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Abstract. To overcome the limitations of traditional monitoring methods, which are restricted to 
periodic inspections, this study proposes a real-time method for identifying metal corrosion 
damage patterns to monitor the condition of Q235 steel corrosion based on acoustic emission 
(AE). Firstly, AE technology was utilized to monitor the corrosion process of Q235 steel plates in 
simulated industrial marine environment in real-time. Wavelet packet energy spectrum 
coefficients, closely related to the damage mechanism, were extracted from the acquired signals. 
A feature matrix was then constructed using principal component analysis (PCA) to eliminate 
redundant information and enhance computational efficiency. The K-means clustering algorithm 
was then applied to classify the AE signals into three classifications: the signals of mode 1 
correspond to bubble rupture, the signals of mode 2 to pit growth and expansion, and the signals 
of mode 3 to the detachment of corrosion products and oxide film rupture. A damage pattern 
recognition model based on a convolutional neural network (CNN) was developed, enabling the 
real-time recognition of other unknown AE signals generating during the corrosion process of 
Q235 steel, and it exhibited satisfactory performance in accurately identifying corrosion-related 
acoustic emission patterns.  
Keywords: Q235 steel corrosion, acoustic emission, principal component analysis, damage 
pattern recognition, convolutional neural network. 

Nomenclature 𝜓 The wavelet packet function 𝐸 The energy of the signal 𝑃 The energy coefficient 𝑅 Covariance matrix 𝑋଴ Mean-centered data matrix 𝐶 The individual variance contribution ratio 𝐹 The cumulative variance contribution ratio 𝑋௡௘௪ Transformed data matrix 
WPT Wavelet packet transform 
AE Acoustic emission 
PCA Principal component analysis 
PDT Peak detection time 
HDT Hit detection time 
HLT Hit lockout time 
CNN Convolutional neural network 
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1. Introduction 

Q235 steel has been significantly developed and widely used in marine engineering and coastal 
infrastructure due to its excellent strength and durability [1, 2]. However, prolonged exposure to 
harsh environments with high salinity and humidity presents significant corrosion challenges for 
Q235 steel [3]. Corrosion not only degrades material properties and damages structures but also 
heightens the risk of safety incidents [4]. Exploring a reliable monitoring technology and corrosion 
damage assessment method is crucial for ensuring the long-term safety of steel structures in marine 
environments. Acoustic emission, as a mature nondestructive testing technology, provides real-
time and dynamic monitoring capabilities, offering distinct advantages over traditional methods 
such as ultrasonic testing, magnetic particle testing, and eddy current testing, while exerting 
minimal impact on the structure [5, 6]. This technique has been widely applied in various fields, 
including aerospace, machinery manufacturing, petrochemicals, construction engineering, and 
materials testing [7-10]. 

Corrosion-induced growth of internal pits and propagation of microcracks are the primary 
mechanisms underlying steel failure. As an irreversible energy dissipation process, it releases 
strain energy from the material in the form of transient elastic waves, referred to as acoustic 
emission [11]. Acoustic emission signals arise from microscopic defects within the material, with 
each signal encoding information about the dynamic evolution of these defects [12]. Therefore, 
by analyzing the acoustic emission signals containing information about microscopic defects, the 
dynamic evolution of material corrosion damage can be understood, thereby enabling the 
discrimination of damage patterns. This approach is crucial for advancing studies on the corrosion 
behavior of Q235 steel in marine environments. 

The basic parameter analysis method of AE is the simplest and most straightforward approach 
to analyze material damage characteristics. Although the AE parameter analysis method can 
qualitatively characterize material damage properties [13-15], it has significant limitations in 
identifying micro-damage mechanisms [16]. In contrast, transient signal analysis excels in 
characterizing micro-damage mechanisms. AE signals are transient and random, containing 
diverse frequency components and pattern features. Research indicates that acoustic emission 
signals from different damage modes exhibit distinct frequency characteristics [17, 18]. Wavelet 
packet transform (WPT) known for its strong time-frequency localization and decomposition 
capabilities, enables feature extraction across various time and frequency domains. This method 
provides a robust foundation for extracting acoustic emission signal features and identifying 
different types of damage [19-21]. 

Artificial neural networks, known for their nonlinear mapping, adaptive learning, and noise 
resistance, can automatically extract features from AE signals, enabling accurate identification of 
different damage modes. Zhao et al. [22] applied continuous wavelet transform to convert the AE 
signals into input images, then extracted features from the images with CNN, enabling the 
automatic localization of damaged regions. Cui et al. [23] successfully identified four distinct 
damage mechanisms in 2.5D SiCf/SiC composite materials by combining K-means clustering and 
an improved superposition deconvolution method: matrix cracking, interface debonding, fiber 
bundle fracture, and individual fiber fracture. Van et al. [24] proposed a damage localization 
method based on continuous wavelet transform and convolutional neural networks, enabling the 
automation of the damage localization process. 

The aforementioned studies indicate that the transient characteristics of acoustic emission 
signals can provide valuable information for damage assessment. By combining these with 
artificial neural networks, different damage modes can be identified. However, current research 
has not established a unified standard for selecting acoustic emission signal features and assessing 
material damage. 

In this study, AE technology was employed to monitor the corrosion process of Q235 steel 
plates in real-time. The relationship between AE signals and corrosion damage was investigated, 
providing technical support for real-time condition monitoring for Q235 steel corrosion using AE 
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technology. Wavelet packet energy spectrum coefficients which is able to quantitatively 
characterize the frequency characteristics of AE signals were calculated for each detected AE 
signal, followed by feature extraction using PCA. Three distinct signal modes were identified 
based on k-means clustering algorithm: signals corresponding to bubble rupture, signals 
corresponding to pit growth and expansion, and signals corresponding to detachment of corrosion 
products and rupture of the oxide film. A recognition model based on CNN was developed for 
intelligent monitoring of steel corrosion condition. This model demonstrates excellent self-
supervised knowledge acquisition and generalization capabilities. 

2. Methods 

This chapter presents the key analytical methods employed in this study. The Wavelet Packet 
Transform (WPT) is utilized for its superior time–frequency resolution, which results from 
decomposing both low- and high-frequency signal components. This characteristic makes WPT 
particularly effective in capturing transient and non-stationary features of acoustic emission (AE) 
signals. Given the high dimensionality of features derived from WPT, Principal Component 
Analysis (PCA) is applied to reduce dimensionality while retaining the most significant variance. 
Integrating these methods reduces redundancy and computational complexity, thereby providing 
a robust foundation for effective signal representation and pattern recognition. 

2.1. Wavelet packet transform theory 

Wavelet packet analysis adjusts the time-frequency window such that the time window 
becomes wider and the frequency window narrower at low frequencies, and vice versa at high 
frequencies. This provides excellent adaptability and time-frequency localization, making it 
highly effective for handling nonlinear and non-stationary signals. 

The wavelet packet function can be expressed as: 𝜓௝,௞,௜ሺ𝑡ሻ = 2ି௝ ଶ⁄ 𝜓௜ሺ2ି௝𝑡 − 𝑘ሻ, (1)

where 𝑗 is the scale parameter, 𝑘 is the translation parameter, and 𝑖 is the modulation parameter. 
The wavelet packet 𝜓௜(𝑡) can be obtained through the following recursion: 

𝜓ଶ௜(𝑡) = √22 ෍ ℎ(𝑘)ஶ
௞ୀିஶ 𝜓௜ ൬𝑡2 − 𝑘൰, (2)

𝜓ଶ௜ାଵ(𝑡) = √22 ෍ 𝑔(𝑘)ஶ
௞ୀିஶ 𝜓௜ ൬𝑡2 − 𝑘൰, (3)

where 𝜓଴(𝑡) is the scale function, 𝜓ଵ(𝑡) is the wavelet basis function, ℎ(𝑘) and 𝑔(𝑘) are the 
quadrature mirror filters associated with the scaling function and the wavelet basis function. 

For signal 𝑓(𝑡), its wavelet packet decomposition coefficients can be defined as: 

𝑊𝑃𝑇௙(𝑗, 𝑘, 𝑖) =< 𝑓,𝜓௝,௞,௜ >= න 𝑓(𝑡)𝜓௝,௞,௜(𝑡)𝑑ஶ
ିஶ 𝑡. (4)

For the 𝑖-th node at the particular level 𝑗, its wavelet packet reconstruction coefficients can be 
expressed as: 

𝑓௝௜(𝑡) = ෍ 𝑊𝑃𝑇(𝑗, 𝑘, 𝑖)ஶ
௞ୀିஶ 𝜓௝,௞,௜(𝑡)Δ𝑡. (5)
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The wavelet packet energy coefficient is an appropriate choice for analyzing the characteristics 
of acoustic emission signals, allowing for quantification of the frequency features of the signal. 
The analysis method involves performing a 𝑗-level wavelet packet decomposition on the detected 
signals. The signal is then divided into 2௝ frequency bands, with the 𝑖-th frequency band defined 
as ቀ௜ିଵଶೕ 𝑓௠௔௫, ௜ଶೕ 𝑓௠௔௫ቁ, 𝑖 = 1,2, … , 2௝. The original signal is represented as the sum of all wavelet 
packet components at the 𝑗-th level: 

𝑓(𝑡) = ෍𝑓௝௜(𝑡)ଶೕ
௜ୀଵ . (6)

The energy of the wavelet packet components in the 𝑖-th frequency band can be expressed as: 

𝐸௜ = ෍൫𝑓௝௜(𝑏)൯ଶ௧
௕ୀ௧బ . (7)

The total energy of the signal is calculated as: 

𝐸௧ = ෍𝐸௜ଶೕ
௜ୀଵ . (8)

The energy coefficient of the 𝑖-th frequency band is defined as: 𝑃௜ = 𝐸௜𝐸௧ × 100. (9)

In such a manner, 𝑃௜ illustrates the energy coefficient distribution in each frequency band.  
The flow process diagram of WPT is displayed in Fig. 1. 
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Fig. 1. Flow process diagram of WPT 

2.2. Principal component analysis 

Principal Component Analysis (PCA) is an effective statistical technique to eliminate 
redundant information efficiently. The frequency band energy values obtained from the Wavelet 
Packet Transform are multidimensional feature data with strong correlations, which increase the 
computational load and complexity of data analysis. PCA performs an orthogonal transformation 
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on these highly correlated multidimensional variables, yielding a smaller number of linearly 
independent principal components. This reduces the number of variables to be analyzed while 
preserving the maximum amount of information from the original data. The flow process diagram 
of PCA is described in Fig. 2. 
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Fig. 2. Flow process diagram of PCA 

First, the data must be centralized by calculating and removing the mean of each measurement, 
i.e.: 

𝑥௜௝ = 𝑥௜௝ − 1𝑛෍𝑥௜௝௡
௜ୀଵ , (10)

where 𝑥௜௝ is the 𝑗-th feature of the 𝑖-th data and 𝑥௜௝ is the sample mean. 
After centralizing the data, the new data matrix, 𝑋଴, is constructed. The next step is to calculate 

the sample covariance matrix, 𝑅: 

𝑅 = 1𝑛 − 1𝑋଴் 𝑋଴. (11)

Each element 𝑅௜௝ of the covariance matrix R represents the covariance between the 𝑖-th and  𝑗-th features. To obtain the eigenvalues and corresponding eigenvectors of the sample covariance 
matrix 𝑅, the characteristic equation is solved, which is expressed as follows: 𝑅 = 𝑊𝐷𝑊ିଵ, (12)

where 𝐷 is a diagonal matrix containing the eigenvalues arranged in descending order, i.e.,  𝐷 = diagonal(𝑡ଵ, 𝑡ଶ, … , 𝑡௠), with 𝑡ଵ > 𝑡ଶ > ⋯ > 𝑡௠. 𝑊 is s the orthogonal matrix composed of 
the eigenvectors, with the 𝑖-th column of 𝑊 being the eigenvector corresponding to the eigenvalue 𝑡௜. 

Next, the individual variance contribution ratio (𝐶) and the cumulative variance contribution 
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ratio (𝐹) for each eigenvalue are calculated using the following formulas: 

𝐶௜ = 𝑡௜∑ 𝑡௜௠௜ୀଵ ,     𝐹௜ = ∑ 𝑡௜௞௜ୀଵ∑ 𝑡௜௠௜ୀଵ . (13)

A larger variance contribution ratio (𝐶) indicates a stronger ability of the principal component 
to explain the original variables. The first principal component usually has the largest contribution 
ratio. Similarly, a larger cumulative variance contribution ratio (𝐹) corresponds to a greater 
proportion of the original information captured by the first k principal components. Typically, the 
first 𝑘 principal components are retained when the cumulative variance contribution ratio reaches 
85 %. 

Finally, the selected first 𝑘 principal components are used to construct the matrix, and the 
original data are projected onto the new principal component space as shown below: 𝑋௡௘௪ = 𝑋଴𝑊௞. (14)

3. Experimental 

This chapter presents the experimental setup and procedures used to investigate corrosion of 
Q235 steel under simulated marine conditions. It covers specimen preparation, sensor 
configuration, and real-time acquisition of acoustic emission (AE) signals. Detailed descriptions 
of the experimental design are provided to ensure reproducibility and clarity. 

3.1. Material and sample preparation 

The material used in the experiment is Q235 low-carbon steel, with dimensions as shown in 
Fig. 3 as illustrated in Fig. 4(a), only a portion of the specimen is exposed to the corrosive 
environment, designated as the corrosion area, while the remainder of the surface in contact with 
the solution is covered with an anti-corrosion coating, including both sides and edges, ensuring 
full coverage. The experimental solution is a mixture of 5 % NaCl and 5 % Na2SO4 by mass, and 
the container used is a glass beaker. 

As shown in Fig. 4(b), a substantial amount of reddish-brown corrosion products, mainly iron 
oxides, has formed on the specimen surface. Over time, the corrosion product layer thickens and 
accumulates due to gravity. Eventually, the adhesion between the product layer and the substrate 
becomes inadequate to support its own weight, causing the layer to peel off and form a downward 
sliding morphology. This phenomenon indicates that Q235 steel has experienced a relatively 
severe corrosion process in this environment. 

 
Fig. 3. Specimen dimension scheme 

3.2. Experimental setup and test method 

The acoustic emission detection equipment and α-series sensors from Physical Acoustics 
Corporation (PAC), USA, were used in the experiment. The threshold value is set at 45 dB to filter 
out most environmental noise, thus minimizing its impact. The filter range is simulated from 1 kHz 
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to 1 MHz, covering the primary frequency band of the acoustic emission signals. The sampling 
rate is 1 MHz, and the maximum frequency of the collected acoustic emission signals is 500 kHz. 
The pre-trigger time is 100 µs, and the sampling length is 1k. The peak detection time (PDT), hit 
detection time (HDT), and hit lockout time (HLT) are 300 µs, 600 µs, and 1000 µs, respectively. 
The HLT value ensures that each collected acoustic emission signal avoids interference from 
reflected and late-arrival waves, capturing only localized changes in the material. 

 
a) Pretreatment samples 

 
b) Corrosion morphology samples 

Fig. 4. Pretreatment and corrosion samples 

In the experiment, one end of the specimen is immersed in the solution to ensure complete 
coverage of the corroded area. A fixed magnet is used to position the sensor at the opposite end 
of the specimen, which is connected to the acoustic emission monitoring equipment and a 
computer for real-time monitoring of the corrosion signals. The corrosion process was monitored 
in real time for 10 days. And two parallel experiments were conducted. The experimental setup is 
illustrated in Fig. 5. 

 
Fig. 5. Schematic representation of the experimental setup 

4. Results and discussion 

This chapter presents research findings using visualizations of signal waveforms, energy 
distribution maps, and clustering analysis, elucidating the relationship between AE signal features 
and corrosion mechanisms. Subsequently, the performance of a convolutional neural network 
(CNN) model in classifying AE signals is assessed, demonstrating its accuracy and potential for 
real-time corrosion monitoring. 

4.1. Feature extraction of AE signals 

To investigate the relationship between the AE signals and the microstructural damage of 
Q235 steel under corrosion environment, 4-level wavelet packet decomposition using the db3 
wavelet was applied to each collected AE signal. 

For acoustic emission signals, it is essential to choose a discrete wavelet basis with properties 
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similar to those of the signal, such as compact support, orthogonality, and regularity. The db3 
wavelet basis meets these requirements and effectively preserves the signal's original features 
during the wavelet transform. It also performs well in signal compression and reconstruction, 
ensuring the accuracy of the analysis [25, 26]. 

After decomposition, the signals were decomposed into 16 frequency bands, ranging from low 
to high frequency at each scale, with a bandwidth of 31.25 kHz for each band. The energy 
coefficients were then calculated to analyze the frequency characteristics of the acoustic emission 
signals. Fig. 6 presents the typical acoustic emission signal waveform along with its corresponding 
energy coefficients obtained from the experiment. 

 
a) Acoustic emission signal waveform 

 
b) Acoustic emission signal energy coefficients 

Fig. 6. The typical acoustic emission signal waveform and its energy coefficients 

Conducting a correlation analysis prior to cluster analysis enables a straightforward assessment 
of the degree of correlation among different WPT energy coefficients of acoustic emission signals. 
The formula for calculating the correlation coefficient between the energy coefficients is as 
follows: 

𝑟௣ = cov(𝑃௜ ,𝑃௝)𝜎௉೔𝜎௉ೕ , (15)

where 𝑟௣ is the correlation coefficient, cov(𝑃௜ ,𝑃௝) is the covariance between variables 𝑃௜ and 𝑃௝, 𝜎௉೔ and 𝜎௉ೕ is the standard deviation of each of the variables 𝑃௜ and 𝑃௝, 𝑃ଵ to 𝑃ଵ଺ defined as the 
energy coefficients in the frequency bands 1-16. 

The normalized data are substituted into Eq. (10), and the correlation coefficients of the energy 
values for each frequency band are presented in Table 1. 

Table 1. Correlation coefficients of the energy coefficients for each frequency band 
 P1 P2 P3 P4 P5 P6 P7 P8 ⋯ P16 

P 1.00 0.35 0.52 0.51 0.38 0.50 0.53 0.42 ⋯ –0.34 
P2 0.35 1.00 0.83 0.80 0.59 0.75 0.80 0.82 ⋯ –0.44 
P3 0.52 0.83 1.00 0.83 0.60 0.78 0.88 0.77 ⋯ –0.48 
P4 0.51 0.80 0.83 1.00 0.60 0.78 0.81 0.82 ⋯ –0.44 
P5 0.38 0.59 0.60 0.60 1.00 0.69 0.58 0.65 ⋯ –0.29 
P6 0.50 0.75 0.78 0.78 0.69 1.00 0.77 0.77 ⋯ –0.37 
P7 0.53 0.80 0.88 0.81 0.58 0.77 1.00 0.76 ⋯ –0.46 
P8 0.42 0.82 0.77 0.82 0.65 0.77 0.76 1.00 ⋯ –0.37 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ 
P16 –0.34 –0.44 –0.48 –0.44 –0.29 –0.37 –0.46 –0.37 ⋯ 1.00 

As shown in Table 1, the correlation between the energy coefficients varies, with certain 
parameters exhibiting generally higher correlation coefficients, such as those between 𝑃ଷ and 𝑃଻, 
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and between 𝑃ସ and 𝑃 . Therefore, redundant information with high correlation should be 
eliminated. 

PCA was applied to the energy coefficient data of each frequency band to achieve 
decorrelation and dimensionality reduction. The correlation matrix, eigenvalues, and eigenvectors 
were calculated, yielding the variance contribution ratios and cumulative variance contribution 
ratios for each principal component, as shown in Fig. 7. 

 
Fig. 7. The individual variance contribution ratios and cumulative variance  

contribution ratios of each principal component 

As the number of principal components increases, the growth of the cumulative variance 
contribution ratio gradually slows. The cumulative variance contribution ratio for the first 6 
principal components exceeds 86.96 %, capturing most of the information from the wavelet packet 
energy coefficients. Therefore, the first 6 principal components are selected as the feature set for 
each acoustic emission signal, and the original data are projected onto the new principal 
component space 𝑋௡௘௪. The eigenvectors corresponding to each principal component are 
presented in Table 2. The variables 𝑡ଵ to 𝑡଺ represent the eigenvectors associated with the first six 
principal components extracted from the covariance matrix. 

Table 2. The eigenvectors corresponding to each principal component 
 𝑡ଵ 𝑡ଶ 𝑡ଷ 𝑡ସ 𝑡ହ 𝑡଺ 

P1 –0.2127  0.0263  –0.0639  0.8205  0.3250  –0.1531  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
P9 0.1569  0.4350  –0.2677  0.0680  –0.3081  –0.0112  
P10 0.1563  0.4455  –0.3448  –0.0122  –0.0715  0.2291  
P11 0.2901  –0.2387  0.1437  –0.0411  –0.1155  –0.1683  
P12 0.2044  0.4081  –0.1437  –0.0930  0.2791  0.0904  
P13 –0.0234  0.2058  0.6998  0.1670  –0.2753  0.3230  
P14 –0.1151  0.4449  0.3806  0.0732  –0.1566  –0.1236  
P15 0.2990  –0.2043  0.1028  –0.0602  –0.1339  –0.1592  
P16 0.1778  0.2185  0.3324  –0.2804  0.7255  –0.1573  

As illustrated in Table 2, these 6 principal components provide a comprehensive representation 
of the original data and are relatively independent. The proportions of the energy coefficient 
parameters are fairly balanced, with no significant bias, indicating that the processing results are 
satisfactory. The first principal component is strongly correlated with the 𝑃ଵଵ, 𝑃ଵଶ, and 𝑃ଵହ 
frequency bands, weakly correlated with the 𝑃ଽ, 𝑃ଵ଴, and 𝑃ଵ଺ frequency bands, and negatively 
correlated with the other frequency bands. In the second principal component, the 𝑃ଽ, 𝑃ଵ଴, 𝑃ଵ଺, 
and 𝑃ଵସ frequency bands show higher correlations. 

Then using 𝑋௡௘௪ as the new matrix, cluster analysis of the signals was performed utilizing the 
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𝑘-means algorithm. The acoustic emission signals during the corrosion process are diverse, 
including signals from pit formation and expansion, bubble rupture, friction, detachment of 
corrosion products, and film rupture. Among these, the signals resulting from the friction-induced 
detachment of corrosion products shares a similar generation mechanism with that of the oxide 
film rupture, both resulting from activities such as creep, friction, and cracking between corrosion 
products and the membrane layer. Therefore, their signal characteristics are highly similar. 
Consequently, the number of clusters is set to 3, and clustering is performed on the 
dimensionality-reduced signals. The spatial distribution of each signal across the first three 
principal components is shown in Fig. 8. PCA 1, PCA 2, and PCA 3 refer to the first three principal 
components extracted through principal component analysis. 

 
Fig. 8. The spatial distribution of signals for each mode on the first three principal components 

From Fig. 8, it can be observed that there are three signal modes in the corrosion process. The 
black color represents the signals of Mode 1, the red color represents those of Mode 2, and the 
blue color represents those of Mode 3. The data of each mode are relatively compact, with clear 
spatial separation between the modes, indicating good classification results. For signals of mode 
1, the first principal component has a larger proportion and is negatively correlated with the third 
principal component, suggesting that the signals are characterized by a higher proportion of high-
frequency bands, specifically the 11th and 15th frequency bands. For signals of mode 2, the first 
three principal components are more evenly distributed, indicating that the signals in this mode 
have a significant presence across all frequency bands. Compared to the signals of mode 2, the 
signals of mode 3 show greater correlation with the first and second principal components, 
indicating that the energy in the high-frequency bands is higher in Mode 3 than in Mode 2. 

4.2. Relationship between AE signals and damage mechanisms correlated with Q235 steel 
corrosion 

Corrosion of Q235 steel materials is a complex process. Chloride ions (Cl⁻) are aggressive and 
can penetrate the corrosion product film, reacting with the substrate, leading to surface damage 
and rupture of the film, thereby generating acoustic emission signals. Moreover, corrosion forms 
pits, and as these pits grow and expand, they also produce acoustic emission signals. Additionally, 
the accumulation of corrosion products and the friction and shedding between them can generate 
acoustic emission signals. Furthermore, gas bubbles are continuously formed during the corrosion 
process, and their rupture generates a small amount of acoustic emission signals. 

The wavelet packet transform was applied to signals of different modes to obtain the energy 
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coefficient plot. Typical acoustic emission signal waveforms and energy coefficient plots for three 
modes are shown in Fig. 9 and Fig. 10. 

 
a) 

 
b) 

 
c) 

Fig. 9. Waveforms of acoustic emission signals  
for three typical damage modes: a) mode 1; b) mode2; c) mode 3 

 
a) 

 
b) 

 
c) 

Fig. 10. The energy coefficients distribution diagram of signals  
for three typical damage modes: a) mode 1; b) mode2; c) mode 3 

The quantity and variation of these signal for each mode collectively reflect the evolution of 
the entire corrosion process. By analyzing these variation patterns in detail, the specific signal 
mode can be determined. Fig. 11 presents the proportion of signals for each mode in each day. 
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By analyzing the variation in the quantity of signals for each mode in Fig. 11, the corrosion 
process is divided into three stages: early, middle, and late. During the early stage of corrosion 
(days 1-3), all signal types undergo changes. The signals of mode 1 decrease, with their proportion 
dropping from over 60 % on day 1 to around 20 % on day 3. The signals of mode 2 begin with a 
low proportion on day 1 but increase rapidly over the first three days, rising from 10 % to 50 %. 
The proportion of signals in mode 3 fluctuates between 20 % and 30 %. During the middle stage 
of corrosion (days 4-7), the signals of mode 2 consistently have the highest proportion, followed 
by those of mode 3, while the signals of mode 1 have the lowest. During this period, the signal 
proportions for all modes remain stable, at approximately 18 %, 48 %, and 34 %, respectively. 
The stability of all signal modes indicates that the system is gradually reaching equilibrium, and 
the corrosion process has entered a stable phase. 

 
Fig. 11. The proportion of the quantity of signals for each mode in each day 

From the Fig 9 and 10, it can be seen that the signal of mode 1 is burst-type, characterized by 
a short rise time and duration. The energy distribution of this type of signal is relatively 
concentrated, with the energy proportions in the high-frequency bands of 312-343 kHz and 
437-468 kHz both exceeding 25 %. In contrast, the energy proportions in the other frequency 
bands are all below 7.5 %. Bubble rupture is generally considered to occur instantaneously, lasting 
only a few dozen microseconds. The rapid release of pressure during rupture generates 
high-frequency elastic waves [27, 28]. Therefore, the signal of mode 1 is attributed to bubble 
rupture. In the early stage of corrosion, chloride ions (Cl⁻) in the sodium chloride solution cause 
localized areas on the Q235 steel surface to corrode, forming small pits or defects. These defect 
areas serve as the anode in electrochemical reactions, where metal dissolves and releases ions 
(e.g., Fe2⁺) into the solution. The non-corroded parts of the steel surface serve as the cathode. At 
the cathode, hydrogen ions (H⁺) are reduced to form hydrogen gas. This reduction reaction 
generates gas bubbles in the cathodic regions, leading to a higher number of bubble-related signals 
in the early stages. As corrosion progresses, corrosion products accumulate on the steel surface, 
slowing the corrosion rate. In addition, the concentration of the corrosive medium decreases due 
to ongoing reactions, reducing the rate of gas bubble generation and, consequently, the number of 
rupture signals. 

The signal of mode 2 also exhibits burst characteristics, characterized by a slightly longer rise 
time and duration. The energy of the acoustic emission signal of mode 2 is relatively concentrated 
in the low-frequency bands, with the energy proportions in the frequency bands of 0-218 kHz 
reaching 60 %. The AE signal of pit growth is characterized by a short rise time and duration, with 
fewer high-frequency components. As a result, the signal of mode 2 is attributed to pit growth and 
expansion. During corrosion, these signals become the primary source of acoustic emissions, with 
their quantity significantly exceeding that of the other modes. In the early stage of pitting 
corrosion, the metal surface undergoes localized corrosion, leading to small holes or defects that 
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gradually develop into pits. As corrosion progresses, corrosive ions in the solution react with the 
metal surface, causing the pits to expand and deepen. During this process, whenever the pit 
structure changes, such as cracking of the edges, increased depth, or formation of new defects, 
significant acoustic emission signals are generated. These signals reflect the microscopic damage 
to the material due to corrosion. 

The signal of mode 3 is a continuous-type signal and has a long duration. Its energy distribution 
is more dispersed, with components present in the mid-to-low frequency bands of 0-125 kHz and 
187-218 kHz, as well as the high-frequency bands of 312-343 kHz and 437-468 kHz. Signals from 
corrosion product shedding and oxide film rupture arise from interactions such as compression, 
friction, and cracking between the film layer and products, which is a gradual process. Thus, the 
signal of mode 3 is attributed to the detachment of corrosion products and the rupture of the oxide 
film. Due to the sample being placed at an inclined angle during the experiment, along with the 
small amount of corrosion products in the early stage and their weak adhesion in the solution, the 
corrosion products tend to slide off. What’s more, the mechanism of signals generated by oxide 
film breakdown is similar to that of signals from the shedding of corrosion products, as both 
phenomena result from activities such as creep, friction, and cracking between the corrosion 
products and the film layer. This leads to this mode signal exceeding 20 % in the early stage, with 
a similar proportion of approximately 32 % in the middle stage. 

In the later stages of corrosion, as corrosion products accumulate, the thickness of the product 
layer gradually increases. This weakens the bond between the corrosion products, causing the 
previously tightly adhered product layer to become unstable. Large areas of the corrosion product 
layer begin to peel off, followed by the formation and accumulation of new corrosion products. 
This peeling phenomenon re-exposes parts of the metal substrate, previously protected by the 
corrosion product layer, to the corrosive environment, further accelerating material corrosion. This 
corresponds to the instability of the proportions of signals from different modes in the later stages 
of corrosion, as shown in Fig. 11. The proportion of mode 2 signals, representing the growth and 
expansion of pits, continues to increase, while the proportion of mode 1 signals decreases. The 
proportion of mode 3 signals decreases first, then increases. 

4.3. Intelligent monitoring of steel corrosion condition based on convolutional neural 
network 

After performing principal component analysis on the acoustic emission signals, a 
convolutional neural network (CNN) is applied to establish the nonlinear relationship between the 
AE signals and damage modes in the other set of experiments. The (CNN) is an architecture that 
utilizes convolutional layers for feature extraction and pooling layers for dimensionality reduction, 
combined with fully connected layers for classification. It excels in signal feature extraction and 
pattern recognition, which is why it has become a crucial tool in this field. 

 
Fig. 12. Schematic diagram of the convolutional neural network architecture 

Fig. 12 illustrates the structure of the convolutional neural network adopted in this work. The 
input layer data comes from the 6 key principal components extracted by PCA. These principal 
components summarize and represent the core information of the signals. The CNN consists of 
two convolutional layers and one max-pooling layer. It utilizes the ReLU activation function and 
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produces the final output through a fully connected layer, followed by a Softmax layer and a 
classification layer. The dataset is randomly shuffled and divided into training and test sets in a 
7:3 ratio. The maximum number of iterations is set to 500, and the learning rate to 0.001. 

 
a) Confusion matrix of the training set 

 
b) Confusion matrix of the test set 

Fig. 13. Confusion matrix of the training results 

 
Fig. 14. Statistical analysis of corrosion damage modes based  

on convolutional neural network recognition results 

Fig. 13 illustrates the confusion matrix of the convolutional neural network training results. 
The confusion matrix of the training set shows that with a large dataset, the neural network 
performs well. The recognition rates for mode 1 and mode 3 signals reach 98.6 % and 99.4 %, 
respectively, while the recognition rate for mode 2 signals, though lower, still reaches 97.9 %. 
When applied to the test set, the neural network demonstrates an accuracy of over 97 % in 
identifying the three damage modes in the acoustic emission signals. This result indicates that the 
convolutional neural network has excellent self-learning capabilities and strong generalization 
performance, enabling it to accurately identify different damage modes during the corrosion 
process based on the acoustic emission signal characteristics. The constructed convolutional 
neural network was utilized to perform pattern recognition on another set of acoustic emission 
signals collected during the corrosion process, and the recognition results were statistically 
analyzed, as shown in Fig. 14. The result provides an intuitive demonstration of the dynamic 
evolution behavior of Q235 steel during corrosion. The fluctuation in the curve shown in the figure 
reflects the transition of the corrosion state. 

5. Conclusions 

In this study, AE technology was used to continuously monitor the corrosion process of Q235 
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steel plates under simulated marine environment. A correlation between acoustic emission signals 
and damage mechanisms was established. The main conclusions are as follows: 

1) Principal component analysis reduced the wavelet packet energy coefficients of the acoustic 
emission signals from 16 dimensions to 6, improving classification efficiency while preserving 
core features. Three distinct acoustic emission signal patterns were identified during the corrosion 
of Q235 steel applying the K-means clustering method: signals of bubble rupture, pit growth and 
expansion, and detachment of corrosion products along with oxide film rupture. 

2) Signals related to bubble rupture displayed burst-like characteristics, characterized by short 
rise times and durations. The energy of these signals was mainly concentrated in the high-
frequency bands (312-343 kHz and 437-468 kHz). Signals associated with pit growth and 
expansion also exhibited burst-like characteristics, with slightly longer rise times and durations 
compared to those from bubble rupture. The energy of these signals were primarily concentrated 
in the low-frequency range (0-218 kHz). Signals linked to corrosion product detachment and oxide 
film rupture were continuous, exhibiting longer durations. Their energy distribution was more 
dispersed, mainly concentrated in the mid-low frequency bands (0-125 kHz and 187-218 kHz) and 
the high-frequency bands (312-343 kHz and 437-468 kHz). 

3) An accuracy of over 97 % in identifying acoustic emission signals is achieved by the 
established damage mode recognition model based on convolutional neural network. This model 
exhibits excellent self-learning capabilities and strong generalization performance. The evolution 
of the corrosion damage in Q235 steel is intuitively presented through statistical analysis of the 
recognition results output by CNN. This enables real-time monitoring of Q235 steel corrosion 
condition. 
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