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Abstract. With the increasing complexity of urban transportation systems, object detection and
pedestrian pose estimation play a crucial role in intelligent traffic management and autonomous
driving technologies. However, existing feature compilation networks are often designed for
single tasks and perform poorly in small object detection and high occlusion pedestrian pose
estimation tasks. To address the above issues, this paper proposes an efficient feature compilation
network with Dual-aggregation, compatible with both object detection and pedestrian pose
estimation. This network adopts a transfer learning-like training strategy in the feature extraction
network, using a micro-complex convolution structure during training to bring the training results
as close as possible to global optimization. During inference, a single simple convolution is used
to inherit the training results, improving the model performance while ensuring model lightweight.
The feature fusion employs a global-local dual aggregation structure, simultaneously considering
multi-scale global and local features. Additionally, we use multiple public datasets to create a
hybrid dataset under various scenarios to validate the robustness of the network. The experiments
show that the proposed method outperforms existing mainstream methods in detection accuracy
for urban object detection and pedestrian pose estimation tasks, especially demonstrating better
robustness in complex urban traffic scenarios.

Keywords: urban traffic, deep learning, object detection, pose estimation, vision transformer.
1. Introduction

With the rapid development of urbanization and the increasing demand for intelligent
transportation systems (ITS), robust and efficient object detection and pedestrian pose estimation
have become crucial for ensuring traffic safety and optimizing transportation management. Object
detection algorithms play a vital role in identifying vehicles, pedestrians, and other traffic entities,
while pose estimation enhances the understanding of human behavior and interactions in urban
scenarios. Together, these technologies form the backbone of advanced driver-assistance systems
(ADAS) and autonomous driving applications.

Currently, most mainstream approaches for urban traffic object detection and pedestrian pose
estimation rely on deep learning [1-4]. These methods extract relevant features from images using
feature compilation networks, which are then fed into different downstream detectors for either
object detection or pose estimation. Therefore, an efficient and compatible feature compilation
network plays a vital role in both object detection and pedestrian pose estimation tasks. The feature
compilation network consists of a feature extraction network and a feature fusion network. In the
feature extraction component, Krizhevsky et al. [5] were the first to propose using convolution for
feature extraction. However, this approach is limited to capturing local features and lacks the
ability to model long-range dependencies. Studies [6, 7] enhanced feature extraction performance
by increasing network depth or introducing highly complex architectures. However, these
approaches often overlooked the importance of lightweight design, resulting in excessive
computational redundancy. Research efforts in [8, 9] focused on designing lightweight
convolutional structures to reduce computational cost and model size. Nevertheless, these methods
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often compromised accuracy in pursuit of efficiency, performing poorly in complex tasks. Studies
[10-12] have explored combining Transformer architectures with convolutional networks to
enable more efficient feature extraction. However, these hybrid methods require more intricate
hyperparameter tuning, and often underperform traditional convolutional models on small-scale
datasets. In the feature fusion component, Lin et al. [13] were the first to propose using a feature
pyramid structure to achieve multi-scale feature fusion. This top-down fusion approach
significantly improves the detection of small objects. However, during the fusion process,
high-level features may overwhelm low-level detail information. Liu et al. [14] introduced a
bottom-up path aggregation strategy, known as the Path Aggregation Network (PAN), to
supplement missing low-level details. Nonetheless, this method handles redundant information
inadequately, leading to suboptimal fusion efficiency. Ghiasi et al. [15] leveraged Neural
Architecture Search (NAS) to automatically design an optimal feature pyramid structure.
However, this approach requires significant computational resources during training, making
rapid deployment challenging. Chen et al. [16] proposed a bidirectional feature pyramid fusion
strategy based on PAN, achieving efficient multi-scale fusion with a more lightweight
architecture. Although weighted fusion improves performance, it introduces additional
computational overhead. Studies [17-19] enhanced feature fusion effectiveness by employing
attention mechanisms and dynamically assigning weights to emphasize critical features. However,
Transformer-based approaches often struggle to effectively capture local features.

In response to the specific feature requirements of urban traffic object detection and pedestrian
pose estimation tasks, Li et al. [20] integrated spatial and channel attention mechanisms within
the feature compilation network to enhance the network's focus on critical spatial locations and
feature channels in the domain of object detection. They also employed dilated convolutions to
expand the receptive field. However, the efficiency of attention mechanisms and dilated
convolutions remains limited, particularly under complex environmental conditions, resulting in
insufficient robustness. Han et al. [21] proposed a lightweight symmetric data fusion network,
Epurate-Net, which merges spatial responses into visual features and aggregates contextual
information to adaptively refine road contours. This approach improves the delineation accuracy
of road boundaries. Nevertheless, it exhibits limitations in feature representation and
generalization during boundary optimization and context aggregation. Furthermore, balancing
lightweight design and model complexity remains a challenge. In pedestrian pose estimation tasks,
Li et al. [22] adopted a Transformer-based approach, utilizing a self-attention mechanism to label
each keypoint and learn the constraints among them within the image. Despite its effectiveness,
the Transformer-based method suffers from high computational complexity, increased memory
usage, and longer inference time due to the large number of parameters.

In summary, object detection and pedestrian pose estimation tasks place different emphases
on image feature processing. Object detection focuses more on the fusion of multi-scale
information and global contextual cues to facilitate the recognition of diverse objects and the
complex relationships between scenes. In contrast, pedestrian pose estimation emphasizes fine-
grained local features and the precise localization of keypoints. As a result, current feature
compilation networks struggle to balance the distinct feature requirements of these two tasks. To
address the aforementioned issues, this paper proposes a Dual-Aggregation Feature Compilation
Network (DAFCN) based on YOLOvVSs, which is suitable for both urban traffic object detection
and pedestrian pose estimation. DAFCN comprises a Multi-Branch Feature Learning Network
(MBLNet) and a multidimensional spatial feature aggregation network (MS-FAN). MBLNet
employs a micro-complex convolution structure during training to bring the model's convergence
closer to global optimization. During inference, a single simple convolution inherits the trained
parameters, achieving more accurate feature extraction in a lightweight manner. The feature
extraction network effectively reduces model complexity through a class-transfer training
strategy, thereby accelerating feature compilation to meet the demands of real-time systems. The
MS-FAN incorporates our proposed global and local aggregation module (GLAM), which focuses
on global and local features of the multi-scale features extracted by MBLNet and filters out noisy
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features through a parallel fusion strategy, achieving the integration of global and local image
features.

The main contributions of the paper are as follows:

(1) An efficient feature compilation network architecture, DAFCN, is proposed, which
balances multi-scale, global, and local detailed features. It demonstrates excellent performance in
both urban traffic object detection and pedestrian pose estimation tasks.

(2) A Multi-Branch Feature Learning Network (MBLNet) is proposed for the feature
extraction network. MBLNet adopts a strategy of complex training and lightweight inference,
maximizing feature extraction performance while ensuring network efficiency.

(3) A multidimensional spatial feature aggregation network (MS-FAN) for feature fusion is
proposed, which utilizes the Global and Local Aggregation Module (GLAM) to balance the global
and local information within the extracted multi-scale features. A parallel fusion strategy is
employed to achieve efficient feature fusion.

2. Materials and methods
2.1. Overview of DAFCN

The state-of-the-art feature compilation architecture, the YOLO series, achieves high feature
compilation performance with relatively low parameter and computational costs. However, its
performance in detecting distant small objects in object detection tasks is suboptimal. In action
recognition tasks, it struggles to accurately estimate the pose of occluded pedestrians. Therefore,
in this paper, DAFCN is developed based on the feature compilation architecture of YOLOVSs.
By designing a feature input strategy and a global-local feature aggregation module, and
optimizing the overall network structure, it effectively achieves multi-scale feature compilation,
as well as the processing of detailed texture features and the capture of global semantic
information.

The overall structure of DAFCN is shown in Fig. 1. DAFCN consists of a feature extraction
network named MBLNet and a feature fusion network named MS-FAN. In MBLNet, for the input
RGB image, it is first converted into a grayscale image with 64 channels using a convolution layer.
Then, a four-stage multi-scale feature extraction architecture is applied, resulting in features with
channel dimensions of 128, 256, 512, and 512, respectively. The three lowest-resolution features,
namely those with channel dimensions of 256, 512, and 512, are fed into the feature fusion
network. The detailed structure of MBLNet will be elaborated in Section 3.2 of the paper.
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Fig. 1. The overall structure of DAFCN

In MS-FAN, the three input feature layers are first aggregated for their global and local features
using the GLAM module. Then, the Feature Pyramid Network (FPN) structure and the Path
Aggregation Network (PAN) structure are used, respectively, to perform a second round of feature
fusion, from bottom to top and top to bottom, for the three feature layers. Finally, three fused
feature maps with channel dimensions of 256, 512, and 512 are output. The detailed structure of
MS-FAN will be elaborated in Section 3.3 of the paper.
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2.2. Multi-branch feature learning network

The multi-branch feature learning network, as shown in Fig. 2(a), consists of four feature
learning stages with varying dimensions.

(a)
256x80x80 512x40x40 512x20%20
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Fig. 2. a) Structure of multi-branch feature learning network,
b) Conv operation, ¢) multi-branch feature learning (MBFL) module

In each stage, a Conv operation is first applied to downsample the feature map. Then, a multi-
branch feature learning (MBFL) module is employed to learn diverse feature representations or
perform specific tasks. The Conv operation, as shown in Fig. 2(b), consists of a 3x3 convolution,
a Batch Normalization layer, and a SiLU activation function. The specific calculation method is
as follows:

Conv(e) = SiLU (BN(conUZd(-))), @)

where BN refers to the Batch Normalization operation, conv2ddenotes the two-dimensional
convolution operation.

The MBFL structure, as shown in Fig. 2(c), adopts a residual network architecture. for the
input feature f;. It is first split into f;* and f;? along the channel dimension. The f;? is then fed into
the multi-branch feature processing block (MBFP) for feature compilation. Finally, the features
are concatenated and processed with a Conv operation to obtain the output O;. The specific
calculation method is as follows:

fL, 2 = Split(Conv(f))), 5
0; = Conv(Concat(f!, MBFP(f?), MBFP(MBPF(fl-Z)), @)
where each MBFP Block consists of two layers of multi-branch feature learning operations,
connected in series via a residual structure, as illustrated in Fig. 2(c). Each multi-branch feature
learning (MBFP) operation, shown in Fig. 3, adopts a multi-branch training and single-path
inference strategy to enhance testing performance while reducing model complexity.

We generally aim for the model to achieve global optimization during training to ensure
maximum effectiveness during inference. Simultaneously, we desire the model to be lightweight
enough to enhance inference speed. Inspired by study [23], MBFP introduces additional
convolution types during the training phase to bring the training performance closer to the global
optimum. During inference, it employs only a single k X k convolution to inherit the training
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parameters, thereby reducing inference complexity while improving training performance. As
shown in Fig. 3(a), MBFP utilizes six types of convolutions during training, namely conv-BN,
sequential convolutions, average pooling and three types of multi-scale convolutions. During
inference, all these convolutions can be replaced by a single k X k convolution. The underlying
principle is as follows:

(1) Conv-BN.

For conv-BN, a convolution is typically followed by a batch normalization operation. For an
input I and a convolution operation F, the computation process is as follows:

(I*F);—u
0; =—5{ Ly + B, (3)
]

where * represents the standard convolution operation. y; and §; denote the normalization mean
and standard deviation for the j channel, while y; and j; represent the batch normalization scaling
factor and bias. By merging these, the convolution kernel F and BN parameters are recalculated

into F' and b’, allowing the BN layer to be removed during inference while achieving the same
functionality with a single convolution. The specific computation method is as follows:
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Fig. 3. Multi-branch feature processing operation (MBFP): a) the MBFP structure during training,
b) equivalent substitution diagram of each branch, ¢) MBFP structure during inference

(2) Sequential convolutions.

The sequential convolutions structure consists of a 1x1 convolution kernel for channel
adjustment and a K X K convolution kernel for feature extraction. The computation process is as
follows:

0 = (I*F1+b1)*F2+b2, (5)

where Fy, F,, b,, and b, represent the 1x1 convolution, K X K convolution, and their respective
biases. The combined effect of these two convolution layers can be represented by an equivalent
K X K convolution kernel and bias. The calculation methods for the new convolution kernel F’
and bias b’ are as follows:

F’=F2*TRANS(F1), b,:bl*F2+b2, (6)

where TRANS(F;) represents the transposed version of the 1x1 convolution kernel, used for
channel combination.

(3) Average pooling.

The average pooling operation is equivalent to a special convolution. When the pooling kernel
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is K, the replaced convolution kernel becomes a smoothed version of the identity matrix,
represented by 1/K? for averaging. This allows average pooling operations to be replaced with
convolutions, unifying the computational framework as follows:

1
I - d =C,
Flgcuv = K2 ¢ 7
0, d#c,

where d and c represent the output and input channel indices, while u and v denote the row and
column indices of the convolution kernel.

(4) Multi-scale convolutions.

For multi-scale convolutions, smaller kernels can be expanded into larger ones via zero
padding, enabling unified representation of multi-scale features. The calculation for the new
convolution kernel is as follows:
F’d(:uv — {Fd,c,u,w u < kht v< kw' (8)

ot 0, otherwise,

where kj, and k,, represents the height and width of the original convolution kernel.

During inference, as shown in Fig. 3(b), the series of convolutions in the six branches can all
be replaced with K X Kconvolutions. Since multiple K X K convolutions in parallel are
equivalent to a single-channel K X K convolution, the final inference adopts the K X K
Conv-SiLU structure shown in Fig. 3(c).

2.3. Multidimensional spatial feature aggregation network

As shown in Fig. 4, the multidimensional spatial feature aggregation network adopts an
FPN-PAN feature fusion architecture. For the three smallest-resolution feature layers input by the
feature extraction network, the Global and Local Aggregation Module (GLAM) is applied to fuse
their global and local information. The fused three feature layers are then further processed for
multi-scale fusion using a bottom-up Feature Pyramid Network (FPN) [13] structure. To prevent
information loss during the FPN cascading process and to retain more detailed information, a Path
Aggregation Network (PAN) [14] structure is employed to cascade and concatenate the features
in a top-down manner.
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Fig. 4. Multidimensional spatial feature aggregation network (MS-FAN)

The GLAM module, as shown in Fig. 5, divides the input feature X € R*F*W evenly along

C
the channel dimension into sub-features X;, X, € RzZ***" These sub-features are then fed into
the global feature extraction module (GFE) and local feature extraction module (LFE),
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C
respectively, for feature compilation. The compiled features X;’, X,” € RzZ***W are obtained.
They are concatenated and further fused using a 1x1 convolution. The specific calculation method

is as follows:

X1, X, = Split(X), )
Y = Conv(Concat( GFE(X;),LFE(X5,))), (10)

where Y represents the output features after global and local aggregation. GFE () and LFE () refer
to the global feature extraction module and local feature extraction module, respectively.

global feature extraction (GFE)

MLP
>
=
Qo
— —»o«?—
z X

local feature extraction (LFE)

Since the Vision Transformer architecture focuses more on the global semantic information of
the feature map, while convolution emphasizes the detailed texture information of the feature map.
The GFE adopts an attention-based computation approach, and the LFE utilizes depth wise
convolution to extract local semantic information. The specific calculation method for GFE is as
follows:

Global and Local Aggregation Module (GLAM)

global feature

extraction (GFE)

1x1Conv
Transpose
softmax
1x1Conv
LN,ReLU

Split Channel
Concatence
1x1Conv

local feature
extraction (LFE)

x
@

DWConv: Depth-wise convolutions

D

1x1Conv
LN,ReLU

1x1Conv
3x3 DWConv

: Element-wise multiply

MLP : Multi-layer Perceptrom

Fig. 5. Global and local aggregation module (GLAM)

XAt = X, Soft max( Transpose( Conv(X;))),

GLE(X,) = X, + MLP (R ELU (LN(Conv(Xfm)))), (11

where X{'* is the feature vector after the attention operation. Transpose represents the
transposition operation. MLP corresponds to a 1x1 convolution. LN refers to the linear layer
operation. RELU is the activation function. The LFE effectively extracts texture details from the
feature map through three layers of depthwise convolution. The specific calculation method is as
follows:

LFE(X,) = X, + X,8 (Conv(FSWC(XZ))), (12)

where § is the activation function. Fp, represents the depthwise convolution module operation.
The specific calculation method is as follows:

Fpwe(X2) = X, + Conv(DWC(Xy)), (13)

where DWC represents a 3x3 depthwise convolution operation.
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3. Experimentation and analysis
3.1. Data processing

The dataset used in this experiment focuses on urban traffic and includes 8,000 images
captured at various intersection scenes. Samples from the COCO and KITTI datasets were
incorporated to enhance the robustness and generalization of the model. This ensured the diversity
and representativeness of the dataset. Object annotations were performed using the Labellmg
software, and targets were classified into six categories: pedestrian, bicycle, bus, car, motorcycle,
and truck. The dataset was divided into training and validation sets in a 7:3 ratio. A solid
foundation was provided for training and evaluating the model in diverse real-world scenarios.

The COCO-pose dataset was designed for human pose estimation tasks, containing over
250,000 labeled person instances. Images were collected from diverse environments and activities
to ensure variability and robustness. Key points were annotated for 17 body parts, including the
head, shoulders, elbows, and knees. The dataset was split into training, validation, and testing sets
to facilitate comprehensive model evaluation.

3.2. Experimental parameter details

The model training was conducted on the AutoDL server platform. The hardware environment
comprised an AMD EPYC 9754 128-core processor as the CPU and an NVIDIA GeForce RTX
4090D GPU with 24GB of memory. The software environment was configured with the Ubuntu
20.04 operating system, CUDA 11.8 toolkit, and PyTorch 2.0 deep learning framework. The
detailed training parameters are summarized in Table 1. The input resolution was set to 640640,
with a batch size of 32. The SGD optimizer was employed and configured with an initial learning
rate and final learning rate of 0.01. To ensure adequate model fitting, the number of training
epochs was set to 200.

Table 1. Learning parameters

Parameter
Input size | Batch size | Epochs | Optimizer | Lr0 | Lif
640x640 32 200 SGD 0.01 | 0.01

3.3. Object detection comparison experiment

To evaluate the performance of the algorithm, a series of evaluation metrics are introduced.
First, mean average precision (mAP) is used as the main metric to measure the detection
capability. Higher mAP indicates better detection performance across multiple object classes.
Second, floating-point operations (FLOPS) are used to quantify the computational requirements
during the inference process, representing the total number of floating-point operations performed.
lower FLOPS values indicate lower hardware requirements. In addition, Params are used to
describe the total number of weights and biases in the model, with fewer parameters indicating
lower computational cost and facilitating deployment on lightweight devices. Frames Per Second
(FPS) is introduced to assess the model’s real-time processing capability. FPS denotes the number
of image frames the model can process per second, directly reflecting its inference speed. Finally,
the Average Precision (AP) per class is added to evaluate the detection accuracy of the model for
each object class.

To evaluate the performance of the DAFCN network in the object detection task, this
experiment combines DAFCN with the YOLOv8s detection head and compares it with several
state-of-the-art object detection models, including YOLOV6 [24], YOLOV7 [25], rt-detr [26], and
EfficientDet [27]. The best results for each metric are highlighted in bold, as shown in Table 2.
The results indicate that YOLOVG6 achieves a good balance between inference speed and detection
accuracy due to its reduced parameter count and computational requirements, but it struggles with
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detecting densely packed pedestrians and small vehicles. While YOLOv7 offers faster inference,
its detection accuracy still has room for improvement. Rt-detr achieves high detection accuracy
through its anchor-free design; however, its large parameter counts and computational cost result
in an inference speed of only 64.44 FPS, falling short of real-time detection requirements.
EfficientDet provides a relatively balanced performance with a smaller parameter count, yet its
detection accuracy lags significantly behind other models. In contrast, the proposed DAFCN
model demonstrates outstanding performance, particularly in detecting densely packed
pedestrians and small vehicles. It achieves the highest detection accuracy and fastest inference
speed while maintaining significantly lower parameter and computational costs compared to other
models. Furthermore, DAFCN excels in terms of average precision across all categories,
showcasing superior detection capabilities.

Table 2. Comparative experimental results
Comparison of system models

o AP of Classes
Model mAP (%) | Params (M) | FLOPs (G) | FPS (f/s) cilcaTcalcalcsce
YOLOv6 84.3 4.2 11.8 108.28 |88.6/90.4/97.3|83.2|74.4|76.2
YOLOvV7 82.9 6.1 13 97.43 186.4| 90 [97.3|82.5|72.9|75.2
rt-detr 85.2 31.8 125.6 64.44 | 88 [91.3197.2|182.6/76.3|76.8
EfficientDet 80.1 8.2 17.5 100.26 |85.2|87.3196.9|81.3|71.2|68.5
DAFCN (ours) 85.5 4.16 9.9 136.2 |88.7/91.8/97.4(82.9|75.3| 77

DAFCN with different feature extraction networks

o AP of Classes
Backbone mAP (%) | Params (M) | FLOPs (G) | FPS (f/s) cilcalcalcal cslcs
efficientViT [12] 83.7 4.15 10.1 41,8 190.9/86.1(97.382.1/73.2|72.3
Fasternet [23] 84.2 4.32 11.3 167.4 [87.1(93.1/97.4|82.5/76.4|68.5
convnextv2 [28] 81.6 5.81 14.7 102.4 [86.8/91.1| 97 |80.1/68.4/66.3
Vanillanet [9] 84.8 24.1 97.3 219.4 189.3191.9/97.4/82.3|75.8|72.3
MBLNet(ours) 84.1 4.16 9.9 138.5 185.3]90.7|97.5|83.4|75.1|72.4

DAFCN with different feature fusion networks

o AP of Classes
Necks mAP (%) | Params (M) | FLOPs (G) | FPS (f/s) Cllcalcalcal C51¢6
EMBSFPN [11] 84.7 2.24 7.7 99.7 189.1/88.3|97.4/81.4|75.8| 75
ContextGuideFPN [17] 83.8 3.31 9 122.3 188.9/90.2197.4/82.8|73.9/69.6
CGRFPNJ29] 83.9 3.58 8.9 120.1 |88.4/92.6/97.2|181.9|72.2| 71
TransNeXt [18] 84.4 2.84 8.3 106 |88.1(90.2(97.1/83.4|73.5/69.3
MS-FAN (ours) 84.7 3.15 8.7 222.7 190.5/90.4|97.5/85.7| 74 |76.2

In Table 2, the performance of mainstream feature extraction networks is compared with the
proposed MBLNet. MBLNet achieves a balance between efficiency and accuracy, delivering
138.5 FPS inference speed and 84.1 % mAP with only 4.16M parameters and 9.9G FLOPs,
outperforming EfficientViT, Fasternet, and ConvNeXtV2 in both aspects. In Table 2, the proposed
MS-FAN is evaluated against FPN-based feature fusion networks. MS-FAN achieves 84.7 %
mAP with 3.15M parameters, 8.7G FLOPs, and an inference speed of 222.7 FPS, significantly
surpassing  EMBSFPN, ContextGuideFPN, CGRFPN, and TransNeXt in both detection
performance and computational efficiency. It can be observed that MS-FAN achieves higher
inference speed and detection accuracy. This is accomplished while maintaining low
computational complexity. Its performance in feature fusion is particularly outstanding, especially
in complex scenarios.

As shown in Fig. 6(a), the horizontal axis represents the number of model parameters, while
the vertical axis indicates the mAP. Models closer to the top-left corner are considered to have
better performance. Benefiting from its lightweight design, DAFCN achieves the highest detection
accuracy with minimal parameters and computational cost. A 4.7 % improvement in mAP is
achieved compared to the baseline model YOLOVS. As shown in Fig. 6(b), DAFCN has
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demonstrated excellent performance across all categories.
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Fig. 6. a) Comparison of different model mAPs with parameters, b) comparison of APs per category
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The test results of YOLOv6, YOLOV7, rt-detr, EfficientDet, and DAFCN on an urban traffic
dataset are compared in Fig. 7. YOLOv6 mainly relies on the basic up-sampling and down-
sampling operations to realize the fusion of features at different scales, and when dealing with
complex scenes, it is unable to adequately integrate semantic information at different levels,
resulting in the occurrence of wrong detections. YOLOv7 adopts a relatively complex and
inflexible multi-scale feature fusion strategy, which leads to the difficulty of effectively
integrating different levels of feature information, and in turn affects the model's detection
accuracy. Rt-detr feature fusion process is less adaptive to small sample data, leading to its missed
detection. efficientDet's feature fusion is not flexible enough when dealing with complex scenes,
leading to different degrees of missed detection of small targets. In contrast, DAFCN effectively
detects small objects by fully integrating deep and shallow features. This proves the effectiveness
and superiority of DAFCN.

3.4. Human pose estimation comparison experiment

To evaluate the performance of the DAFCN network in pedestrian pose estimation, this
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experiment combines DAFCN with the YOLOpose detection head and compares it with several
pose estimation models, including EfficientHRNetHO [30], OpenPose [31], and YoloPose [32].
The results are shown in Table 3.

Table 3. Comparative experimental results

Comparison of system models

Model mAP (%) Params (M) FLOPs (G)
EfficientHRNetHO 84.9 23.3 56.36
OpenPose 82.1 52.31 124.7
YoloPose 84.3 15.08 39.8
DAFCN (ours) 86.2 13.6 334

DAFCN with different feature extraction networks

Backbone mAP (%) Params (M) FLOPs (G)
efficientViT 84.7 4.96 11.16
Fasternet 86.2 5.05 12.49
convnextv2 82.5 6.8 16.24
Vanillanet 84.2 28.2 107.5
MBLNet (ours) 85.8 4.87 10.94

DAFCN with different feature fusion networks

Necks mAP (%) Params (M) FLOPs (G)
EMBSFPN 83.2 2.62 8.96
ContextGuide FPN 84.8 3.87 9.54
CGRFPN 84.9 4.19 9.67
TransNeXt 82.3 3.32 9.12
MS-FAN (ours) 85.2 3.65 8.82

Among them, EfficientHRNetHO is ineffective in small target detection due to its high model
complexity and insufficient feature fusion. OpenPose uses VGG as the backbone network, but its
network structure is deeply hierarchical and prone to gradient vanishing, which leads to a large
amount of computation and poor detection accuracy. YoloPose is based on the YOLOvV3
algorithm, which is easily affected by background noise and occlusion. The highest mAP of
86.2 % is achieved by DAFCN. Meanwhile, its parameter count (13.6M) and computational cost
(33.4G FLOPs) are the lowest. The ability to achieve high detection accuracy with minimal
complexity is demonstrated by the proposed model. In Table 3, various feature extraction
backbones are compared. Excellent performance is exhibited by the proposed MBLNet. Among
them, EfficientViT has a complex model structure with multi-branch and multi-scale design,
which makes the training and optimization process cumbersome and requires high computational
resources. Fasternet focuses on model lightweighting and speed enhancement, and has limited
feature extraction capability. ConvNeXtV2 is not robust enough in feature extraction, and cannot
stably extract high-quality features in the face of complex and changing scenes. vanilanet has a
simple model structure, which is insufficient in feature extraction when dealing with complex
tasks, making it difficult to effectively capture important features in the data and affecting model
performance. features in the data, which affect the model's performance. An mAP of 85.8 % is
achieved by MBLNet with only 4.87M parameters and 10.94G FLOPs. It outperforms other
backbone networks, including EfficientViT, Fasternet, and ConvNeXtV2, in both efficiency and
accuracy. Finally, a comparison of feature fusion networks is shown in Table 3. Among them,
EMBSFPN mainly relies on basic feature splicing and convolution operations, which easily leads
to the loss of feature information and inadequate fusion, and thus affects the model's accurate
target localization and classification effect. ContextGuideFPN has a limited range of context
information capture when facing multi-scale targets and complex backgrounds, making it difficult
to adequately cover target features at different scales. CGRFPN cannot finely adapt to the specific
feature requirements of each pixel point, resulting in poorly targeted feature fusion. TransNeXt is
prone to computational bottlenecks when processing high-resolution feature maps, resulting in
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lower feature fusion efficiency and affecting the overall detection speed. The proposed MS-FAN
achieves 85.2 % mAP with only 3.65M parameters and 8.82G FLOPs. It outperforms EMBSFPN,
ContextGuideFPN, CGRFPN, and TransNeXt. Superior detection accuracy and computational
efficiency are exhibited by MS-FAN.

The detection results of EfficientHRNetHO, OpenPose, YoloPose, and DAFCN are compared
in Fig. 8. Missed and incorrect detections are observed in EfficientHRNetHO due to insufficient
feature representation. OpenPose fails to capture accurate pose structures in cluttered scenes,
leading to errors. YoloPose, while faster, struggles with complex scenarios involving overlapping
human poses and occlusions, which results in misdetections and incomplete pose estimations. In
contrast, DAFCN achieves superior detection performance by leveraging its robust feature
extraction and fusion capabilities. This highlights the effectiveness and reliability of DAFCN in
challenging scenarios.

Ground Truth EfficientHR NetHO OpenPose YoloPose DAFCN(ours)

rperbon 0.86:4

Fig. 8. Comparison of detection effectiveness of DAFCN with different obstacle detection algorithms
4. Conclusions

To address the distinct feature requirements of small object detection in urban traffic and
pedestrian pose estimation tasks, this paper proposes the Dual-Aggregation Efficient Feature
Compilation Network (DAFCN), a unified framework compatible with both tasks. DAFCN adopts
a multi-channel complex convolution structure during training and a lightweight single-channel
simple convolution for inference. Furthermore, it integrates a global-local dual-aggregation
module to effectively fuse multi-scale global and local semantic features. In the object detection
experiments on the hybrid urban traffic dataset, DAFCN achieved an mAP of 85.5 with only
4.16M parameters and 9.9 GFLOPs. In the human pose estimation experiments on the COCO-pose
dataset, DAFCN reached an mAP of 86.2 with 13.6M parameters and 33.4 GFLOPs. Compared
to current state-of-the-art object detection and pose estimation models, DAFCN achieves the
highest accuracy while maintaining an ultra-lightweight design, meeting the performance
demands of real-world applications under limited computational resources.

In future work, we plan to explore multi-sensor fusion strategies — such as combining visual
and depth or thermal data — to further enhance the robustness and accuracy of both object detection
and pose estimation under complex urban scenarios.
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