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Abstract. Accurate measurement of river hydrological characteristics is critical for assessing the
impacts of flooding caused by meteorological and geomorphological factors. Flow velocity are
key indicators in hydrological monitoring. Traditional measurement approaches, such as
continuous-wave Doppler radar and pulsed radar systems, are typically mounted on bridges or
fixed supports and offer only single-point measurements. These methods often suffer from limited
detection range, low accuracy, and poor resistance to environmental interference. To address these
limitations, this study proposes a three-dimensional flow detection framework based on multi-
input multi-output (MIMO) radar sensors. By leveraging the high reliability and interference
resistance of MIMO radar, along with a Space-Velocity-Time (SVT) algorithm that incorporates
spatiotemporal information (two-dimensional surface velocity and time), the proposed method
enables robust 3D river flow monitoring. In this study, comparative experiments were conducted
on four rivers in China with different flow conditions, geomorphic features and weather
environments. Results demonstrate that the proposed method achieves a measurement error of less
than 5 % compared to acoustic Doppler current profilers (ADCP) and other conventional
mechanical approaches, while also offering improved safety and real-time performance.
Moreover, an adaptive flow correction algorithm is presented, which uses three optimized
prediction models to compute the correction factor and reduces the mean streamflow measurement
error to 0.79 % after correction, providing an effective solution for river gauging, flood control
and flood resilience.

Keywords: MIMO radar sensors, three-dimensional flow detection, hydrological monitoring,
SVT algorithm, adaptive flow correction algorithm.

1. Introduction

River discharge is a key parameter in hydrological testing. Due to realistic environmental
measurement conditions discharge cannot be measured directly and usually needs to be derived
from a combination of integrated surface water level, flow rate and cross-sectional area
measurements [1-3]. Cross-sectional profiles are usually obtained from existing bathymetric data
or ground-penetrating radar measurements [4-6]. Highly accurate streamflow measurements are
therefore essential for the accurate estimation of discharge during flooding and hence for the
effective management of flood risk, design of mitigation strategies and development of drainage
infrastructure.

Traditional techniques for measuring river velocity often rely on in-situ instruments such as
acoustic Doppler current profilers (ADCPs) or current meters positioned within the water column
[7]. While ADCPs are effective for direct velocity measurements via wading or boat-mounted
deployments, their use becomes hazardous and impractical during flood events or heavy
rainstorms [8]. However, velocity profiles during floods are particularly valuable for early
warning and hazard prevention, underscoring the need for a safe, real-time, and weather-resilient
monitoring approach. Near-field remote sensing has emerged as a viable solution, enabling
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non-contact observation of river flow under various environmental conditions [9]. Surface
velocity radar (SVR), a common near-field method, determines flow velocity by detecting
Doppler shifts primarily caused by Bragg scattering [10-11]. A conventional SVR employs one
transmitting and one receiving antenna, which restricts it to measuring only the radial component
of flow velocity due to its inability to resolve azimuthal information [12]. Although narrow beam
widths are used to approximate flow direction, interference from multiple signal sources within
the radar footprint can distort the measurements [13]. Moreover, wide rivers often exhibit
substantial spatial variability in flow velocities caused by geomorphological, climatic, and
hydraulic factors, making single-point SVR data insufficient for capturing comprehensive flow
dynamics [14]. Side-mounted bank-based SVR systems extend the detection range but struggle
with low-velocity flows, where the Doppler frequency falls below the high-pass filter threshold
after projection, resulting in signal loss [15]. To address these limitations, In this paper, a shore-
based side-mounted multiple-input multiple-output (MIMO) radar system is proposed, which is
capable of accurately measuring river flow rates under different conditions with improved spatial
coverage, robustness and measurement fidelity.

MIMO radar enables the acquisition of multiple independent observational signals of a single
target and facilitates the fusion of these signals for enhanced target detection [16]. By leveraging
radars transmit waveform diversity, MIMO radar provides improved beamforming flexibility,
superior detection capabilities, and enhanced interference suppression [17-19]. It also
demonstrates a significantly higher sensitivity in detecting slow-moving and weak targets within
cluttered environments [20-21]. To leverage the advantages of multi-input multi-output (MIMO)
radar in addressing the challenges of river flow measurement, this study proposes a novel
three-dimensional point cloud processing algorithm based on the Space-Velocity-Time (SVT)
framework. The method exploits the spatial distribution of surface flow velocity within the radar’s
field of view (FOV) to suppress and correct signal noise, by incorporating two key
domain-specific features: the inherent temporal continuity of river flow and the strong temporal
correlation of flow velocity. In addition, an adaptive correction model is developed to dynamically
refine the flow velocity measurements, thereby enhancing overall accuracy. The proposed
approach enables rapid and precise data acquisition using a single sensor, even under varying
environmental conditions, effectively reducing measurement costs while improving operational
efficiency.

2. Experimental methods
2.1. MIMO radar point cloud data model

The radar system utilized in this study is the Huawei ASN850 centralized MIMO radar.
Operating at a carrier frequency of 80 GHz, the system enables higher Doppler frequency shifts
under identical flow conditions, thereby enhancing the sensitivity to velocity changes. It employs
an antenna array configuration comprising eight transmitters and eight receivers, which
significantly improves angular resolution and measurement accuracy. Furthermore, the radar
operates in the frequency-modulated continuous wave (FMCW) mode, providing high range
resolution and real-time capability essential for hydrological monitoring.

In a centralized MIMO radar system, the spacing between array elements — or the effective
antenna aperture — is considerably smaller than the distance to the target. As a result, each
transmitted and received signal observes essentially identical target parameters, including
direction of arrival (DOA), range, Doppler frequency, and radar cross section (RCS) [22]. The
MIMO radar estimates the target’s distance, velocity, and angle by transmitting FMCW and
analyzing the time delay, frequency shift, and phase differences in the received echoes. The
ranging process is based on the time delay of the electromagnetic wave traveling from the
transmitter to the target and back, combined with the known frequency sweep rate, to compute the
range. Velocity estimation is performed by applying fast Fourier transform (FFT) to a sequence
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of received FMCW pulses and calculating the target speed from the inter-pulse phase differences.
Angular estimation is achieved by exploiting the phase differences between signals received
across the antenna array, with angular resolution directly related to the number of antenna
elements — greater array density yields higher angular precision.

The radar RF chip generates a Chirp signal, which is transmitted through the transmitter
antenna and fed into the mixer; the receiver antenna receives the echo signal reflected from the
object and transmits it to the mixer to mix with the transmitter signal to form an Intermediate
Frequency (IF) signal. FFT is performed on the IF signal in the distance dimension, and the
distance-horizontal angle heat map is obtained by beamforming in the horizontal direction, which
is processed by 2D-Constant False-Alarm Rate (2D-CFAR) to extract the distance and horizontal
angle information of the target. Finally, the velocity dimension Fast Fourier Transform is done to
acquire the velocity information [23]. The distance, horizontal angle, and velocity information of
target points are gathered by the preceding stages, and the information of numerous target points
is assembled into a point cloud and out-put. The MIMO radar signal processing pathway is
presented in Fig. 1.
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Fig. 1. Radar signal processing flow diagram

The IF signal is received by many antennas and physical information such as relative distance,
radial velocity and horizontal angle of the target is extracted to generate multidimensional point
cloud data which can be represented as:

p; = [r; v; 6; RCS;], (1

where r represents the relative distance between the target and the radar, v represents the radial
velocity of the target, 6 satisfies the horizontal angle, and RCS represents the effective radar
scattering cross-section area.

When the radar detects the target object, the transmitted signal as well as the received signal
after a series of processing will produce multiple point cloud data, which is called point cloud data
set and can be expressed as:

P = {plﬁpZ""'pi}' (2)
2.2. Design of SVT algorithm for 3D point cloud

This study presents a point cloud data processing algorithm based on the three-dimensional
SVT model, designed for the acquired point cloud dataset. The algorithm leverages physical
parameters such as relative distance, radial velocity, and horizontal angle to perform processing
tasks, including point cloud clustering and feature extraction, within the three-dimensional space,
velocity, and time domains. This approach facilitates the rapid aggregation and streamlined
processing of the point cloud data, effectively mitigating noise interference and reducing data
redundancy in the river flow measurement. The detailed workflow of this method is illustrated in
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Fig. 2.

1. Acquisition and Pre-processing of Point Cloud: The MIMO radar system is initialized to
capture 3D point cloud data. Based on the radar installation settings, the point cloud is projected
onto the horizontal plane. A global adaptive distance thresholding method is then applied to
eliminate outlier noise points, thereby reducing interference in the point cloud data.

2. Spatial Dimension Processing: The pre-processed point cloud data is divided into multiple
raster blocks according to spatial dimensions. Noisy points are removed by evaluating the weights
of points within each raster, optimizing the point cloud data. The center point of each raster is
selected to represent the point cloud position, simplifying subsequent data processing.

3. Velocity Dimension Processing: Outliers in the flow velocity data within each raster are
corrected and removed using a three standard deviation (3c) scale correction method. The
corrected flow velocity mean value is then assigned to the center point of each raster.

4. Time Dimension Processing: The corrected point cloud data is temporally segmented, with
real-time radar data divided into distinct frames, where each frame corresponds to a one-minute
interval. A sliding T-test is applied to compare current data with historical data, identifying
significant changes. The results are integrated and analyzed to produce the final output.
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Fig. 2. SVT algorithm flowchart

N

Effective
point cloud

===~ Strikeout

2.2.1. Preprocessing

Based on the radar shore-based lateral mounting height, pitch, and horizontal angles, and the
physical information such as relative distance, radial velocity, and horizontal angle in the point
cloud data acquired by the radar system, the point cloud is projected onto the XOY horizontal
plane and represented in the form of a matrix:

P1 X1 Y1 V1
p— b2 _|X2 Y2 V2

pi Xi Yi Vi

) €)

where the point cloud projection into a 2D coordinate system can be expressed in terms of
coordinates and river flow rate:

X =r-cosa-cos(f +0), “4)
Y =r-cosa-sin(f +6), (%)
Vvt . ©)

1y.cosoz.cos(ﬁ+t9)'
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where r represents the relative distance between the target and the radar, v represents the radial
velocity of the target, 6 represents the horizontal angle measured by the radar, a represents the
pitch angle of the radar installation, and 8 represents the horizontal angle of the radar installation.

Due to the complex topography of the river, other obstacles such as buildings and vegetation
along the banks may interfere with normal signal reception, and floating objects on the surface of
the river (e.g., leaves, rubbish, etc.) reflect radar signals and generate echoes that interfere with
the water surface echo signals. Therefore, there will be noise points in the initial point cloud
produced by radar scanning the river surface [24].

The global adaptive distance thresholding method is applied in the preprocessing to cull out
outlier noise points away from the topic point cloud to prevent altering the flow velocity data.
Determine the distance threshold based on the global distance average and variance by computing
the average of the distance between the target original point cloud and all the points in the
neighborhood. When the average of the distance between the point cloud and its nearby points is
larger than, the point is declared to be an outlier and rejected. This technique is able to successfully
locate and eliminate outlier noise spots, which in turn increases the accuracy of the subsequent
processing. As illustrated in Fig. 3, the black dots are the topic point cloud and the red points are
the outlier noise points.

Fig. 3. Distance thresholding method
2.2.2. Space dimensional point cloud processing

The raster partitioning process is performed on point cloud by traversing each raster and
calculating its weights in order to remove redundant points and reduce noise effects. Selecting the
center point of the raster to replace the spatial location of the point cloud in the raster further
simplifies the number of point clouds, which can more intuitively and accurately show the
distribution of flow velocity on the surface of the river.

Dividing the enclosing frame into a number of rasters to improve the accuracy and processing
speed of raster clustering. As shown in Fig. 4:
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Fig. 4. Grid-based partitioning

When the point cloud is denser, the raster edge lengths are smaller to represent the data more
finely; when the density is smaller, the raster edge lengths become larger to reduce the
computational complexity.

Traverse each raster obtained by the above method in turn, and compute the weights of each
point in each raster by means of the neighborhood. The smaller the weight, the denser the
distribution of points in the area; conversely, the larger the weight, the more sparsely distributed
the points in the area.
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For any raster, extract the point (Xmax,,,, with the largest coordinate value and the point
(Xmin,,;,, with the smallest coordinate value among the points it contains, with initial weights:

_ (Xmax B Xmin)2 + (Ymax B Ymin)2
ap = (7
0 n )

where n denotes the number of points contained in the raster.
Let a certain matrix contain a set of points Q = {q,, q,, :** q;}, where the weight g; of any point
a; is:

k
1 2
a =;;||qi LR ®)

where {q j}§=1 C Q denotes the k neighborhood of point g;.

If the weight value of a point in this raster is less than the set weight threshold, the point is
rejected, and vice versa, it is retained, thus rejecting the noisy points in the point cloud [25].

In the study of river flow velocity, based on the continuity principle of hydrodynamics and
actual observation data, in the gentle section of the river channel, the resistance of the water flow
is relatively constant due to the small changes in the riverbed morphology, resulting in small
changes in the flow velocity between the proximate points. In addition, the viscosity effect of the
fluid makes the flow rate tend to be smoothly distributed over a short range. Thus, the center of
the raster is selected to re-place the remaining point-space positions within the raster.

2.2.3. Dimension point cloud processing

The point cloud is stored in a raster through the spatial dimension. In this study, a scaling
correction technique based on the law of triple standard deviation is proposed. The method
traverses each raster to correct and reject the noise points in the point cloud based on the
characteristic that the flow points of the point cloud are normally distributed within the raster. The
corrected point cloud flow mean is attributed to the center point of the raster.

Calculation of the average value: By sorting the data and eliminating the very large and very
small values in order to exclude the influence of outliers on the average value, so as to obtain a
more robust average value. The formula is expressed as follows:

n-—2
i=3 Xi

Fyy ©

X =

where X denotes the average value of the data; x; denotes the value of the flow rate at the ith data
point; and n denotes the number of data points.
The formula for calculating the standard deviation is expressed as follows:

N
1 _
o= N;(xi oty (10)

where o is the standard deviation; N is the number of data points; and X; is the ith data point.
The weighted correction formula is expressed as follows:

n, = ny
v=s.—+x-(1——), (11)
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where s denotes the flow rate value of the suspected point cloud; n; denotes the number of
suspected point clouds; and n, denotes the total number of point clouds.

Through iterative processing, the flow velocity data of all point clouds within each raster
deviate from the mean value by no more than two times the standard deviation to obtain a single
frame of valid point cloud data. Take the average of the point cloud flow rate data in each raster
and assign it to the center point of the raster.

2.2.4. Time dimensional point cloud processing

Capturing point cloud features throughout time by separately assessing data collected by the
radar in real time at different time periods. Further integrating and analyzing the processing results
of each time period can effectively identify and track the dynamic changes of point cloud data.

The point cloud data supplied from the radar in real time is segmented according to the time
sequence of one frame per minute, and each frame is processed as a spatial and velocity
dimensional point cloud separately. Based on the first ten frames of point cloud data are
aggregated and averaged for integrated processing, and each subsequent newly created frame of
point cloud data is treated independently. For the current frame, the algorithm takes the data from
the previous ten frames as a basis for correcting and evaluating it.

In order to detect whether there is a significant change in the processed single-frame data
between different time periods, the algorithm in this research uses a sliding t-test. In this method,
the difference between the newly created data and the previous data may be constantly compared
every minute, thus improving the accuracy and reliability of data processing.

The window size chosen for the sliding t-test algorithm in this study is 11 frames. The window
starts from the start position of the time series and gradually slides back 3-5 frames, moving the
window until it covers the entire time series. For each window position, the data within the window
is divided into two parts (the first 10 frames and the last 1 frame), and a t-test is performed on the
two parts of the data to calculate the t-statistic and p-value. As shown in Fig. 5.

Frame B window Common Check

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 FIl F12 FI3 Fl4 FI5 Fl6 F17

) | | |

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 FIl Fl2 FI3 Fl14 FI5 Fl6 F

F1 F2 F3 F4 F5 F6 F7 F8 F9 Fl10 Fll FI12 FI3 Fl4 FI5S Fl6 F17

ld -

Fig. 5. Schematic diagram of sliding t-test

7
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Based on the T-statistic and P-value, it was determined whether there was a significant change
in a particular window location. If the P-value is less than a preset level of significance, the
window location is considered to have an anomalous flow rate point, which is weighted and
corrected according to the actual situation in the field.

2.3. Adaptive correction model

The river surface fluid state is unstable due to geomorphic features, environmental factors,
weather, and fluid interactions, and although the SVT algorithm can be used to remove some of
the noise during detection, there are still nonlinear disturbances caused by a variety of river
features.
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To further improve the accuracy of radar-measured flow velocity, an adaptive flow velocity
correction model is proposed. Using machine learning and deep learning methods, river features,
weather features, signal features, etc. are used as model inputs, and random forest method, BP
network and LSTM network are used to predict the river flow rate, calculate the correction factor,
and search for the hyper-parameters of the three models by designing an improved slime mould
algorithm (ISMA) to accelerate the convergence speed and avoid falling into the local optimal
solution [26]. Meanwhile, in order to meet the real-time river detection, the segmented incremental
learning method is used to iteratively update the correction factor to improve the model accuracy
and robustness. The detailed model principle is shown in Fig. 6.

Chebyshev chaos
mapping

'

Initializing populations
Calculating Adaptation
Initialize network

hyperparameters

Data characteristic ]

Determine RF, BP,
LSTM network structure

Initializing populations

4l I

Optimal network | o SMA and Sine-cosine
hyperparameters optimization Iteration
Training model Levy flight

'

Local optimization or
global optimization

indicators meet
conditions

indicators meet

Output prediction results conditions

Calculate the
correction factor

Output optimal
individuals

Fig. 6. Optimization model structure diagram
2.3.1. ISMA
2.3.1.1. Slime mould algorithm (SMA)

SMA is to search for the optimal parameter combinations by imitating the foraging process of
Sticky Mushroom, which makes the model efficiency improve [27], and the iteration idea is as
follows:

7"and*(ub_lb)-i_lb’ r<z
X =3XE o, « (WXt —XE), 7<p,, (12)
o.* X', r=p,

where:r,,,4 and r are random numbers between [0, 1]; u, and [, are the upper and lower
boundaries of the table search range; z are the position update parameters; o, and o, are the
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parameters of the slime mold oscillations, o, and are the random numbers between [—a, a], where
a = arctanh(—(t/T) + 1), t and T are the current iteration number and the maximum iteration
number, respectively, and o, are the random numbers between [—1, 1]; is the algorithm control
parameter, and the value of which is related to the fitness value of the algorithm; is the slime mold
location, which p, is superscripted as the number of iterations. X}, is the current best position, X,
and Xy are the positions of two randomly selected individuals at time t. The number of iterations
is the number of iterations.

2.3.1.2. Chebyshev chaotic mapping

In the early step of the optimization procedure, the original population needs to be initialized.
In order to prevent the algorithm from maturing prematurely and having a single population,
Chebyshev chaotic mapping is utilized to improve the uniformity and diversity of the initialization
of the population [28]. The principle is:

Xp41 = cos(n - arccos( Xy)), (13)
where X is the population individuals and n is the number of iterations.
2.3.1.3. Sine-cosine optimization

In order to increase the convergence speed of the model, improving the real-time performance
of the algorithm is crucial for flow rate detection. Optimizing the SMA by the periodic
characteristic of the Sine-cosine optimization algorithm can realize the global and local search of
the optimal parameters, jumping out of the local optimum and improving the accuracy [29]. The
updating principle is as follows:

{Xir+1 = X! + 1 -sin(ry) - [P — XE), (14)

XEFL = XE 4y cos(ry) - 1P~ X,

where X is the solution of the ith individual at generation ¢, P is the current global optimal
solution, and r is a randomization factor.

2.3.1.4. Levy flight

Combining sine-cosine optimization may also limit its search capability due to the iteration
step size. Using levy flight provides non-uniform large step size jump search at different scales to
prevent falling into local optimum [30]. Levy flight principle is:

Xtt=Xl+a-L,
- % (15)
lv|#
where «a is the scaling factor, s~N (0, 52) obeys the normal distribution, and § is the levy index.
2.3.2. Baseline forecasting model
2.3.2.1. Random forest (RF)
Due to the simple qualities of the input data, the volume of data is moderate. The application

of random forest algorithm has excellent accuracy, high operational efficiency, re-duces the risk
of overfitting and enhances prediction stability [31].
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Random forest improves prediction performance by constructing multiple decision trees and
integrating the prediction results. In constructing the decision trees, the Gini index is used as a
splitting criterion to split the data and the three-dimensional features of space, time and speed are
used for training. Gini index principle:

m

GO =1—Z 2 (16)

i=1

where p; is the probability that category i is at the current node t. A smaller Gini index indicates
a higher purity of the dataset.

Integrating the prediction results of multiple decision trees reduces overfitting, and prediction
errors generated by a single decision tree can be corrected by other trees, which in turn improves
the robustness of the algorithm. The prediction principle is shown below:

1 M
YRF = MZ Yi, (17)
i=1

where M represents the number of decision trees and y represents the prediction result of the ith
tree.

Also, because to the simple structure of the model, the hyperparameters are easier to define
and are suited for use in the early phases of the river when a sufficient quantity of data has been
acquired.

2.3.2.2. Back propagation (BP)

As the volume of radar-collected flow rate data increases, environmental factors — such as
localized winds on the river surface and small-scale eddies-introduce biases that are difficult to
eliminate. These influences contribute to nonlinear relationships among data features, often
leading to errors when using random forests due to their reliance on multiple decision trees. To
enhance prediction accuracy in this context, a Backpropagation (BP) neural network is adopted.
The model computes outputs through forward propagation, while weights and biases are
iteratively adjusted using backpropagation [32]. The weights and bias updates are related to the
learning rate, and the associated hyperparameter settings are configured using the optimization
algorithm below, with the update principle:

ol
Wi =w; =1 ow; (18)
al
b; = b; — Tla—bi' (19)

where [ represents the loss function, i.e., the mean square error (MSE).
2.3.2.3. Long short-term memory (LSTM)

The river has continuity, therefore its flow rate changes are strongly tied to time. LSTM
network deals with time series data by creating forgetting gates, input gates and output gates to
forecast the future flow rate trend based on prior data, which is appropriate for accumulating more
time data, real-time correction or abnormal flow rate alert [33].

The core of the LSTM network is the forgetting coefficient and the memory unit, which is
updated by iteratively updating the forgetting coefficient and subsequently the memory unit to
anticipate the flow rate data. The forgetting coefficient is determined from the current input x and
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the hidden state h of the preceding moment:
fe= U(Wf “[heyx] + bf)' (20)

where W, b is the weight bias, ¢ is the sigmod activation function, and f is a value between 0, 1
indicating the degree of forgetting.
The principle of updating the memory unit is as follows:

Ctzft'ct—l-l'it'ét' (21)
where C is the memory unit.
2.3.3. Adaptive incremental learning strategies

Random Forest and BP both utilize single-point prediction to take the average value, and
LSTM uses trend prediction to take the average value as the correction factor to fit with the flow
rate detected by radar. The weighting ratio depends on the entire amount of current data for
dynamic adjustment. If the entire amount of data in the unit grid after filtering exceeds the
threshold, the weighting of the correction factor is in-creased, and a three-level threshold is set,
with the maximum not exceeding 0.5.

The three approaches have varied running times when updating the model, and the
optimization time for updating the hyperparameters is also diverse, thus the model needs to be
partially updated according to the actual use. The random forest approach has a shorter running
time and can be updated as a whole with multi-unit and multi-frequency. The BP and LSTM have
a longer running period and the update window time can be prolonged to half an hour update or
longer.

3. Measurement comparison experiments and calibration of results
3.1. Radar shore-based side mounting
In order to gain higher precision of speed measurement, there are commonly two techniques

of placing classic radar flowmeters: bridge center mounting and shore-based telescopic pole
mounting, as shown in Figs. 7(a) and 7(b).

a) Central bridge installation b) Shore reach pole installation
Fig. 7. Radar installation method

Mounting the radar at the center of a bridge is the most effective setup for capturing the
maximum Doppler frequency in areas like Central Sichuan. However, not all monitoring sites are
equipped with bridges. Alternatively, shore-based pole installations can still provide a wide radar
cross-section and strong Doppler signals. That said, these installations are limited by the spacing
between poles, and when the river’s water level drops, the radar beam may no longer reach the
water surface effectively. The algorithm proposed in this study is not limited to vertical
installations; it also supports lateral mounting on riverbank risers, where the radar is tilted to
illuminate the water flow direction at an angle, as shown in Fig. 8.
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Fig. 8. Shore-based lateral installation
3.2. Signal noise processing

The raw data collected by the radar is affected by environmental factors, there will be a large
number of noise signals, so the collected data need to be denoised and filtered [34-36]. The SVT
algorithm in this paper can quickly filter out and correct the noise to obtain a more stable set of
measurement results. Here we take the 753 flow points with grid coordinates of (39, 19) in Xi’an
inner river as an example to show the effect of denoising by SVT algorithm, as shown in Fig. 9.
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Fig. 9. SVT algorithm denoising effect

The red dashed line in the figure represents the original data, the green line corresponds to the
data after spatial and velocity-domain filtering, and the blue line reflects the results after
incorporating temporal-domain filtering. It is evident that the proposed filtering process
effectively eliminates abrupt outliers in flow velocity, resulting in a smoother and more consistent
temporal trend. Nevertheless, minor fluctuations remain in the filtered data due to environmental,
hydraulic, and meteorological influences. However, it is already possible to achieve a decent
accuracy in engineering measurements.

3.3. Medium to high flow rate scenarios

Medium and high flow rate scenarios feature strong water surface ripples and waves, making
the RCS huge, and the same hardware parameter settings are prone to echo saturation, which
introduces high harmonics and interference and leads to unreliable measurement findings.

1. Jinkou River Hydrological Station, Leshan, Sichuan: The MIMO radar is located 14 meters
upstream of the cable radar, 27 meters from the cable radar line, 9 meters downstream from the
elevation, with a pitch angle of 77° and a horizontal angle of 65°. The SVT calculation results are
shown in Fig. 10.

According to Fig. 10, the flow velocity of the Jinkou river is about 4 m/s, which reaches its
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maximum at a location about 20 meters from the river bank and diminishes at a position far from
the river bank. The cableway survey line connects nicely with the radar FOV coverage of only 40
and 50 meters. The flow velocities at the 40 m and 50 m points of the cable radar were 3.90 m/s
and 3.86 m/s, respectively, which are com-pared with the flow velocities at the cable radar points
as shown in Figs. 11.
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Fig. 10. Jinhou river SVT algorithm processing result
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Fig. 11. Comparison of flow velocity at Jinkou River measurement points

2. Qinghe River, Beijing: In the experiment, the MIMO radar was positioned at the head of the
bridge, looking upstream, at a height of 8 meters from the water level, with a pitch angle of 78°
and a horizontal angle of 30°. The radar installation location is shown in Fig. 12(a), and the results
of SVT algorithm processing are shown in Fig. 12(b).
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Fig. 12. Qing river measurement results
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According to Fig. 12, it can be seen that the flow velocity of the Qing River in Beijing is about
0.8 m/s, and there is a dramatic increase in the flow velocity at a position about 12 meters from
the river bank. It was found that the flow rate in the river channel rose at this point, perhaps due
to gullies and hydrilla, while at other areas the flow rate stabilized. As shown in Fig. 13(a), we
used a rotameter to estimate the actual flow rate at the site due to the shallow water level of the
river, and the comparative results are shown in Fig. 13(b).
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Fig. 13. Qing river comparison experiment

3. Xi’an inland river: MIMO radar installed on the bridge, facing downstream, at a height of
15.7 meters above the water surface, with a pitch angle of 78° and a horizontal angle of 30°. The
results of the SVT algorithm are shown in Fig. 14(a), and the results of the comparison experiment
using the handheld radar are shown in Fig. 14(b).

70

1.05 : : : :
=@ MIMO radar flow rate

O Handheld radar point measurement 4 1 === Handheld Radar Flow Rate
=== Percentage of measurement error g

MIMO radar sites

2}
=}
- 4
©  ©
>  ®
©

o

o
1
o
©
b
~

€
£
c
S
3 X
S 09 092 16 3
40 " g
3 085 o 09f= == e e = e = = = = == = {5 g
@ 3 ¢ @
P 30 © =
3 08 Cosst 14 ®
g z P
S 20 O 086 ~ 13
5 075 o _ ,
2 084t ~ S 12
LT 07 o~
0.82 o = 1
0 L L L L L L 0.65 0.8 0
0 10 20 30 40 50 60 70 0 1 2 3 4 5 6 7 8 9
River direction/m Time/min

a) Xi’an river SVT algorithm processing result ~ b) Flow velocity comparison at measurement points
Fig. 14. Xi’an inland river comparison experiment

Table 1. Comparison of flow velocity at medium to high-flow sites

Measurement Station flow Site truth | SVT algorithm | Mean .
. . . Maximum
Site point measurement value / processing / error / error | %
coordinates / m methods (m-sh (m-sh % ’
. (27, 40) 3.900 3.963 1.6 3.8
Jinkou (27, 50) Cableway radar 3.860 3.789 1.8 5.0
Qinghe (21, 35) Rotor 0.751 0.758 1.5 3.08
Xi’an (39, 19) Handheld radar 0.900 0.882 1.98 3.39

As can be seen from Table 1, the flow velocity findings generated from the 3D point cloud
processing algorithm processing were compared with cable channel flow meter radar, rotor type
flow meter, and handheld radar flow meter in the experiment.
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1) In the experiment at Jinkou river in Sichuan, the flow velocity at the two measurement
points was 3.963 m/s and 3.789 m/s by the three-dimensional point cloud processing algorithm,
and the average error was less than 2 % compared with the cable radar flow velocity measurements
0f 3.900 m/s and 3.860 m/s. Cable-channel radar is often used for hydrological monitoring, where
streamflow measurements are made by fixing the radar equipment through a cable. They are
expensive to build, have poor real-time performance, require regular maintenance of the cableway,
and the length and height of the cableway limit their monitoring range. Compared to cable-based
radar, shore-based side-scan MIMO radar offers real-time monitoring, is easy to install while
providing larger coverage, is not bound by cable lengths and river conditions, and does not require
costly cable maintenance.

2) In the experiment on the Qing river in Beijing, the real flow velocity was measured by a
rotor-type tachometer, and the result was proved to be 0.751 m/s. At the same measurement
position, the flow velocity detected by the MIMO radar was 0.758 m/s, with an average error of
1.5 percent. The rotor flow meter has good measurement accuracy, but it is greatly impacted by
water conditions and other factors, confined to detecting the flow velocity at a single spot, and
complex to install and maintain. Shore-based side-scan MIMO radars are straightforward to
install, are not influenced by water conditions, and give steady measurements in a variety of severe
settings.

3). In the experiment of Xi'an inner river, the flow velocity was measured to be about 0.882 m/s
by the three-dimensional point cloud processing method, whereas the flow velocity recorded by
the hand-held radar flow meter was 0.9 m/s, with an average error of less than 2 %. Handheld
radar flowmeters usually can only measure the flow velocity at specific points on the surface of
the water body, and it is difficult to obtain the flow velocity distribution information of the whole
river area, which is poor in real time, and the measurement results are easily affected by the
operator’s station position, angle, and handheld stability, resulting in unstable data or large errors.

By comparing with different traditional flow rate measurement methods at each site, this
approach is easy to install, minimizes the demand of the installation environment, and lowers the
installation cost and complexity. Able to achieve continuous real-time monitoring, suitable for
dynamic changes in the water flow environment, you do not need to be in direct contact with the
water body, to reduce the impact of floating objects in the water body, sediment, or water surface
fluctuations, to ensure more stable measurement results. At the same time, it is possible to measure
the flow velocity distribution at several sites throughout the river channel or a vast area of water
instead of being confined to a single point measurement, which is suited for complex river
environments.

And through the three-dimensional point cloud processing algorithm, the MIMO radar has a
high measurement accuracy; the algorithm processed flow velocity compared with the true value
of each site; the average error is less than 2 %; the maximum error is less than 5 %, in line with
the industry's requirements for the relative error of less than 5 %.

3.4. Low flow rate scenario

In low flow river scenarios, the radar IF filter circuit must be set up with a high-pass isolation
filter, and at the same time, the RCS is small in low-flow, the echo signal is weak, and the
signal-to-noise ratio of the low-frequency signal obtained from the sampling is low, which can
easily lead to inaccurate measurement values or no measurement results.

Shanxi Bai river hydrological station: The MIMO radar is installed in the well tower, facing
upstream, at a height of 19 meters from the water surface, with a pitch angle of 74° and a horizontal
angle of 55.7°. The radar is installed and deployed as shown in Fig. 15(a), Rainfall occurred on
the day of the experiment, due to rainwater striking the surface of the river to form certain ripples,
it will have some impact on the surface flow rate measurement. And due to the rainfall that caused
the upstream water level to rise, the upstream gate was opened to release water, resulting in the
flow rate result of the measuring point at the downstream location being large. The results of the
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3D point cloud processing algorithm are shown in Fig. 15(b).

a) Radar installation and deployment at Bai river
Fig. 15. Bai river measurement results
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According to Fig. 15, the flow velocity at the near-shore point of the Bai river is about 0.4 m/s.
The flow velocity at the far-shore point is high due to the reflux of the river water caused by the
collision with the bridge abutment. The measurements were compared with the on-site shipboard

ADCP, and the ADCP measurements are shown in Fig. 16:
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Fig. 16. Measurement results from vessel-mounted ADCP

There are three measurement points, 39 m, 43 m, and 47 m, within the measuring ship course
and radar FOV coverage, which are compared with the flow velocity of ADCP, and the results are
shown in Fig. 17.

Table 2. Comparison of flow velocity at low-flow site

Measurement Station flow Site truth | SVT algorithm | Mean | Maximum
Site point coordinates / measurement value / processing / Error / error /
m methods (m-s™) (m-s™) (m-s ™) (cm's™h)
Shanxi (=29, 39) 0.296 0314 0.018 4.04
Bai river (=29, 43) ADCP 0.241 0.261 0.020 3.78
(=29, 47) 0.463 0.475 0.012 2.88

According to Table 2, it can be shown that the Shanxi Bai river site employs ship-board ADCP
to measure the flow velocity, and the shipboard ADCP detects the water flow information using
acoustic wave, and the measurement accuracy is high. But ADCP measurements need the vessel
to travel along the survey line, which does not give real-time, full-time monitoring data and is
expensive to install and operate. Through the three-dimensional point cloud processing algorithm,
the three measurement points measured the flow velocity of 0.314 m/s, 0.261 m/s, and 0.475 m/s,
while the flow velocity measured by the ADCP was 0.296 m/s, 0.241 m/s, and 0.463 m/s. The
flow velocity processed by the algorithm in the low flow velocity scenario is less than 5 cm/s in
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comparison with the true value of the site under the absolute error, which is in line with the
industry's criteria. Tests have shown that at low flow rates, the approach can give real-time
accurate data faster and at cheaper installation and maintenance costs.
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Fig. 17. Comparison of streamflow at Bai river gauging sites

3.5. Adaptive correction flow rate experiment

In the above experiments, the data from Xi'an station met the requirements of the algorithm,
so adaptive correction experiments were conducted to detect the flow velocity there. A total of
145 887 data were obtained from the experimental data, and three models were used for prediction
training, and the data set was divided according to the ratio of 8:1:1. The original features of the
river and the enhanced features after feature engineering are shown in Table 3. It contains 7
original features and 9 enhanced features totaling 16 features.

A combination of mutual information, Pearson and Spearman correlation analyses, along with
feature—target scatter plots, was used to evaluate feature relevance. After cross-validation, the
following features were retained: range, frame, RCS Range2, Angle Range, angle, Frame Diff.
Where x, y as a core feature of the SVT algorithm is also preserved. Mutual information is
analyzed as shown in Fig. 18.

3.5.1. Comparison of optimization algorithms

Fast search configuration of hyperparameters of benchmark models RF, BP, LSTM using
optimization algorithms. Among them, RF needs to configure the number of decision trees, the
maximum depth of the tree, the maximum number of separated samples, the number of leaf node
samples and the maximum number of separated features, and BP needs to configure the activation
function, the learning rate, the number of neurons and the number of layers, etc., and the two
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belong to the low-dimensional search problem. While LSTM needs to configure nearly 30
hyperparameters such as the number of layers, batch size, learning rate, etc., which belongs to the
high-dimensional search problem. Therefore, CEC test functions are used to compare multiple

optimization models, some test functions are shown in Table 4, and the test results are shown in
Fig. 19.

Table 3. Characteristic table

Characteristic Feature name Calculation Explanation
classification method
The frame in which the radar collects
frame(f) -
data
range Target distance measured by radar
. v Flow rate detected by radar
Original features angle - Angle of radar to target
RCS — Radar Cross section
; Coordinates of the target in space
Distance sqrt(x? + y2) Euclidean distanceh fr.om target to radar
origin
Cos Angle cos(Angle) Flow velocity versus radar direction
RCS Range?2 RCS / range? Reflective intensity per unit distance
Angle range angle*range Joint character_ization of angle and
Enhanced features distance
Frame diff fG+D-f Sequence of back minus front frames
XY Product X *y Revealing coordinate distribution
X plus Y x+y Goal-oriented
X minus Y x—y Target-directed
Polar angle arctan2(Y, X) Target polar angle direction

PolarAngle ]
FrameDiff ]
Xminusy ]
[ S—
CosAngle ]
] —
Distance ]
XyProduct ]
xplusy ]
Res T
angle

Features

RCS_Range2 ]

frame ]

range ]

0.0 0.1 0.2 0.3

04 05 06 0.7
Mutual Information

Fig. 18. Characteristic mutual information analysis

The three test functions listed above correspond to the effect of each algorithm in high-
dimensional search under the condition of different variable range sizes, which is to simulate the
situation that there are different value ranges in the hyperparameter configurations, e.g., the
configuration of the learning rate only needs a single-digit range, while the number of neurons
needs a tens or even hundreds of ranges, and in low-dimensional search, the individual algorithms
have similar results. The global optimum of all three algorithms is 0, so the closer the fitness of
the curve is to 0, the better the search is indicated. The fewer the number of iterations, the more
efficient the search is indicated. Therefore, one of the actual search processes in the experiment is
extracted and compared, and the comparison effect is shown in Fig. 20.
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Table 4. Test function

Function . . . . Variable Global
Function expression Dimension .
name range values optimum
n
Fo Z(xl2 — 10 cos( 2mx;) + 10) 30 [-5.12,5.12] 0
i=1
—20exp| —0.2
F10 30 [-32, 32] 0
n
1
— exp —Z cos(2rmx;) | +20+e
ne
n n
Fl1 ! Z z 1_[ (xi)+1 30 [-600, 600] 0
2000 £~ 1 1%\ o
i= i=

Fitness.

a) F9 test function b) F10 test function
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Fig. 19. Comparison results of optimization algorithms
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Fig. 20. Comparison of low and high dimensional real search

As can be seen from the figure, the ISMA method effect has some advantages for both high
957
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and low dimensional searches. Therefore, ISMA is finally chosen as the optimization algorithm
for the adaptive correction model.

3.5.2. Practical application

30 sets of parameter search experiments were conducted for the three models using ISMA,
with the upper limit of 200 iterations for each set and the convergence threshold of 1e-5. The
average values of the optimal parameters were calculated to generate the correction factors. The
calibration results are shown in Table 5.

Table 5. Comparison of three methods of training and results

Methods Training MAE / Training MSE / Calibration factor / Target error /
(m's) (m?:s?) (m-s) %
ISMA-RF 0.041316 0.0025412 0.90093 0.93
ISMA-BP 0.039810 0.0021796 0.89243 1.41
ISMA-
LSTM 0.040490 0.0022191 0.90366 0.79

The same scene of Fig. 14 was selected as the target test set, and the flow rate was fitted using
the above correction factors, and the results are shown in Fig. 21.

As can be seen from the figure, the flow rate accuracy is improved after correction by all three
algorithms, with the most obvious effect being the LSTM network, thanks to its strong correlation
with time, followed by Random Forest, and finally the BP algorithm.
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Fig. 21. Calibration results of the three algorithms are plotted

3.5.3. Time complexity analysis and measurement

The SVT algorithm comprises three main stages: spatial outlier removal, differential
smoothing of flow velocity, and temporal filtering via a sliding window t-test. For the spatial
filtering step, a triple standard deviation rule is applied within each raster of the point cloud,
assuming that the streamflow data approximately follows a normal distribution. Given a total
number of flow velocity measurements N, and the number of spatial rasters G, the average number
of points per raster is n = N/G. The complexity of computing the mean, standard deviation, and
subsequent replacement for each raster is O(N). The differential smoothing process involves
traversing each point and checking adjacent values, which also results in O(N) complexity.
Similarly, the temporal filtering with a fixed-size sliding t-test window incurs a computational
cost of O(N).

The adaptive correction module, which incorporates the ISMA, introduces additional
computational overhead. Its complexity depends on the population size P, the number of iterations
T, and the training cost C, resulting in O(P - T - C). The cost C varies based on the underlying
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prediction model. For example, a Random Forest model with n estimators has complexity
O(n_estimators-N-log; a Backpropagation Neural Network (BP) with hidden layer size h and
number of training epochs E has complexity O(E - N - h); and an LSTM model, where the
sequence length is I and the number of hidden units is u, incurs a complexity of O(E - N - I - u?).
Therefore, the overall worst-case computational complexity for the complete algorithmic pipeline,
considering ISMA-based optimization and LSTM modeling, is O(P - T - E - N - I - u?).

To further discuss the real-time performance of the algorithm, a test was conducted using Xi’an
inner river data, and the test results are shown in Table 6. The test environment is Intel 15-13500hx
and RTX 4060 laptop. The size of the test dataset is 145877x16, the ISMA population is set to 30,
the maximum number of iterations in a single run is 100, and the number of runs is 30.

Table 6. Algorithm runtime testing

Methods Runtime / min | Incremental time / s
ISMA-RF 3.6 234
ISMA-BP 8.2 1.8

ISMA-LSTM 13.4 7.5

Performance evaluation indicates that the ISMA-RF model achieves the shortest runtime,
followed by the ISMA-BP neural network with moderate computational demands, while the
ISMA-LSTM model incurs the highest computational cost. Notably, the Random Forest (RF)
model requires complete retraining upon each update, resulting in progressively longer
incremental processing times as the data volume increases. Nevertheless, the runtime of all models
remains within acceptable limits for practical engineering applications, thereby demonstrating that
the proposed method retains a satisfactory level of real-time applicability.

4. Future research programs and prospects

While the current study is based on short-term measurements recorded in minutes, future work
will incorporate extended monitoring campaigns to improve temporal representativeness. A long-
term measurement plan will be established with the following considerations: (1) Measurement
Duration: Continuous flow velocity data will be collected over extended periods — ranging from
several hours to multiple days or weeks — to capture diurnal, meteorological, and seasonal
variations. (2) Sampling Frequency: Data will be recorded at fixed intervals (e.g., 1-minute
resolution) to ensure consistency with short-term datasets and to facilitate high-resolution
temporal trend analysis. (3) Environmental Conditions: Monitoring will be conducted under
diverse hydrological and environmental scenarios, including rainfall events, tidal fluctuations in
estuarine areas, dry weather periods, as well as challenging contexts such as ice-covered surfaces,
sediment-laden flows, and wave-affected zones. These variations will help evaluate the robustness
and adaptability of the proposed algorithm. (4) Power and Storage Requirements: To enable
autonomous and uninterrupted data acquisition, the system will be supported by solar-powered
modules and edge computing devices capable of local data processing and storage. (5) Validation:
Periodic cross-validation against reference instruments (e.g., ADCP) will be conducted to ensure
measurement reliability and accuracy.

This long-term monitoring strategy is designed to enhance the generalizability and
environmental resilience of the proposed approach and to offer a comprehensive understanding of
flow dynamics under real-world riverine and estuarine conditions.

5. Conclusions

A Space-Velocity-Time (SVT) point cloud processing algorithm based on MIMO radar is
proposed in this study to enhance streamflow measurement accuracy through the integration of
spatial distribution, velocity field, and temporal continuity. The algorithm suppresses noise and
corrects unstable signals by leveraging the physical characteristics of river flow, such as its gradual
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spatial variation and temporal correlation. Field validation experiments were conducted in four
rivers across China with distinct hydrological conditions, including low-, medium-, and high-flow
regimes. Results show that the proposed method provides high-precision monitoring across
diverse scenarios. In medium-to-high flow conditions, the deviation between SVT estimates and
ground truth values remains below 5 %, and this error can be reduced to 0.79 % through an
adaptive correction model. The absolute error is consistently below 0.1 m/s, significantly
outperforming previous studies such as [37], which reports an error of 0.24 m/s under similar
high-velocity conditions. In low-flow regimes, the maximum absolute error is no greater than
5 cm/s, with an average around 0.02 m/s, showing improvement over the 0.03 m/s reported in
[38].

Compared with conventional methods such as Acoustic Doppler Current Profilers (ADCP),
rotameters, and cable-based radar, the proposed approach offers advantages in ease of deployment,
real-time operability, wide spatial coverage, and reduced maintenance costs. It also demonstrates
superior accuracy relative to emerging techniques such as UAV-based or image-based surface
flow detection. In summary, the proposed method not only improves the precision and stability of
river flow measurements but also provides a scalable and real-time solution applicable to complex
field conditions, offering valuable technical support for hydrological monitoring, early warning,
and flood disaster mitigation.
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