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Abstract. In order to address the issue of lower estimation accuracy of traditional methods, an
adaptive dual layer unscented Kalman filter algorithm (ADLUKF) is proposed, which combines
the dual layer unscented Kalman filter (DLUKF) with an improved Sage-Husa algorithm to
estimate the states and reduce the error in vehicle driving state estimation. The Carsim and
Matlab/Simulink for joint simulation is applied and real vehicle test is established to verify the
effectiveness of the estimator, and compare it with the Unscented Kalman Filter (UKF) algorithm.
The results indicate that the ADLUKF algorithm can improve the estimation accuracy of vehicle
estimation effectively.
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1. Introduction

The estimation of the state parameters of vehicles during driving has always been a focus of
attention for researchers in the automotive industry both domestically and internationally. At
present, the most widely used is the Kalman filter algorithm (KF) and its derived estimation
methods. Kalman filtering enables confidence calculation of continuous states in linear systems.
It is currently the most widely used state estimation and filtering method. From the existing
research results, it can be seen that linear dynamics models can no longer fully meet the estimation
requirements of vehicle motion parameters. With the vigorous development of autonomous
driving technology and further expansion of vehicle usage scenarios, as well as the requirements
of vehicle active and passive safety technology, state estimation of vehicle nonlinear dynamics
models has gradually become a research hotspot. The widely used estimator techniques include
nonlinear Kalman filters, non current state observers, and artificial intelligence methods. The EKF
discretizes nonlinear systems and converts them into linear systems. When the system is in strong
nonlinearity, there is a significant estimation bias, and the estimation results are prone to
divergence. It has the advantages of no need to process the Jacobian matrix, high computational
accuracy, and high stability [1-3].

Li et al. proposed an improved Sage-Husa EKF method using wheel speed as the input signal
and estimated the vehicle state parameters [4]. Wang et al. utilized fuzzy control theory to perform
online real-time adjustment of measurement noise, improving the robustness of the algorithm [5].
Li et al. studied a state estimation algorithm using the robust volume Kalman filter theory with
anti outliers, taking into account the easy availability of four-wheel torque and speed in electric
vehicles driven by distributed four-wheel hub motors [6]. The application of neural networks in
estimating the adhesion coefficient of road surfaces has become a research hotspot for many
scholars. Neural networks have great advantages in dealing with nonlinear problems and meet the
needs of estimating road adhesion coefficients [7-10]. In recent years, the most widely used
algorithms for estimating road adhesion coefficients are the EKF and UKF. The research focus
has gradually shifted from traditional fuel vehicles to wheel driven electric vehicles. Enisz et al.
established a two wheel dynamic model of a vehicle and designed a filter using the discrete-time
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extended Kalman filter algorithm [11]. Li Gang et al. estimated the state variables of vehicle
driving changes through federated Kalman filtering [12]. By forming a closed-loop feedback
between vehicle state variables and road adhesion coefficient, adaptive adjustment was achieved,
and simulation verification was carried out. Liu et al. used auxiliary particle filtering to
preliminarily estimate the side slip angle of a vehicle and improved and optimized the
preliminarily estimated side slip angle using iterative EKF algorithm [13]. Based on this, they
combined self centering torque and iterative EKF algorithm to achieve real-time estimation of
road adhesion coefficient. Wang et al. studied the observation algorithm of electric wheel drive
vehicles and established an 8-DOF vehicle model. By reducing the sampling points, the
convergence rate of the UKF algorithm was improved, and the estimation of road adhesion
coefficient was achieved [14]. However, the estimation results of road adhesion coefficient were
casily affected by noise characteristics. In order to obtain more accurate estimation of road
adhesion coefficient, Fu et al. studied four-wheel independent drive off-road vehicles and
introduced memory decay filtering for optimization based on the UKF algorithm and compared
the simulated output values with real vehicle experiments [15]. Zhao et al. proposed an unscented
Kalman filtering algorithm suitable for the characteristics of wheel hub motor-driven electric
vehicles [16]. This algorithm was used to estimate the speed information but had not judged and
corrected the divergence of the algorithm. Boada et al. designed a dual layer side slip angle
observer based on adaptive neural fuzzy inference algorithm and UKF algorithm. The upper layer
estimated the side slip angle information based on the already configured inertial sensors and
steering wheel angle sensors of the vehicle, using adaptive neural fuzzy inference algorithm [17].
Massarelli et al. applied filtering algorithms to indirect bridge structural health monitoring
[18-20].

Due to the complex driving environment of vehicles, most traditional estimation algorithms
currently do not adjust the system noise in real time, and it is often difficult to obtain the
characteristics of system noise in practice. At the same time, although UKF has higher estimation
accuracy and better stability than EKF, in the traditional process of estimating vehicle state
parameters using UKF, the process noise covariance matrix Q and measurement noise covariance
matrix R are treated as constant matrices. The covariance matrix Q of process noise has certain
robustness and has a small impact on the filtering estimation effect, while measurement noise is
mainly affected by external conditions and has a large degree of uncertainty. Slight changes in the
covariance matrix R of measurement noise can have a significant impact on the filtering effect.
Therefore, in this article, the improved Sage-Husa adaptive filtering algorithm is combined with
the DLUKF algorithm to form the adaptive double layer unscented Kalman filter algorithm. By
adaptively adjusting the process noise and measurement noise of the system, it is possible to
reduce the estimation error of the vehicle driving state and improve the estimation accuracy of key
parameters such as yaw rate and side slip angle. Meanwhile, the algorithm can adapt to different
environments and system changes, effectively addressing issues such as system noise uncertainty,
and enhancing the stability and robustness of filtering. This algorithm updates the system noise in
real-time while estimating the vehicle states, thereby improving the accuracy of vehicle states
estimation and system stability.

2. Mathematical model of vehicle dynamics
2.1. 3-DOF vehicle model

The vehicle state estimation model is established based on a 3-DOF vehicle model.
The dynamic equation of the 3-DOF vehicle model is as follows [21]:

_a’ky + b%k, w, N ak, + bk, ak,
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The side slip angle is:
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B = arctan (Z) (5)

Fig. 1. 3-DOF vehicle model

2.2. Tire model

The lateral forces of front and rear wheels can be expressed as [22]:

{Fyf = cray, ©)
Fyr = Gy,

where ¢¢ and ¢, are the lateral stiffness values of the front and rear tires. ay and a, are the front
and rear slip angles:

dF
Cf = _yf af = 0,
aa’f
(7)
0F,,
= Ja, a, = 0.
3. The ADLUKF algorithm
3.1. Standard UKF algorithm
The nonlinear systems can be represented by state equations:
{x(k +1) = f(x(k), ulk) + w(k)), ®
z(k) = h(x(k),u(k) + v(k)),

where f(+) and h(+) are both nonlinear functions.
The UKF algorithm can be briefly described as follows:
Step 1. Selecting 2n + 1 weighted sample points.
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Step 2. The predicted state value x(;)(k + 1|k) for sample point x(;(k|k) can be obtained
through a nonlinear function f(+).

Step 3. The mean and variance can be obtained by weighted sum of x;) (k + 1|k).

Step 4. The observation prediction value z(; (k + 1|k) can be obtained through the nonlinear
function h(-).

Step 5. The mean Zand residual covariance matrix P,
are obtained.

2 s well as measurement covariance

PX
kZk
Step 6. Calculating the Kalman gain matrix K from the residual covariance and measurement
covariance.
Step 7. Calculating the mean and variance estimated at time k + 1 using the Kalman gain.

The flow chart of the algorithm is shown in Fig. 2.

Selecting 2n+1 weighted sample points

A

Calculating the predicted state value

!

Calculating the mean and variance

!

Calculating the observation prediction value

!

Calculating the mean and residual covariance matrix as
well as measurement covariance

!

Calculating the Kalman gain matrix

!

Calculating the mean and variance estimated at time
k+1 using the Kalman gain

Fig. 2. Flow chart of the UKF algorithm

3.2. Dual layer UKF algorithm

In this article, the dual layer unscented Kalman filter algorithm is used to solve the problem.
1) Calculating the sample points and their weights.
It is assumed that the mean and covariance of the state distribution are X and P, respectively.
N sampling points are selected using a symmetric sampling strategy [23, 24]:
X(i) = JZ', i= 0,

Xi =X+ WM+ DP);, i=12,-,n, ©9)

xpny=%—HM+DP);, i=n+1n+2-2nm
A=a’(n+k)—n, (10)

where A is the scaling factor; x is an n-dimensional state variable; a and « are both values to be
taken. Normally, a takes a smaller positive value, which determines the distribution of sampling
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points. When n > 3, k is zero, and when n < 3 k is the difference.
Then the weights corresponding to the sampling points is calculated:

m_ A

0 n+1’

wgc>=nLH+(1—a2+ﬁ), (In
w}’”):Wi“):ﬁ, =1,..2n,
where f > 0.

2) Inner UKF.
For each particle in the outer layer, 2n + 1 weighted sample points {xj.i,k}j.:l are selected

using the above sampling method.
The predicted state value of weighted particles can be obtained according to the state equation
of the system:

Xjik+1lk = f(x(i)(klk),u(k)), j=12,.2n+1. (12)

The mean and variance of the predicted particle states can be obtained by summing up the
predicted weighted particle states by Eq. (9):

2n

- _ (m)

Xiks1jke = E W; Xk T e (13)
j=0
2n

— (©) - -
Pk = Z w; (xj,i,k+1|k - xi,k+1|k) X (xj,i,k+1|k - xi,k+1|k)T + Qs (14)
i=0

where g, is the mean value of system process noise.
Based on the above prediction of mean and variance of the weighted particle, 2n + 1 sampling
. 2n+1
points {xﬁi,k+1|k}j=1
using the sampling methods of Eqs. (1)-(4) and Eq. (8). The observation prediction value of
weighted particles can be obtained according to the observation equation of the system:

. . . m c .
and their mean and variance weights @} 41, and wj; ;. are obtained

Zjik+1k = h (xj?i,k+1|k'u(k))’ j=12,2n+1 (15)

The mean Z; ;1) and residual covariance matrix P; ;, ,,

of observation and prediction can be obtained by weighting and summing the observation and
prediction values of the weighted particles obtained from Eq. (12):

and measurement covariance Py, ;.

2n

= _ (m)
Ziks1k = Z Wy Zjik+1k T T (16)

Jj=0
2n

_ (@) - =
Pz = z 0" (Zj ik = Zigare) X ik = Zigsre)” + Rio (17)

i=0
2n

_ (© = -
Pz, = E ;" (X piertik = Zigernpi) X (Zjigerte = Zigerip) s (18)
i=0
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where 1, is the mean value of observation noise of the system.
The Kalman gain matrix K; 44 is calculated:

Ki,k+1|k = Pi,XkaPi,_Z]];Zk' (19)

The outer particles can be updated to:

Xiks1jk+1 = Xigsrjke T Kigarje X (Zs1 — Zik+1lk)s (20)
Pijertjesr = Kijer11kPizgzKierae + P (21)
3) Outer UKF.

The mean and variance of the predicted states of the outer particles can be updated to:

2n

X1k = Z wi(m)fi,k+1|k+1 + qp, (22)
i=0
2n
© s _ _ _
P = Z ;7 Fieraperr — Ferape) X Eijerajerr — )T + Qe (23)
=0

The observation prediction values based on the particle states and corresponding weights
updated by the inner UKF are updated as:

Zigs1e = h (Jzi,k+1|k+1ru(k)): (24)
2n
Zig1k = Z wi(m)zi,k+1|k + 7, (25)
i=0
2n
Przy = Z wi(C)(Zi,k+1|k = Zsapi) X Zigrape = Zirape)” + R (26)
i=0
2n
Pz, = Z wl‘(C)(J_Ci,k+1|k+1 = Zisri) X Zigatje = Zrwap) (27)
i=0

The Kalman gain matrix is calculated:
Kicsaje = Pr 2y Pz - (28)

Finally, the estimated state vector and covariance based on the measured values at time k + 1
are updated:

Xes1 = Trrpe + Kiewrpe X (Zosr — Zeag)s (29)
Pis1 = Pgapie + Kiw1 i Prz K1 i (30)

3.3. ADLUKF

In actual driving, the movement of vehicles is affected by various factors such as road
conditions, wind speed, and mechanical vibrations of the vehicle itself, which can generate
complex noise. The improved Sage-Husa method assumes that the statistical characteristics of
noise are unknown and time-varying, but in actual driving, due to the constantly changing driving
environment, the statistical characteristics of noise are indeed difficult to determine in advance
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and change over time. For example, when driving on different road conditions (such as highways
and rural roads), the noise interference received by vehicle sensors varies, and the statistical
characteristics will also change. This method can adaptively estimate the statistical characteristics
of noise by real-time calculation and correction of adjustment factors for filtering anomaly
determination, thus meeting the time-varying requirements of noise characteristics in actual
driving [25].

1) Mean Estimation of process noise:

2n
Gr+1 = (1 — di)qy + dy (xk+1 - Z wi(m)xi,k+1|k>' (31)
i=0
where:
1-b
dy = T e (32)

where b is the forgetting factor.
2) Covariance estimation of process noise:

Qrs1 = (1 — di)Qx + di[Kir1exei Kivq + Piess
33
Z w; (xlk+1|k - xk+1|k) (xl k+1lk — xk+1|k) l (33)
e = Zk+1 Zi 1]k (34)

3) Mean Estimation of observation noise:

2n
Ter1 = (L —dp)ry + di (Zk+1 - Z wi(m)zi,k+1|k>- (35)
i=0
4) Covariance estimation of observation noise:
2n
Riss = Ry + difexsiefos — > 0© (z -z ) % (z -z )] (36)
k+1 k kL€r+1€k+1 i Lk+1lk — Zr+1]k etk — Zr+1k) |

i=0

From Egs. (30)-(33), it can be seen that the noise covariance matrix of the system cannot
guarantee non negative definiteness. So P, may be a non positive definite matrix, which will result
in the inability to obtain result from Eq. (1), ultimately leading to the failure of the ADLUKF
algorithm in estimating the vehicle state.

In addition, both @, and R are uncorrelated Gaussian matrices and should be diagonal
matrices. Therefore, adjustments need to be made to Q,; and R4 as follows:

Qe = diag(diag(Qur 0F: ), (37)

Riws = [diag(diag(Ris1RE ), (38)

where diag(+) is the diagonal matrix composed of the main diagonal elements of (-).
This algorithm can ensure the effective estimation of vehicle driving state parameters, not only
reducing the impact of system noise on the estimation results but also improving the stability of
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vehicle driving state parameter estimation.
The flow chart of the algorithm is shown in Fig. 3.

| Initial value and initial covariance |

Jy
y Y
Sampling points and their Sampling points and their
Ist and 2nd order weights Ist and 2nd order weights
Updated process I I
and measurement > >
noise Internal UKF
A algorithm
<t Measurement value
A It
Updating Updating
sampling points sampling points
Improved S.age -t | Initial estimate and covariance at time k+1 |
Husa filtering :
Iy Y

—I Outer UKF algorithm |
Tt

| Initial estimate and covariance at time k+1 |

End
Fig. 3. Flow chart of the algorithm

4. Numerical simulation and experimental verification
4.1. Numerical simulation

Carsim is a software developed by MSC (Mechanical Simulation Corporation) using Vehicle
Sim technology specifically for vehicle dynamics. Using CarSim to design, develop, test, and plan
automotive projects enables better decision-making involving vehicle dynamics and takes less
time. Carsim can be used to demonstrate the expected vehicle operating results and provide a more
in-depth analysis of the current operating results.

The main features of Carsim software are as follows:

1) Easy to use.

Carsim has a modern graphical user interface that allows for running simulation experiments,
watching animations or viewing the results of engineering drawings. Carsim Quick Start Guide
takes about an hour to establish new operating conditions. The output curves and animations can
be easily obtained by clicking the mouse, and the resulting graphics can be easily inserted into
reports and PowerPoint presentations. The mathematical models of Carsim have been
parameterized, including parameters commonly used by OEMs and suppliers. Therefore, Carsim
users can obtain the operating results of new working conditions in the shortest possible time.

2) A large number of instance datasets and animated graphics.

Carsim has over 15 different vehicle models: A to F-class passenger cars, some vans, multi-
purpose vehicles, and light trucks. Carsim has many test program samples and over 20 types of
3D vehicle shape files to ensure simulation animations. Each 3D vehicle can automatically adjust
its size to match the size of the model car, and the color of the entire vehicle can be automatically
reset during operation to distinguish vehicles under different working conditions.
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4.1.1. Double lane changing condition

Figs. 4(a)-(d) show the simulation results under the double lane changing condition. And the
common path tracking methods such as fuzzy adaptive unscented Kalman filter (FAUKF) and
CKF are used to compared with the proposed algorithm.

& Side slip angle/(°) o
= b

7S
T

Yaw ruteﬁ(")‘s‘l

— Reference
—Proposed algorithm
—FAUKF

— CKF
-10 L L L N I I I 1
0 2 4 6 8 10 12 0 2 4 6 8
Time/s

a) Yaw rate

4/ —Reference
—Proposed algorithm
—FAUKF
— CKF

.

10 12

Time/s

b) Side slip angle

— Reference -
— Proposed algorithm s
—FAUKF 7
— CKF s

Longitudinal distance/(kmh™)

ADLUKF

Timels

¢) Longitudinal speed d) Mean of absolute error of longitudinal speed
Fig. 4. Simulation results under double lane changing condition

ADLUKF CKF

Under the double lane changing road condition, the ADLUKEF algorithm can more accurately
estimate the yaw rate of the moving vehicle compared to the FAUKF and the CKF algorithm. The
yaw rate estimation based on the ADLUKF algorithm is closer to the actual value (Reference
value). For the estimation of the side slip angle, both the FAUKF and the CKF algorithm estimator
as well as the ADLUKF algorithm estimator can accurately estimate the side slip angle of the
vehicle in the first 5 seconds of simulation. After 5 seconds, the estimation effect of the CKF
algorithm estimator begins to deteriorate, and its estimation result has a large deviation from the
actual side slip angle. However, the tracking effect of the ADLUKF algorithm estimator is still
good, and the mean of absolute error of longitudinal speed of the ADLUKF algorithm is the
smallest indicating that the ADLUKF algorithm estimator is more accurate than the FAUKF and
the CKF algorithm estimator with higher accuracy and better stability.

The computation cost is shown in Tables 1. From Tables 1 it can be seen that the ADLUKF
algorithm does not have too high computation cost.

Table 1. Comparison of the computation cost under the double lane changing condition

4.1.2. Serpentine condition

Algorithms | Total times(s)
CKF 6.316
FAUKF 6.346
ADLUKF 6.381

Figs. 5(a)-(d) show the simulation results under the serpentine condition. And the common

path tracking methods (FAUKF and CKF) are used to compared with the proposed algorithm.
From Fig. 5(a) it can be seen that under the serpentine condition, compared to the FAUKF and
the CKF algorithm, the ADLUKF algorithm can more accurately estimate the yaw rate of the
moving vehicle. The yaw rate estimation based on the ADLUKF algorithm is closer to the actual
value (Reference value). From Fig. 5(b) it can be seen that for the estimation of the side slip angle,
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both the FAUKF and the CKF algorithm estimator as well as the ADLUKF algorithm estimator
can accurately estimate the side slip angle of the vehicle in the first 6 seconds of simulation.
6 seconds later, the estimation effect of the FAUKF and the CKF algorithm estimator begins to
deteriorate. Fig. 5(c) indicates that when estimating the longitudinal speed, the CKF algorithm has
higher estimation error than that of the ADLUKF algorithm. At the same time it can be seen from
Fig. 5(d), the tracking effect of the ADLUKF algorithm estimator is still good, and the mean of
absolute error of longitudinal speed of the ADLUKEF algorithm is the smallest indicating that the
ADLUKEF algorithm estimator is more accurate than the FAUKF and the CKF algorithm estimator

with higher accuracy and better stability.

10,

!
— Reference .
— Proposed algorithm
—FAUKF

— CKF

\

Yaw mte/’((")s'l)
e

=

0 5 Time/s

a) Yaw rate

8.25

— Reference 4
18.2- — Proposed algorithm

o
73

18.1F ;= -

Longitudinal distancer’(kmﬂlfl)

—FAUKF o
L — CKF ~ -7 _

18.05] — B

Time/s

¢) Longitudinal speed

The mean absolute error (MAE) and root mean square error (RMSE) are considered to verify

Side slip angle/(°)

— Reference

—— Proposed algorithm

— FAUKF

— “CKF )

5

Time/s

b) Side slip angle

idinal speed/(km-h™")

5

ADLUKF

ADLUKF

CKF

d) Mean of absolute error of longitudinal speed
Fig. 5. Simulation results under serpentine condition

the estimation accuracy of the proposed algorithm.

From Table 2, it can be seen more intuitively that the estimation accuracy of the ADLUKF

algorithm is significantly higher than that of the FAUKF and the CKF method.

Table 2. MAE and RMSE indicators of two algorithms

Evaluation index | State value | CKF | FAUKF | ADLUKF
u (m/s) 0.311 0.158 0.139
MAE v (m/s) 0.187 | 0.0563 0.0452
w, (rad/s) | 0.312 | 0.0198 0.0163
u (m/s) 0.338 0.243 0.126
RMSE v (m/s) 0.249 | 0.0621 0.0502
w, (rad/s) | 0412 | 0.0301 0.0206

Table 3. Analysis of estimation errors of states under different initial conditions
of measurement noise covariance matrix

Side slip anole Initial value of R
pang eye(3)<0.01 | eye(3)x2
ADLUKF 0.001 0.003

RMSE ¢ 0.002 0.082

Table 3 is the RMSE of the estimation parameter (Side slip angle) of two algorithms under

different initial values of the covariance matrix of measurement noise.

Table 3 shows that CKF is very sensitive to the initial value of the covariance matrix of
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measurement noise, which is also the reason why it is difficult to ensure the estimation accuracy
of CKF in practical applications. The ADLUKF method has significant advantages in estimation
accuracy.

The standard deviation (SD) is used to access estimator variability.

From Table 4 it can be seen that compared with the CKF and the FAUKEF, the dataset obtained
by the ADLUKEF has a lower degree of dispersion.

Table 4. SD indicator of two algorithms
Evaluation index | State value | CKF | FAUKF | ADLUKF
u (m/s) 0.0704 | 0.0524 0.0372
SD B (deg) 0.2752 | 0.2486 0.2383
w, (rad/s) | 3.3763 | 3.3668 3.3534

4.2. Experimental verification

A real vehicle test is conducted to verify the effectiveness of the algorithm. The real
experiment vehicle shown in Fig. 6[26] and the experiment equipment’s are shown in Fig. 7 [26].

Fig. 7. Measurement equipment’s

The experimental vehicle is a Volkswagen Santana vehicle. The gyroscope is installed at the
center of mass of the experimental vehicle, which can meet the measurement requirements for the
lateral/longitudinal acceleration, side slip angle and yaw rate of the driving vehicle. The Am-2800
vehicle comprehensive performance test system is used for collecting data. The steering
torque/angle tester is used for measuring the steering angle. By measuring the steering wheel
angle, the front wheel angle of the experimental vehicle is indirectly measured through the angular
transmission ratio between the steering wheel and the front wheels. Driving the test vehicle around
the site and the data with a sampling period of 0.01 s is recorded. The collected data is input into
the Matlab/Simulink software for offline algorithm evaluation. A block diagram of real vehicle
test system is shown in Fig. 8. The experiment is conducted on a dry road surface with a wind
speed of less than 3 m/s.

JOURNAL OF MEASUREMENTS IN ENGINEERING 1 1



ESTIMATION OF VEHICLE STATE BASED ON IMPROVED DUAL LAYER UKF.
QIANQIAN WANG, YINGJIE L1u, DAWEI CUI

GPSSD-20 speed

instrument ». »{ Display
AM-2800
vehicle < PC computer
Steering torque/ comprehensive
angle tester performance > » Printer
test system

Angular rate
gyroscope

T

Data

processing «4— Keyboard

system

Fig. 8. Block diagram of test system
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Fig. 9. Comparison of the estimated and test values: a) yaw rate under the double lane changing condition;
b) side slip angle under the double lane changing condition; ¢) longitudinal speed under the double
lane changing condition; d) yaw rate under the serpentine condition; e) side slip angle
under the serpentine condition; f) longitudinal speed under the serpentine condition

As shown in Fig. 9 the ADLUKF algorithm is able to estimate the longitudinal speed and side
slip angle as well as the yaw rate of the vehicle. Figs. 9(a)-(b) indicates that in the first 2.5 seconds
of simulation, the estimators are able to estimate the yaw rate well. However, after 3 seconds, the
estimation results based on the CKF algorithm showed distortion, while the ADLUKEF algorithm
estimator could still reflect the true values of the experiment well. The same result also appeared
in the estimation of the side slip angle as shown in Figs. 9(c)-(d). In the first 4 seconds of
simulation, the estimators are able to accurately estimate the side slip angle of the vehicle, with
the ADLUKEF algorithm estimator having higher accuracy. However, after 4 seconds, the CKF
algorithm estimator also experienced distortion, possibly due to the non positive definite state
covariance matrix, which makes it impossible to find its square root, resulting in incorrect results
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in Eq. (9). Figs. 9(e)-(f) indicate that both the simulation results of the CKF and the ADLUKF
algorithms are consistent with the experimental results verifying the correction of the proposed
method for vehicle states estimation. The average error of the ADLUKF algorithm estimator is
relatively small. Further verification has shown that the ADLUKF algorithm estimator has better
tracking performance and higher accuracy.

5. Conclusions

In order to solve the problem of poor performance of the Unscented Kalman Filter algorithm
in estimating vehicle driving state parameters, a dual layer Unscented Kalman Filter algorithm is
proposed and integrated with an improved Sage-Husa adaptive filtering algorithm to form an
adaptive dual layer Unscented Kalman Filter algorithm estimator. The proposed algorithm can
dynamically adjust the process and measurement noise of the system, solving the problem of
uncertain system noise. By establishing a nonlinear 3-DOF vehicle estimation model a joint
simulation in Carsim and Matlab/Simulink is conducted. In addition, real vehicle experiments are
conducted to collect data, and the algorithms are evaluated in Matlab/Simulink software. The
estimation results of ADLUKF algorithm and CKF algorithm estimator are compared and
analyzed. The results indicate that the ADLUKF algorithm is more accurate and effective in
estimating the state parameters of vehicle with higher accuracy and anti-interference ability. There
is the issue of potentially non-positive definite covariance matrices. The eigenvalues of a non
positive definite covariance matrix contain negative values. By correcting these negative
eigenvalues to a small positive value, the covariance matrix is reconstructed based on the
eigenvalues and eigenvectors. At the same time, adding regularization terms to the estimation of
covariance matrix or adopting a robust model may solve the problem. And the proposed algorithm
which is an objective of future research, can be considered for application in other fields, such as
indirect bridge structural health monitoring.
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