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Abstract. In order to address the issue of lower estimation accuracy of traditional methods, an 
adaptive dual layer unscented Kalman filter algorithm (ADLUKF) is proposed, which combines 
the dual layer unscented Kalman filter (DLUKF) with an improved Sage-Husa algorithm to 
estimate the states and reduce the error in vehicle driving state estimation. The Carsim and 
Matlab/Simulink for joint simulation is applied and real vehicle test is established to verify the 
effectiveness of the estimator, and compare it with the Unscented Kalman Filter (UKF) algorithm. 
The results indicate that the ADLUKF algorithm can improve the estimation accuracy of vehicle 
estimation effectively.  
Keywords: vehicle state estimation, adaptive double-layer UKF, Sage-Husa. 

1. Introduction 

The estimation of the state parameters of vehicles during driving has always been a focus of 
attention for researchers in the automotive industry both domestically and internationally. At 
present, the most widely used is the Kalman filter algorithm (KF) and its derived estimation 
methods. Kalman filtering enables confidence calculation of continuous states in linear systems. 
It is currently the most widely used state estimation and filtering method. From the existing 
research results, it can be seen that linear dynamics models can no longer fully meet the estimation 
requirements of vehicle motion parameters. With the vigorous development of autonomous 
driving technology and further expansion of vehicle usage scenarios, as well as the requirements 
of vehicle active and passive safety technology, state estimation of vehicle nonlinear dynamics 
models has gradually become a research hotspot. The widely used estimator techniques include 
nonlinear Kalman filters, non current state observers, and artificial intelligence methods. The EKF 
discretizes nonlinear systems and converts them into linear systems. When the system is in strong 
nonlinearity, there is a significant estimation bias, and the estimation results are prone to 
divergence. It has the advantages of no need to process the Jacobian matrix, high computational 
accuracy, and high stability [1-3]. 

Li et al. proposed an improved Sage-Husa EKF method using wheel speed as the input signal 
and estimated the vehicle state parameters [4]. Wang et al. utilized fuzzy control theory to perform 
online real-time adjustment of measurement noise, improving the robustness of the algorithm [5]. 
Li et al. studied a state estimation algorithm using the robust volume Kalman filter theory with 
anti outliers, taking into account the easy availability of four-wheel torque and speed in electric 
vehicles driven by distributed four-wheel hub motors [6]. The application of neural networks in 
estimating the adhesion coefficient of road surfaces has become a research hotspot for many 
scholars. Neural networks have great advantages in dealing with nonlinear problems and meet the 
needs of estimating road adhesion coefficients [7-10]. In recent years, the most widely used 
algorithms for estimating road adhesion coefficients are the EKF and UKF. The research focus 
has gradually shifted from traditional fuel vehicles to wheel driven electric vehicles. Enisz et al. 
established a two wheel dynamic model of a vehicle and designed a filter using the discrete-time 
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extended Kalman filter algorithm [11]. Li Gang et al. estimated the state variables of vehicle 
driving changes through federated Kalman filtering [12]. By forming a closed-loop feedback 
between vehicle state variables and road adhesion coefficient, adaptive adjustment was achieved, 
and simulation verification was carried out. Liu et al. used auxiliary particle filtering to 
preliminarily estimate the side slip angle of a vehicle and improved and optimized the 
preliminarily estimated side slip angle using iterative EKF algorithm [13]. Based on this, they 
combined self centering torque and iterative EKF algorithm to achieve real-time estimation of 
road adhesion coefficient. Wang et al. studied the observation algorithm of electric wheel drive 
vehicles and established an 8-DOF vehicle model. By reducing the sampling points, the 
convergence rate of the UKF algorithm was improved, and the estimation of road adhesion 
coefficient was achieved [14]. However, the estimation results of road adhesion coefficient were 
easily affected by noise characteristics. In order to obtain more accurate estimation of road 
adhesion coefficient, Fu et al. studied four-wheel independent drive off-road vehicles and 
introduced memory decay filtering for optimization based on the UKF algorithm and compared 
the simulated output values with real vehicle experiments [15]. Zhao et al. proposed an unscented 
Kalman filtering algorithm suitable for the characteristics of wheel hub motor-driven electric 
vehicles [16]. This algorithm was used to estimate the speed information but had not judged and 
corrected the divergence of the algorithm. Boada et al. designed a dual layer side slip angle 
observer based on adaptive neural fuzzy inference algorithm and UKF algorithm. The upper layer 
estimated the side slip angle information based on the already configured inertial sensors and 
steering wheel angle sensors of the vehicle, using adaptive neural fuzzy inference algorithm [17]. 
Massarelli et al. applied filtering algorithms to indirect bridge structural health monitoring  
[18-20]. 

Due to the complex driving environment of vehicles, most traditional estimation algorithms 
currently do not adjust the system noise in real time, and it is often difficult to obtain the 
characteristics of system noise in practice. At the same time, although UKF has higher estimation 
accuracy and better stability than EKF, in the traditional process of estimating vehicle state 
parameters using UKF, the process noise covariance matrix 𝑄 and measurement noise covariance 
matrix 𝑅 are treated as constant matrices. The covariance matrix 𝑄 of process noise has certain 
robustness and has a small impact on the filtering estimation effect, while measurement noise is 
mainly affected by external conditions and has a large degree of uncertainty. Slight changes in the 
covariance matrix 𝑅 of measurement noise can have a significant impact on the filtering effect. 
Therefore, in this article, the improved Sage-Husa adaptive filtering algorithm is combined with 
the DLUKF algorithm to form the adaptive double layer unscented Kalman filter algorithm. By 
adaptively adjusting the process noise and measurement noise of the system, it is possible to 
reduce the estimation error of the vehicle driving state and improve the estimation accuracy of key 
parameters such as yaw rate and side slip angle. Meanwhile, the algorithm can adapt to different 
environments and system changes, effectively addressing issues such as system noise uncertainty, 
and enhancing the stability and robustness of filtering. This algorithm updates the system noise in 
real-time while estimating the vehicle states, thereby improving the accuracy of vehicle states 
estimation and system stability. 

2. Mathematical model of vehicle dynamics 

2.1. 3-DOF vehicle model 

The vehicle state estimation model is established based on a 3-DOF vehicle model. 
The dynamic equation of the 3-DOF vehicle model is as follows [21]: 

𝜔ሶ ௥ = 𝑎ଶ𝑘ଵ + 𝑏ଶ𝑘ଶ𝐼௭  𝜔௥𝑢 + 𝑎𝑘ଵ + 𝑏𝑘ଶ𝐼௭ 𝛽 − 𝑎𝑘ଵ𝐼௭ 𝛿, (1)
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𝛽ሶ = 𝑎𝑘ଵ + 𝑏𝑘ଶ − 𝑚𝑢ଶ𝑚  𝜔௥𝑢ଶ + 𝑘ଵ + 𝑘ଶ𝑚 𝛽𝑢 − 𝑘ଵ𝛿𝑚𝑢 , (2)𝑢ሶ = 𝑎௫ + 𝑣𝑥, (3)𝑎௬ = 𝑎𝑘ଵ − 𝑏𝑘ଶ𝑚𝑢 𝜔௥ + 𝑘ଵ + 𝑘ଶ𝑚 𝛽 − 𝑘ଵ𝑚 𝛿. (4)

The side slip angle is: 𝛽 = arctan ቀ𝑣𝑢ቁ . (5)
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Fig. 1. 3-DOF vehicle model 

2.2. Tire model 

The lateral forces of front and rear wheels can be expressed as [22]: 

൜𝐹௬௙ = 𝑐௙𝛼௙,𝐹௬௥ = 𝑐௥𝛼௥, (6)

where 𝑐௙ and 𝑐௥ are the lateral stiffness values of the front and rear tires. 𝛼௙ and 𝛼௥ are the front 
and rear slip angles: 

⎩⎪⎨
⎪⎧𝑐௙ = 𝜕𝐹௬௙𝜕𝛼௙ ቤ 𝛼௙ = 0,
𝑐௥ = 𝜕𝐹௬௥𝜕𝛼௥ ฬ 𝛼௥ = 0. (7)

3. The ADLUKF algorithm  

3.1. Standard UKF algorithm 

The nonlinear systems can be represented by state equations: 

ቊ𝑥ሺ𝑘 + 1ሻ = 𝑓൫𝑥ሺ𝑘ሻ,𝑢ሺ𝑘ሻ + 𝑤ሺ𝑘ሻ൯,𝑧ሺ𝑘ሻ = ℎ൫𝑥ሺ𝑘ሻ,𝑢ሺ𝑘ሻ + 𝑣ሺ𝑘ሻ൯,  (8)

where 𝑓(⋅) and ℎ(⋅) are both nonlinear functions. 
The UKF algorithm can be briefly described as follows: 
Step 1. Selecting 2𝑛 + 1 weighted sample points. 
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Step 2. The predicted state value 𝑥(௜)(𝑘 + 1|𝑘) for sample point 𝑥(௜)(𝑘|𝑘) can be obtained 
through a nonlinear function 𝑓(⋅). 

Step 3. The mean and variance can be obtained by weighted sum of 𝑥(௜)(𝑘 + 1|𝑘). 
Step 4. The observation prediction value 𝑧(௜)(𝑘 + 1|𝑘) can be obtained through the nonlinear 

function ℎ(⋅). 
Step 5. The mean 𝑧̄and residual covariance matrix 𝑃௭ೖ௭ೖ as well as measurement covariance 𝑃௫ೖ௭ೖ are obtained. 
Step 6. Calculating the Kalman gain matrix 𝐾 from the residual covariance and measurement 

covariance. 
Step 7. Calculating the mean and variance estimated at time 𝑘 + 1 using the Kalman gain. 
The flow chart of the algorithm is shown in Fig. 2. 

 
Fig. 2. Flow chart of the UKF algorithm 

3.2. Dual layer UKF algorithm 

In this article, the dual layer unscented Kalman filter algorithm is used to solve the problem. 
1) Calculating the sample points and their weights. 
It is assumed that the mean and covariance of the state distribution are 𝑥̄ and 𝑃௞ respectively. 

N sampling points are selected using a symmetric sampling strategy [23, 24]: 

൞𝑥(௜) = 𝑥̄,    𝑖 = 0,𝑥(௜) = 𝑥̄ + (ඥ(𝑛 + 𝜆)𝑃௞)௜ ,     𝑖 = 1,2,⋯ ,𝑛,𝑥(௜) = 𝑥̄ − (ඥ(𝑛 + 𝜆)𝑃௞)௜ ,     𝑖 = 𝑛 + 1,𝑛 + 2,⋯ ,2𝑛𝑚 (9)

𝜆 = 𝛼ଶ(𝑛 + 𝜅) − 𝑛, (10)

where 𝜆 is the scaling factor; 𝑥 is an 𝑛-dimensional state variable; 𝛼 and 𝜅 are both values to be 
taken. Normally, 𝛼 takes a smaller positive value, which determines the distribution of sampling 
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points. When 𝑛 > 3, 𝜅 is zero, and when 𝑛 ≤ 3 𝜅 is the difference. 
Then the weights corresponding to the sampling points is calculated: 

⎩⎪⎨
⎪⎧𝜔଴(௠) = 𝜆𝑛 + 𝜆 ,𝜔଴(௖) = 𝜆𝑛 + 𝜆 + (1 − 𝛼ଶ + 𝛽),𝜔௜(௠) = 𝑊௜(௖) = 12(𝑛 + 𝜆) ,     𝑖 = 1, … ,2𝑛, (11)

where 𝛽 ≥ 0. 
2) Inner UKF. 
For each particle in the outer layer, 2𝑛 + 1 weighted sample points ൛𝑥௝,௜,௞ൟ௝ୀଵଶ௡ାଵ are selected 

using the above sampling method. 
The predicted state value of weighted particles can be obtained according to the state equation 

of the system: 𝑥௝,௜,௞ାଵ|௞ = 𝑓 ቀ𝑥(௜)(𝑘|𝑘),𝑢(𝑘)ቁ ,    𝑗 = 1,2,⋯ ,2𝑛 + 1. (12)

The mean and variance of the predicted particle states can be obtained by summing up the 
predicted weighted particle states by Eq. (9): 

𝑥̄௜,௞ାଵ|௞ = ෍𝜔௜(௠)𝑥௝,௜,௞ାଵ|௞ + 𝑞௞,ଶ௡
௝ୀ଴  (13)

𝑃௜,௞ାଵ|௞ = ෍𝜔௜(௖)(𝑥௝,௜,௞ାଵ|௞ − 𝑥̄௜,௞ାଵ|௞) × (𝑥௝,௜,௞ାଵ|௞ − 𝑥̄௜,௞ାଵ|௞)் + 𝑄௞,ଶ௡
௜ୀ଴  (14)

where 𝑞௞ is the mean value of system process noise. 
Based on the above prediction of mean and variance of the weighted particle, 2𝑛 + 1 sampling 

points ൛𝑥௝,௜,௞ାଵ|௞଴ ൟ௝ୀଵଶ௡ାଵ and their mean and variance weights 𝜔௝,௜,௞ାଵ|௞௠  and 𝜔௝,௜,௞ାଵ|௞௖  are obtained 
using the sampling methods of Eqs. (1)-(4) and Eq. (8). The observation prediction value of 
weighted particles can be obtained according to the observation equation of the system: 𝑧௝,௜,௞ାଵ|௞ = ℎ ቀ𝑥௝,௜,௞ାଵ|௞଴ ,𝑢(𝑘)ቁ ,     𝑗 = 1,2,⋯ ,2𝑛 + 1. (15)

The mean 𝑧̄௜,௞ାଵ|௞ and residual covariance matrix 𝑃௜,௭ೖ ௭ೖ and measurement covariance 𝑃௜,௫ೖ௭ೖ 
of observation and prediction can be obtained by weighting and summing the observation and 
prediction values of the weighted particles obtained from Eq. (12): 

𝑧̄௜,௞ାଵ|௞ = ෍𝜔௜(௠)𝑧௝,௜,௞ାଵ|௞ + 𝑟௞,ଶ௡
௝ୀ଴  (16)

𝑃௜,௭ೖ௭ೖ = ෍𝜔௜(௖)(𝑧௝,௜,௞ାଵ|௞ − 𝑧̄௜,௞ାଵ|௞) × (𝑧௝,௜,௞ାଵ|௞ − 𝑧̄௜,௞ାଵ|௞)் + 𝑅௞ ,ଶ௡
௜ୀ଴  (17)

𝑃௜,௫ೖ௭ೖ = ෍𝜔௜(௖)(𝑥௝,௜,௞ାଵ|௞ − 𝑧̄௜,௞ାଵ|௞) × (𝑧௝,௜,௞ାଵ|௞ − 𝑧̄௜,௞ାଵ|௞)்,ଶ௡
௜ୀ଴  (18)
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where 𝑟௞ is the mean value of observation noise of the system. 
The Kalman gain matrix 𝐾௜,௞ାଵ|௞ is calculated: 𝐾௜,௞ାଵ|௞ = 𝑃௜,௫ೖ௭ೖ𝑃௜,௭ೖ௭ೖିଵ . (19)

The outer particles can be updated to: 𝑥̄௜,௞ାଵ|௞ାଵ = 𝑥̄௜,௞ାଵ|௞ + 𝐾௜,௞ାଵ|௞ × ൫𝑧௞ାଵ − 𝑧̄௜,௞ାଵ|௞൯, (20)𝑃௜,௞ାଵ|௞ାଵ = 𝐾௜,௞ାଵ|௞𝑃௜,௭ೖ௭𝐾௜,௞ାଵ|௞் + 𝑃௜,௞ାଵ|௞. (21)

3) Outer UKF. 
The mean and variance of the predicted states of the outer particles can be updated to: 

𝑥̄௞ାଵ∣௞ = ෍𝜔௜(௠)𝑥̄௜,௞ାଵ∣௞ାଵ + 𝑞௞ଶ௡
௜ୀ଴ , (22)

𝑃௞ାଵ|௞ = ෍𝜔௜(௖)(𝑥̄௜,௞ାଵ|௞ାଵ − 𝑥̄௞ାଵ|௞) × (𝑥̄௜,௞ାଵ|௞ାଵ − 𝑥̄௞ାଵ|௞)் + 𝑄௞ଶ௡
௜ୀ଴ . (23)

The observation prediction values based on the particle states and corresponding weights 
updated by the inner UKF are updated as: 𝑧௜,௞ାଵ|௞ = ℎ ቀ𝑥̄௜,௞ାଵ|௞ାଵ,𝑢(𝑘)ቁ, (24)𝑧̄௞ାଵ|௞ = ෍𝜔௜(௠)𝑧௜,௞ାଵ|௞ + 𝑟௞ଶ௡

௜ୀ଴ , (25)

𝑃௭ೖ௭ೖ = ෍𝜔௜(௖)(𝑧௜,௞ାଵ|௞ − 𝑧̄௞ାଵ|௞) × (𝑧௜,௞ାଵ|௞ − 𝑧̄௞ାଵ|௞)் + 𝑅௞ଶ௡
௜ୀ଴ , (26)

𝑃௫ೖ௭ೖ = ෍𝜔௜(௖)(𝑥̄௜,௞ାଵ|௞ାଵ − 𝑧̄௞ାଵ|௞) × (𝑧௜,௞ାଵ|௞ − 𝑧̄௞ାଵ|௞)்ଶ௡
௜ୀ଴ . (27)

The Kalman gain matrix is calculated: 𝐾௞ାଵ|௞ = 𝑃௫ೖ೥ೖ𝑃௭ೖ೥ೖషభ . (28)

Finally, the estimated state vector and covariance based on the measured values at time 𝑘 + 1 
are updated: 𝑥௞ାଵ = 𝑥̄௞ାଵ|௞ + 𝐾௞ାଵ|௞ × ൫𝑧௞ାଵ − 𝑧̄௞ାଵ|௞൯, (29)𝑃௞ାଵ = 𝑃௞ାଵ|௞ + 𝐾௞ାଵ|௞𝑃௭ೖ௭ೖ𝐾௞ାଵ|௞் . (30)

3.3. ADLUKF 

In actual driving, the movement of vehicles is affected by various factors such as road 
conditions, wind speed, and mechanical vibrations of the vehicle itself, which can generate 
complex noise. The improved Sage-Husa method assumes that the statistical characteristics of 
noise are unknown and time-varying, but in actual driving, due to the constantly changing driving 
environment, the statistical characteristics of noise are indeed difficult to determine in advance 
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and change over time. For example, when driving on different road conditions (such as highways 
and rural roads), the noise interference received by vehicle sensors varies, and the statistical 
characteristics will also change. This method can adaptively estimate the statistical characteristics 
of noise by real-time calculation and correction of adjustment factors for filtering anomaly 
determination, thus meeting the time-varying requirements of noise characteristics in actual 
driving [25]. 

1) Mean Estimation of process noise: 

𝑞௞ାଵ = (1 − 𝑑௞)𝑞௞ + 𝑑௞ ൭𝑥௞ାଵ −෍𝜔௜(௠)𝑥௜,௞ାଵ|௞ଶ௡
௜ୀ଴ ൱, (31)

where: 

𝑑௞ = 1 − 𝑏1 − 𝑏௞ାଵ, (32)

where 𝑏 is the forgetting factor. 
2) Covariance estimation of process noise: 𝑄௞ାଵ = (1 − 𝑑௞)𝑄௞ + 𝑑௞[𝐾௞ାଵ𝑒௞𝑒௞்𝐾௞ାଵ் + 𝑃௞ାଵ       −෍𝜔௜(௖)൫𝑥௜,௞ାଵ|௞ − 𝑥̄௞ାଵ|௞൯ × ൫𝑥௜,௞ାଵ|௞ − 𝑥̄௞ାଵ|௞൯்ଶ௡

௜ୀ଴ ൩, (33)

𝑒௞ = 𝑧௞ାଵ − 𝑧̄௞ାଵ|௞. (34)

3) Mean Estimation of observation noise: 

𝑟௞ାଵ = (1 − 𝑑௞)𝑟௞ + 𝑑௞ ൭𝑧௞ାଵ −෍𝜔௜(௠)𝑧௜,௞ାଵ|௞ଶ௡
௜ୀ଴ ൱. (35)

4) Covariance estimation of observation noise: 

𝑅௞ାଵ = 𝑅௞ + 𝑑௞[𝑒௞ାଵ𝑒௞ାଵ் −෍𝜔௜(௖)ଶ௡
௜ୀ଴ ൫𝑧௜,௞ାଵ|௞ − 𝑧̄௞ାଵ|௞൯ × ൫𝑧௜,௞ାଵ|௞ − 𝑧̄௞ାଵ|௞)்൧. (36)

From Eqs. (30)-(33), it can be seen that the noise covariance matrix of the system cannot 
guarantee non negative definiteness. So 𝑃௞ may be a non positive definite matrix, which will result 
in the inability to obtain result from Eq. (1), ultimately leading to the failure of the ADLUKF 
algorithm in estimating the vehicle state. 

In addition, both 𝑄௞ and 𝑅௞ are uncorrelated Gaussian matrices and should be diagonal 
matrices. Therefore, adjustments need to be made to 𝑄௞ାଵ and 𝑅௞ାଵ as follows: 

𝑄௞ାଵ = ටdiag(diag(𝑄௞ାଵ𝑄௞ାଵ் )), (37)𝑅௞ାଵ = ටdiag(diag(𝑅௞ାଵ𝑅௞ାଵ் )), (38)

where 𝑑𝑖𝑎𝑔(⋅) is the diagonal matrix composed of the main diagonal elements of (⋅). 
This algorithm can ensure the effective estimation of vehicle driving state parameters, not only 

reducing the impact of system noise on the estimation results but also improving the stability of 
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vehicle driving state parameter estimation. 
The flow chart of the algorithm is shown in Fig. 3. 

 
Fig. 3. Flow chart of the algorithm 

4. Numerical simulation and experimental verification 

4.1. Numerical simulation 

Carsim is a software developed by MSC (Mechanical Simulation Corporation) using Vehicle 
Sim technology specifically for vehicle dynamics. Using CarSim to design, develop, test, and plan 
automotive projects enables better decision-making involving vehicle dynamics and takes less 
time. Carsim can be used to demonstrate the expected vehicle operating results and provide a more 
in-depth analysis of the current operating results. 

The main features of Carsim software are as follows: 
1) Easy to use.  
Carsim has a modern graphical user interface that allows for running simulation experiments, 

watching animations or viewing the results of engineering drawings. Carsim Quick Start Guide 
takes about an hour to establish new operating conditions. The output curves and animations can 
be easily obtained by clicking the mouse, and the resulting graphics can be easily inserted into 
reports and PowerPoint presentations. The mathematical models of Carsim have been 
parameterized, including parameters commonly used by OEMs and suppliers. Therefore, Carsim 
users can obtain the operating results of new working conditions in the shortest possible time. 

2) A large number of instance datasets and animated graphics.  
Carsim has over 15 different vehicle models: A to F-class passenger cars, some vans, multi-

purpose vehicles, and light trucks. Carsim has many test program samples and over 20 types of 
3D vehicle shape files to ensure simulation animations. Each 3D vehicle can automatically adjust 
its size to match the size of the model car, and the color of the entire vehicle can be automatically 
reset during operation to distinguish vehicles under different working conditions. 
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4.1.1. Double lane changing condition 

Figs. 4(a)-(d) show the simulation results under the double lane changing condition. And the 
common path tracking methods such as fuzzy adaptive unscented Kalman filter (FAUKF) and 
CKF are used to compared with the proposed algorithm. 

 
a) Yaw rate 

 
b) Side slip angle 

 
c) Longitudinal speed 

 
d) Mean of absolute error of longitudinal speed 

Fig. 4. Simulation results under double lane changing condition 

Under the double lane changing road condition, the ADLUKF algorithm can more accurately 
estimate the yaw rate of the moving vehicle compared to the FAUKF and the CKF algorithm. The 
yaw rate estimation based on the ADLUKF algorithm is closer to the actual value (Reference 
value). For the estimation of the side slip angle, both the FAUKF and the CKF algorithm estimator 
as well as the ADLUKF algorithm estimator can accurately estimate the side slip angle of the 
vehicle in the first 5 seconds of simulation. After 5 seconds, the estimation effect of the CKF 
algorithm estimator begins to deteriorate, and its estimation result has a large deviation from the 
actual side slip angle. However, the tracking effect of the ADLUKF algorithm estimator is still 
good, and the mean of absolute error of longitudinal speed of the ADLUKF algorithm is the 
smallest indicating that the ADLUKF algorithm estimator is more accurate than the FAUKF and 
the CKF algorithm estimator with higher accuracy and better stability. 

The computation cost is shown in Tables 1. From Tables 1 it can be seen that the ADLUKF 
algorithm does not have too high computation cost.  

Table 1. Comparison of the computation cost under the double lane changing condition 
Algorithms Total times(s) 

CKF 6.316 
FAUKF 6.346 

ADLUKF 6.381 

4.1.2. Serpentine condition 

Figs. 5(a)-(d) show the simulation results under the serpentine condition. And the common 
path tracking methods (FAUKF and CKF) are used to compared with the proposed algorithm. 

From Fig. 5(a) it can be seen that under the serpentine condition, compared to the FAUKF and 
the CKF algorithm, the ADLUKF algorithm can more accurately estimate the yaw rate of the 
moving vehicle. The yaw rate estimation based on the ADLUKF algorithm is closer to the actual 
value (Reference value). From Fig. 5(b) it can be seen that for the estimation of the side slip angle, 
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both the FAUKF and the CKF algorithm estimator as well as the ADLUKF algorithm estimator 
can accurately estimate the side slip angle of the vehicle in the first 6 seconds of simulation. 
6 seconds later, the estimation effect of the FAUKF and the CKF algorithm estimator begins to 
deteriorate. Fig. 5(c) indicates that when estimating the longitudinal speed, the CKF algorithm has 
higher estimation error than that of the ADLUKF algorithm. At the same time it can be seen from 
Fig. 5(d), the tracking effect of the ADLUKF algorithm estimator is still good, and the mean of 
absolute error of longitudinal speed of the ADLUKF algorithm is the smallest indicating that the 
ADLUKF algorithm estimator is more accurate than the FAUKF and the CKF algorithm estimator 
with higher accuracy and better stability. 

 
a) Yaw rate 

 
b) Side slip angle 

 
c) Longitudinal speed 

 
d) Mean of absolute error of longitudinal speed 

Fig. 5. Simulation results under serpentine condition 

The mean absolute error (MAE) and root mean square error (RMSE) are considered to verify 
the estimation accuracy of the proposed algorithm. 

From Table 2, it can be seen more intuitively that the estimation accuracy of the ADLUKF 
algorithm is significantly higher than that of the FAUKF and the CKF method. 

Table 2. MAE and RMSE indicators of two algorithms 
Evaluation index State value CKF FAUKF ADLUKF 

MAE 
𝑢 (m/s) 0.311 0.158 0.139 𝑣 (m/s) 0.187 0.0563 0.0452 𝜔௥ (rad/s) 0.312 0.0198 0.0163 

RMSE 
𝑢 (m/s) 0.338 0.243 0.126 𝑣 (m/s) 0.249 0.0621 0.0502 𝜔௥ (rad/s) 0.412 0.0301 0.0206 

Table 3. Analysis of estimation errors of states under different initial conditions  
of measurement noise covariance matrix 

Side slip angle Initial value of R 
eye(3)×0.01 eye(3)×2 

RMSE ADLUKF 0.001 0.003 
CKF 0.002 0.082 

Table 3 is the RMSE of the estimation parameter (Side slip angle) of two algorithms under 
different initial values of the covariance matrix of measurement noise. 

Table 3 shows that CKF is very sensitive to the initial value of the covariance matrix of 
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measurement noise, which is also the reason why it is difficult to ensure the estimation accuracy 
of CKF in practical applications. The ADLUKF method has significant advantages in estimation 
accuracy. 

The standard deviation (SD) is used to access estimator variability. 
From Table 4 it can be seen that compared with the CKF and the FAUKF, the dataset obtained 

by the ADLUKF has a lower degree of dispersion. 

Table 4. SD indicator of two algorithms 
Evaluation index State value CKF FAUKF ADLUKF 

SD 
𝑢 (m/s) 0.0704 0.0524 0.0372 𝛽 (deg) 0.2752 0.2486 0.2383 𝜔௥ (rad/s) 3.3763 3.3668 3.3534 

4.2. Experimental verification 

A real vehicle test is conducted to verify the effectiveness of the algorithm. The real 
experiment vehicle shown in Fig. 6[26] and the experiment equipment’s are shown in Fig. 7 [26]. 

  
Fig. 6. Real test vehicle 

  
Fig. 7. Measurement equipment’s 

The experimental vehicle is a Volkswagen Santana vehicle. The gyroscope is installed at the 
center of mass of the experimental vehicle, which can meet the measurement requirements for the 
lateral/longitudinal acceleration, side slip angle and yaw rate of the driving vehicle. The Am-2800 
vehicle comprehensive performance test system is used for collecting data. The steering 
torque/angle tester is used for measuring the steering angle. By measuring the steering wheel 
angle, the front wheel angle of the experimental vehicle is indirectly measured through the angular 
transmission ratio between the steering wheel and the front wheels. Driving the test vehicle around 
the site and the data with a sampling period of 0.01 s is recorded. The collected data is input into 
the Matlab/Simulink software for offline algorithm evaluation. A block diagram of real vehicle 
test system is shown in Fig. 8. The experiment is conducted on a dry road surface with a wind 
speed of less than 3 m/s. 



ESTIMATION OF VEHICLE STATE BASED ON IMPROVED DUAL LAYER UKF.  
QIANQIAN WANG, YINGJIE LIU, DAWEI CUI 

12 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

 
Fig. 8. Block diagram of test system 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 9. Comparison of the estimated and test values: a) yaw rate under the double lane changing condition; 
b) side slip angle under the double lane changing condition; c) longitudinal speed under the double  

lane changing condition; d) yaw rate under the serpentine condition; e) side slip angle  
under the serpentine condition; f) longitudinal speed under the serpentine condition 

As shown in Fig. 9 the ADLUKF algorithm is able to estimate the longitudinal speed and side 
slip angle as well as the yaw rate of the vehicle. Figs. 9(a)-(b) indicates that in the first 2.5 seconds 
of simulation, the estimators are able to estimate the yaw rate well. However, after 3 seconds, the 
estimation results based on the CKF algorithm showed distortion, while the ADLUKF algorithm 
estimator could still reflect the true values of the experiment well. The same result also appeared 
in the estimation of the side slip angle as shown in Figs. 9(c)-(d). In the first 4 seconds of 
simulation, the estimators are able to accurately estimate the side slip angle of the vehicle, with 
the ADLUKF algorithm estimator having higher accuracy. However, after 4 seconds, the CKF 
algorithm estimator also experienced distortion, possibly due to the non positive definite state 
covariance matrix, which makes it impossible to find its square root, resulting in incorrect results 
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in Eq. (9). Figs. 9(e)-(f) indicate that both the simulation results of the CKF and the ADLUKF 
algorithms are consistent with the experimental results verifying the correction of the proposed 
method for vehicle states estimation. The average error of the ADLUKF algorithm estimator is 
relatively small. Further verification has shown that the ADLUKF algorithm estimator has better 
tracking performance and higher accuracy. 

5. Conclusions 

In order to solve the problem of poor performance of the Unscented Kalman Filter algorithm 
in estimating vehicle driving state parameters, a dual layer Unscented Kalman Filter algorithm is 
proposed and integrated with an improved Sage-Husa adaptive filtering algorithm to form an 
adaptive dual layer Unscented Kalman Filter algorithm estimator. The proposed algorithm can 
dynamically adjust the process and measurement noise of the system, solving the problem of 
uncertain system noise. By establishing a nonlinear 3-DOF vehicle estimation model a joint 
simulation in Carsim and Matlab/Simulink is conducted. In addition, real vehicle experiments are 
conducted to collect data, and the algorithms are evaluated in Matlab/Simulink software. The 
estimation results of ADLUKF algorithm and CKF algorithm estimator are compared and 
analyzed. The results indicate that the ADLUKF algorithm is more accurate and effective in 
estimating the state parameters of vehicle with higher accuracy and anti-interference ability. There 
is the issue of potentially non-positive definite covariance matrices. The eigenvalues of a non 
positive definite covariance matrix contain negative values. By correcting these negative 
eigenvalues to a small positive value, the covariance matrix is reconstructed based on the 
eigenvalues and eigenvectors. At the same time, adding regularization terms to the estimation of 
covariance matrix or adopting a robust model may solve the problem. And the proposed algorithm 
which is an objective of future research, can be considered for application in other fields, such as 
indirect bridge structural health monitoring. 

Acknowledgements 

This research was supported by the Open Research Program of Huzhou Key Laboratory of 
Urban Multidimensional Perception and Intelligent Computing under Grant No. UMPIC202404. 
This research was supported by the Science and Technology Program Foundation of Weifang 
under Grant 2023GX003. At the same, this research was financially supported by the Open 
Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern 
University, under Grant 2021RALKFKT008. The first author gratefully acknowledges the support 
agency. 

Data availability 

The datasets generated during and/or analyzed during the current study are available from the 
corresponding author on reasonable request. 

Author contributions 

Qianqian Wang: simulation techniques. Yingjie Liu: mathematical model. Dawei Cui: spelling 
and grammar checking as well as software. 

Conflict of interest 

The authors declare that they have no conflict of interest. 



ESTIMATION OF VEHICLE STATE BASED ON IMPROVED DUAL LAYER UKF.  
QIANQIAN WANG, YINGJIE LIU, DAWEI CUI 

14 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

References 

[1] Y. Liu, D. Cui, and W. Peng, “Optimum control for path tracking problem of vehicle handling inverse 
dynamics,” Sensors, Vol. 23, No. 15, p. 6673, Jul. 2023, https://doi.org/10.3390/s23156673 

[2] Y. Liu, D. Cui, and W. Peng, “Optimal lane changing problem of vehicle handling inverse dynamics 
based on mesh refinement method,” IEEE Access, Vol. 11, pp. 115617–115626, Jan. 2023, 
https://doi.org/10.1109/access.2023.3324422 

[3] Y. Liu and D. Cui, “Vehicle dynamics prediction via adaptive robust unscented particle filter,” 
Advances in Mechanical Engineering, Vol. 15, No. 5, p. 168781322311707, May 2023, 
https://doi.org/10.1177/16878132231170766 

[4] G. Li et al., “Vehicle state estimation based on improved Sage-Husa adaptive extend Kalman filtering,” 
(in Chinese), Automotive Engineering, Vol. 37, No. 12, pp. 1426–1432, 2015, 
https://doi.org/10.19562/j.chinasae.qcgc.2015.12.012 

[5] Z. P. Wang, X. Xue, and Y. C. Wang, “State parameter estimation of distributed drive elective vehicle 
based on adaptive unscented Kalman filter,” (in Chinese), Transaction of Beijing Institute of 
Technology, Vol. 38, No. 7, pp. 698–702, 2018, https://doi.org/10.15918/j.tbit1001-0645.2018.07.006 

[6] G. Li, Y. Wang, and C. F. Zong, “Driving state estimation of electric vehicle with four-wheel-hub-
motors,” (in Chinese), Automotive Engineering, Vol. 40, No. 2, pp. 150–155, 2018, 
https://doi.org/10.19562/j.chinasae.qcgc.2018.02.005 

[7] A. M. Ribeiro, A. Moutinho, A. R. Fioravanti, and E. C. de Paiva, “Estimation of tire-road friction for 
road vehicles: a time delay neural network approach,” Journal of the Brazilian Society of Mechanical 
Sciences and Engineering, Vol. 42, No. 1, pp. 1007–1025, Nov. 2019, https://doi.org/10.1007/s40430-
019-2079-y 

[8] D. J. Kim, J. S. Kim, S.-H. Lee, and C. C. Chung, “A comparative study of estimating road surface 
condition using support vector machine and deep neural network,” in IEEE Intelligent Transportation 
Systems Conference – ITSC, pp. 1066–1071, Oct. 2019, https://doi.org/10.1109/itsc.2019.8916965 

[9] E. Šabanovič, V. Žuraulis, O. Prentkovskis, and V. Skrickij, “Identification of road-surface type using 
deep neural networks for friction coefficient estimation,” Sensors, Vol. 20, No. 3, p. 612, Jan. 2020, 
https://doi.org/10.3390/s20030612 

[10] B.-F. Wu, P.-J. Chang, Y.-S. Chen, and C.-W. Huang, “An intelligent wheelchair anti-lock braking 
system design with friction coefficient estimation,” IEEE Access, Vol. 6, pp. 73686–73701, Jan. 2018, 
https://doi.org/10.1109/access.2018.2884658 

[11] K. Enisz, I. Szalay, G. Kohlrusz, and D. Fodor, “Tyre-road friction coefficient estimation based on the 
discrete-time extended Kalman filter,” Proceedings of the Institution of Mechanical Engineers, Part 
D: Journal of Automobile Engineering, Vol. 229, No. 9, pp. 1158–1168, Nov. 2014, 
https://doi.org/10.1177/0954407014556115 

[12] G. Li et al., “Estimation of vehicle state and road adhesion coefficient based on Kalman filter,” (in 
Chinese), Journal of South China University of Technology: Natural Science Edition, Vol. 42, No. 8, 
pp. 129–135, 2014, https://doi.org/10.3969/j.issn.1000-565x.2014.08.020 

[13] Y.-H. Liu, T. Li, Y.-Y. Yang, X.-W. Ji, and J. Wu, “Estimation of tire-road friction coefficient based on 
combined APF-IEKF and iteration algorithm,” Mechanical Systems and Signal Processing, Vol. 88, 
pp. 25–35, May 2017, https://doi.org/10.1016/j.ymssp.2016.07.024 

[14] C. Wang, C. Song, and J. Li, “A federated filter design of electronic stability control for electric-wheel 
vehicle,” in 8th International Congress on Image and Signal Processing (CISP), pp. 1105–1110, Oct. 
2015, https://doi.org/10.1109/cisp.2015.7408045 

[15] X. Fu et al., “Estimation of road adhesion coefficient based on fading memory unscented Kalman 
filtering with exponential weighting,” (in Chinese), Automobile Technology, No. 1, pp. 31–37, 2018, 
https://doi.org/10.19620/j.cnki.1000-3703.20170512 

[16] Q. Zhu, J. Zhang, L. Zhou, and Z. Zhao, “Vehicle speed estimation in driving case based on distributed 
self-adaptive unscented Kalman filter for 4WD hybrid electric car,” Scientia Sinica Technologica, 
Vol. 46, No. 5, pp. 481–492, May 2016, https://doi.org/10.1360/n092015-00240 

[17] B. L. Boada, M. J. L. Boada, and V. Diaz, “Vehicle sideslip angle measurement based on sensor data 
fusion using an integrated ANFIS and an unscented Kalman filter algorithm,” Mechanical Systems and 
Signal Processing, Vol. 72-73, pp. 832–845, May 2016, https://doi.org/10.1016/j.ymssp.2015.11.003 

[18] E. Massarelli, M. Raimondi, and S. Mara, “Output-only modal analysis and system identification for 
indirect bridge health monitoring: needs, requirements, and limitations,” in IOMAC 2024, LNCE 515, 
Vol. 515, pp. 505–515, 2024. 



ESTIMATION OF VEHICLE STATE BASED ON IMPROVED DUAL LAYER UKF.  
QIANQIAN WANG, YINGJIE LIU, DAWEI CUI 

 JOURNAL OF MEASUREMENTS IN ENGINEERING 15 

[19] M. Dalmasso, M. Civera, and V. de Biagi, “Gaussian process regression (GPR)-based missing data 
imputation and its uses for bridge structural health monitoring,” Advances in Bridge Engineering, 
Vol. 6, No. 23, pp. 1–21, 2025. 

[20] M. Aimar, M. Civera, S. Foti, and B. Chiaia, “Preliminary insights from surveys of bridges at high 
scouring risk in west piedmont,” Procedia Structural Integrity, Vol. 62, pp. 609–616, Jan. 2024, 
https://doi.org/10.1016/j.prostr.2024.09.085 

[21] Y. Liu, D. Cui, and W. Peng, “Vehicle state and parameter estimation based on improved extend 
Kalman filter,” Journal of Measurements in Engineering, Vol. 11, No. 4, pp. 496–508, Dec. 2023, 
https://doi.org/10.21595/jme.2023.23475 

[22] C. M. Liu, Z. B. Peng, and X. J. Wu, “Joint estimation of vehicle motion state based on adaptive fuzzy 
extended Kalman filter,” (in Chinese), Automobile Technology, Vol. 559, No. 4, pp. 23–30, 2022, 
https://doi.org/10.19620/j.cnki.1000-3703.20210263 

[23] X. Wang, A. Wang, D. Wang, Y. Xiong, B. Liang, and Y. Qi, “A modified Sage-Husa adaptive Kalman 
filter for state estimation of electric vehicle servo control system,” Energy Reports, Vol. 8, pp. 20–27, 
Aug. 2022, https://doi.org/10.1016/j.egyr.2022.02.105 

[24] J. L. Xu and G. J. Zhang, “Vehicle state estimation based on adaptive double-layer untracked Kalman 
filter,” Journal of Chongqing University of Technology, Vol. 38, No. 13, pp. 29–36, 2024, 
https://doi.org/10.3969/j.issn.1674-8425(z).2024.07.004 

[25] S. G. Sun and Q. X. Wen, “The application of improved Sage-Husa algorithm in aircraft integrated 
navigation,” (in Chinese), GNSS World of China, Vol. 46, No. 3, pp. 54–60, 2021, 
https://doi.org/10.12265/j.gnss.2021012401 

[26] Y. Liu and D. Cui, “Estimation of vehicle state based on maximum correntropy square-root cubature 
Kalman Filter,” Journal of Measurements in Engineering, Vol. 13, No. 1, pp. 152–167, Mar. 2025, 
https://doi.org/10.21595/jme.2024.24376 

 

Qianqian Wang received Ph.D. degree in School of Mechanical Engineering and 
Automation from Northeastern University, Shenyang, China, in 2013. Now she works at 
School of Machinery and Automation, Weifang University, Weifang, China. Her current 
research interests include vehicle system dynamics, mechanical vibration and control. 

 

Yingjie Liu received Ph.D. degree in College of Energy and Power Engineering from 
Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2014. Now he 
works at School of Machinery and Automation, Weifang University, Weifang, China. His 
current research interests include vehicle system dynamics and control theory to ground 
vehicles. 

 

Dawei Cui received Ph.D. degree in Material Science and Engineering Institute from 
University of Science and Technology Beijing, Beijing, China, in 2008. Now he works at 
School of Machinery and Automation, Weifang University, Weifang, China. His current 
research interests include control and vehicle system dynamics. 

 




