝑣(𝐶𝑜𝑛𝑐𝑎𝑡(𝐺𝐹𝐸(𝑋ଵ), 𝐿𝐹𝐸(𝑋ଶ))), (10)

where 𝑌 represents the output features after global and local aggregation. 𝐺𝐹𝐸() and 𝐿𝐹𝐸() refer 
to the global feature extraction module and local feature extraction module, respectively. 

 
Fig. 5. Global and local aggregation module (GLAM) 

Since the Vision Transformer architecture focuses more on the global semantic information of 
the feature map, while convolution emphasizes the detailed texture information of the feature map. 
The GFE adopts an attention-based computation approach, and the LFE utilizes depth wise 
convolution to extract local semantic information. The specific calculation method for GFE is as 
follows: 𝑋ଵ஺௧௧ = 𝑋ଵ𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝐶𝑜𝑛𝑣(𝑋ଵ))), 𝐺𝐿𝐸(𝑋ଵ) = 𝑋ଵ + 𝑀𝐿𝑃 ൬𝑅 𝐸 𝐿𝑈 ቀ𝐿𝑁൫𝐶𝑜𝑛𝑣(𝑋ଵ஺௧௧)൯ቁ൰, (11)

where 𝑋ଵ஺௧௧ is the feature vector after the attention operation. 𝑇ranspose represents the 
transposition operation. MLP corresponds to a 1×1 convolution. 𝐿𝑁 refers to the linear layer 
operation. 𝑅𝐸𝐿𝑈 is the activation function. The LFE effectively extracts texture details from the 
feature map through three layers of depthwise convolution. The specific calculation method is as 
follows: 𝐿𝐹𝐸(𝑋ଶ) = 𝑋ଶ + 𝑋ଶ𝛿 ቀ𝐶𝑜𝑛𝑣൫𝐹஽ௐ஼ଷ (𝑋ଶ)൯ቁ, (12)

where 𝛿 is the activation function. 𝐹஽ௐ஼ represents the depthwise convolution module operation. 
The specific calculation method is as follows: 𝐹஽ௐ஼(𝑋ଶ) = 𝑋ଶ + 𝐶𝑜𝑛𝑣൫𝐷𝑊𝐶(𝑋ଶ)൯, (13)

where 𝐷𝑊𝐶 represents a 3×3 depthwise convolution operation. 
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3. Experimentation and analysis 

3.1. Data processing 

The dataset used in this experiment focuses on urban traffic and includes 8,000 images 
captured at various intersection scenes. Samples from the COCO and KITTI datasets were 
incorporated to enhance the robustness and generalization of the model. This ensured the diversity 
and representativeness of the dataset. Object annotations were performed using the LabelImg 
software, and targets were classified into six categories: pedestrian, bicycle, bus, car, motorcycle, 
and truck. The dataset was divided into training and validation sets in a 7:3 ratio. A solid 
foundation was provided for training and evaluating the model in diverse real-world scenarios. 

The COCO-pose dataset was designed for human pose estimation tasks, containing over 
250,000 labeled person instances. Images were collected from diverse environments and activities 
to ensure variability and robustness. Key points were annotated for 17 body parts, including the 
head, shoulders, elbows, and knees. The dataset was split into training, validation, and testing sets 
to facilitate comprehensive model evaluation. 

3.2. Experimental parameter details 

The model training was conducted on the AutoDL server platform. The hardware environment 
comprised an AMD EPYC 9754 128-core processor as the CPU and an NVIDIA GeForce RTX 
4090D GPU with 24GB of memory. The software environment was configured with the Ubuntu 
20.04 operating system, CUDA 11.8 toolkit, and PyTorch 2.0 deep learning framework. The 
detailed training parameters are summarized in Table 1. The input resolution was set to 640×640, 
with a batch size of 32. The SGD optimizer was employed and configured with an initial learning 
rate and final learning rate of 0.01. To ensure adequate model fitting, the number of training 
epochs was set to 200. 

Table 1. Learning parameters 
Parameter 

Input size Batch size Epochs Optimizer Lr0 Lrf 
640×640 32 200 SGD 0.01 0.01 

3.3. Object detection comparison experiment 

To evaluate the performance of the algorithm, a series of evaluation metrics are introduced. 
First, mean average precision (mAP) is used as the main metric to measure the detection 
capability. Higher mAP indicates better detection performance across multiple object classes. 
Second, floating-point operations (FLOPS) are used to quantify the computational requirements 
during the inference process, representing the total number of floating-point operations performed. 
lower FLOPS values indicate lower hardware requirements. In addition, Params are used to 
describe the total number of weights and biases in the model, with fewer parameters indicating 
lower computational cost and facilitating deployment on lightweight devices. Frames Per Second 
(FPS) is introduced to assess the model’s real-time processing capability. FPS denotes the number 
of image frames the model can process per second, directly reflecting its inference speed. Finally, 
the Average Precision (AP) per class is added to evaluate the detection accuracy of the model for 
each object class. 

To evaluate the performance of the DAFCN network in the object detection task, this 
experiment combines DAFCN with the YOLOv8s detection head and compares it with several 
state-of-the-art object detection models, including YOLOv6 [24], YOLOv7 [25], rt-detr [26], and 
EfficientDet [27]. The best results for each metric are highlighted in bold, as shown in Table 2. 
The results indicate that YOLOv6 achieves a good balance between inference speed and detection 
accuracy due to its reduced parameter count and computational requirements, but it struggles with 
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detecting densely packed pedestrians and small vehicles. While YOLOv7 offers faster inference, 
its detection accuracy still has room for improvement. Rt-detr achieves high detection accuracy 
through its anchor-free design; however, its large parameter counts and computational cost result 
in an inference speed of only 64.44 FPS, falling short of real-time detection requirements. 
EfficientDet provides a relatively balanced performance with a smaller parameter count, yet its 
detection accuracy lags significantly behind other models. In contrast, the proposed DAFCN 
model demonstrates outstanding performance, particularly in detecting densely packed 
pedestrians and small vehicles. It achieves the highest detection accuracy and fastest inference 
speed while maintaining significantly lower parameter and computational costs compared to other 
models. Furthermore, DAFCN excels in terms of average precision across all categories, 
showcasing superior detection capabilities. 

Table 2. Comparative experimental results 
Comparison of system models 

Model mAP (%) Params (M) FLOPs (G) FPS (f/s) AP of Classes 
C1 C2 C3 C4 C5 C6 

YOLOv6 84.3 4.2 11.8 108.28 88.6 90.4 97.3 83.2 74.4 76.2 
YOLOv7 82.9 6.1 13 97.43 86.4 90 97.3 82.5 72.9 75.2 

rt-detr 85.2 31.8 125.6 64.44 88 91.3 97.2 82.6 76.3 76.8 
EfficientDet 80.1 8.2 17.5 100.26 85.2 87.3 96.9 81.3 71.2 68.5 

DAFCN (ours) 85.5 4.16 9.9 136.2 88.7 91.8 97.4 82.9 75.3 77 
DAFCN with different feature extraction networks 

Backbone mAP (%) Params (M) FLOPs (G) FPS (f/s) AP of Classes 
C1 C2 C3 C4 C5 C6 

efficientViT [12] 83.7 4.15 10.1 41,8 90.9 86.1 97.3 82.1 73.2 72.3 
Fasternet [23] 84.2 4.32 11.3 167.4 87.1 93.1 97.4 82.5 76.4 68.5 

convnextv2 [28] 81.6 5.81 14.7 102.4 86.8 91.1 97 80.1 68.4 66.3 
Vanillanet [9] 84.8 24.1 97.3 219.4 89.3 91.9 97.4 82.3 75.8 72.3 
MBLNet(ours) 84.1 4.16 9.9 138.5 85.3 90.7 97.5 83.4 75.1 72.4 

DAFCN with different feature fusion networks 

Necks mAP (%) Params (M) FLOPs (G) FPS (f/s) AP of Classes 
C1 C2 C3 C4 C5 C6 

EMBSFPN [11] 84.7 2.24 7.7 99.7 89.1 88.3 97.4 81.4 75.8 75 
ContextGuideFPN [17] 83.8 3.31 9 122.3 88.9 90.2 97.4 82.8 73.9 69.6 

CGRFPN[29] 83.9 3.58 8.9 120.1 88.4 92.6 97.2 81.9 72.2 71 
TransNeXt [18] 84.4 2.84 8.3 106 88.1 90.2 97.1 83.4 73.5 69.3 
MS-FAN (ours) 84.7 3.15 8.7 222.7 90.5 90.4 97.5 85.7 74 76.2 

In Table 2, the performance of mainstream feature extraction networks is compared with the 
proposed MBLNet. MBLNet achieves a balance between efficiency and accuracy, delivering 
138.5 FPS inference speed and 84.1 % mAP with only 4.16M parameters and 9.9G FLOPs, 
outperforming EfficientViT, Fasternet, and ConvNeXtV2 in both aspects. In Table 2, the proposed 
MS-FAN is evaluated against FPN-based feature fusion networks. MS-FAN achieves 84.7 % 
mAP with 3.15M parameters, 8.7G FLOPs, and an inference speed of 222.7 FPS, significantly 
surpassing EMBSFPN, ContextGuideFPN, CGRFPN, and TransNeXt in both detection 
performance and computational efficiency. It can be observed that MS-FAN achieves higher 
inference speed and detection accuracy. This is accomplished while maintaining low 
computational complexity. Its performance in feature fusion is particularly outstanding, especially 
in complex scenarios. 

As shown in Fig. 6(a), the horizontal axis represents the number of model parameters, while 
the vertical axis indicates the mAP. Models closer to the top-left corner are considered to have 
better performance. Benefiting from its lightweight design, DAFCN achieves the highest detection 
accuracy with minimal parameters and computational cost. A 4.7 % improvement in mAP is 
achieved compared to the baseline model YOLOv8. As shown in Fig. 6(b), DAFCN has 
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demonstrated excellent performance across all categories. 

 
a) 

 
b) 

Fig. 6. a) Comparison of different model mAPs with parameters, b) comparison of APs per category 

 
Fig. 7. Comparison of detection effectiveness of DAFCN with different obstacle detection algorithms. 

The test results of YOLOv6, YOLOv7, rt-detr, EfficientDet, and DAFCN on an urban traffic 
dataset are compared in Fig. 7. YOLOv6 mainly relies on the basic up-sampling and down-
sampling operations to realize the fusion of features at different scales, and when dealing with 
complex scenes, it is unable to adequately integrate semantic information at different levels, 
resulting in the occurrence of wrong detections. YOLOv7 adopts a relatively complex and 
inflexible multi-scale feature fusion strategy, which leads to the difficulty of effectively 
integrating different levels of feature information, and in turn affects the model's detection 
accuracy. Rt-detr feature fusion process is less adaptive to small sample data, leading to its missed 
detection. efficientDet's feature fusion is not flexible enough when dealing with complex scenes, 
leading to different degrees of missed detection of small targets. In contrast, DAFCN effectively 
detects small objects by fully integrating deep and shallow features. This proves the effectiveness 
and superiority of DAFCN. 

3.4. Human pose estimation comparison experiment 

To evaluate the performance of the DAFCN network in pedestrian pose estimation, this 
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experiment combines DAFCN with the YOLOpose detection head and compares it with several 
pose estimation models, including EfficientHRNetH0 [30], OpenPose [31], and YoloPose [32]. 
The results are shown in Table 3.  

Table 3. Comparative experimental results 
Comparison of system models 

Model mAP (%) Params (M) FLOPs (G) 
EfficientHRNetH0 84.9 23.3 56.36 

OpenPose 82.1 52.31 124.7 
YoloPose 84.3 15.08 39.8 

DAFCN (ours) 86.2 13.6 33.4 
DAFCN with different feature extraction networks 

Backbone mAP (%) Params (M) FLOPs (G) 
efficientViT 84.7 4.96 11.16 

Fasternet 86.2 5.05 12.49 
convnextv2 82.5 6.8 16.24 
Vanillanet 84.2 28.2 107.5 

MBLNet (ours) 85.8 4.87 10.94 
DAFCN with different feature fusion networks 

Necks mAP (%) Params (M) FLOPs (G) 
EMBSFPN 83.2 2.62 8.96 

ContextGuideFPN 84.8 3.87 9.54 
CGRFPN 84.9 4.19 9.67 

TransNeXt 82.3 3.32 9.12 
MS-FAN (ours) 85.2 3.65 8.82 

Among them, EfficientHRNetH0 is ineffective in small target detection due to its high model 
complexity and insufficient feature fusion. OpenPose uses VGG as the backbone network, but its 
network structure is deeply hierarchical and prone to gradient vanishing, which leads to a large 
amount of computation and poor detection accuracy. YoloPose is based on the YOLOv3 
algorithm, which is easily affected by background noise and occlusion. The highest mAP of 
86.2 % is achieved by DAFCN. Meanwhile, its parameter count (13.6M) and computational cost 
(33.4G FLOPs) are the lowest. The ability to achieve high detection accuracy with minimal 
complexity is demonstrated by the proposed model. In Table 3, various feature extraction 
backbones are compared. Excellent performance is exhibited by the proposed MBLNet. Among 
them, EfficientViT has a complex model structure with multi-branch and multi-scale design, 
which makes the training and optimization process cumbersome and requires high computational 
resources. Fasternet focuses on model lightweighting and speed enhancement, and has limited 
feature extraction capability. ConvNeXtV2 is not robust enough in feature extraction, and cannot 
stably extract high-quality features in the face of complex and changing scenes. vanilanet has a 
simple model structure, which is insufficient in feature extraction when dealing with complex 
tasks, making it difficult to effectively capture important features in the data and affecting model 
performance. features in the data, which affect the model's performance. An mAP of 85.8 % is 
achieved by MBLNet with only 4.87M parameters and 10.94G FLOPs. It outperforms other 
backbone networks, including EfficientViT, Fasternet, and ConvNeXtV2, in both efficiency and 
accuracy. Finally, a comparison of feature fusion networks is shown in Table 3. Among them, 
EMBSFPN mainly relies on basic feature splicing and convolution operations, which easily leads 
to the loss of feature information and inadequate fusion, and thus affects the model's accurate 
target localization and classification effect. ContextGuideFPN has a limited range of context 
information capture when facing multi-scale targets and complex backgrounds, making it difficult 
to adequately cover target features at different scales. CGRFPN cannot finely adapt to the specific 
feature requirements of each pixel point, resulting in poorly targeted feature fusion. TransNeXt is 
prone to computational bottlenecks when processing high-resolution feature maps, resulting in 
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lower feature fusion efficiency and affecting the overall detection speed. The proposed MS-FAN 
achieves 85.2 % mAP with only 3.65M parameters and 8.82G FLOPs. It outperforms EMBSFPN, 
ContextGuideFPN, CGRFPN, and TransNeXt. Superior detection accuracy and computational 
efficiency are exhibited by MS-FAN. 

The detection results of EfficientHRNetH0, OpenPose, YoloPose, and DAFCN are compared 
in Fig. 8. Missed and incorrect detections are observed in EfficientHRNetH0 due to insufficient 
feature representation. OpenPose fails to capture accurate pose structures in cluttered scenes, 
leading to errors. YoloPose, while faster, struggles with complex scenarios involving overlapping 
human poses and occlusions, which results in misdetections and incomplete pose estimations. In 
contrast, DAFCN achieves superior detection performance by leveraging its robust feature 
extraction and fusion capabilities. This highlights the effectiveness and reliability of DAFCN in 
challenging scenarios. 

 
Fig. 8. Comparison of detection effectiveness of DAFCN with different obstacle detection algorithms 

4. Conclusions 

To address the distinct feature requirements of small object detection in urban traffic and 
pedestrian pose estimation tasks, this paper proposes the Dual-Aggregation Efficient Feature 
Compilation Network (DAFCN), a unified framework compatible with both tasks. DAFCN adopts 
a multi-channel complex convolution structure during training and a lightweight single-channel 
simple convolution for inference. Furthermore, it integrates a global-local dual-aggregation 
module to effectively fuse multi-scale global and local semantic features. In the object detection 
experiments on the hybrid urban traffic dataset, DAFCN achieved an mAP of 85.5 with only 
4.16M parameters and 9.9 GFLOPs. In the human pose estimation experiments on the COCO-pose 
dataset, DAFCN reached an mAP of 86.2 with 13.6M parameters and 33.4 GFLOPs. Compared 
to current state-of-the-art object detection and pose estimation models, DAFCN achieves the 
highest accuracy while maintaining an ultra-lightweight design, meeting the performance 
demands of real-world applications under limited computational resources. 

In future work, we plan to explore multi-sensor fusion strategies – such as combining visual 
and depth or thermal data – to further enhance the robustness and accuracy of both object detection 
and pose estimation under complex urban scenarios.  
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