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Abstract. To address the difficulties in extracting fault features of rolling bearings and the low 
diagnostic accuracy, a fault diagnosis method for rolling bearings is proposed. This method 
integrates the Golden Sine Algorithm (GSA) with the Subtraction-Average-Based Optimizer 
(SABO) to form a Golden Sine Improved SABO Optimization Algorithm (GSABO). The GSABO 
algorithm is used for parameter optimization of Variational Mode Decomposition (VMD) and 
Kernel Extreme Learning Machine (KELM) in the fault diagnosis process. Firstly, the chaotic 
mapping strategy is used to optimize the population initialization of the Subtractive Clustering-
Based Adaptive Optimization (SCAO) algorithm, enhancing population diversity. Secondly, the 
Golden Sine Algorithm (GSA) is integrated to improve the displacement algorithm, enhancing 
global search capability and effectively avoiding getting trapped in local optima. Then, the 
GSABO-VMD (Golden Sine Algorithm-Based Optimized Variational Mode Decomposition) is 
employed to decompose the rolling bearing fault signals, and the envelope entropy minimum 
criterion is used to select the effective modal components. Finally, time-frequency domain 
indicators of the selected modal components are computed to form a feature matrix, which is then 
input into GSABO-KELM (Golden Sine Algorithm-Based Optimized Kernel Extreme Learning 
Machine) for fault classification and recognition. Experimental analysis shows that compared to 
the unmodified SABO algorithm, GSABO has significant advantages in terms of escaping local 
optima, convergence speed, and accuracy. When compared with other traditional algorithms, 
GSABO-VMD-KELM achieves recognition accuracies of 99.3333 % and 99.0476 % on bearing 
data from Case Western Reserve University (CWRU) and Xi'an Jiao tong University (XJTU), 
respectively. This demonstrates the accuracy and superiority of the algorithm and provides 
valuable insights for engineering applications in rolling bearing fault diagnosis.  
Keywords: subtraction average based optimizer, golden sine algorithm, variational mode 
decomposition, kernel extreme learning machine, rolling bearing fault diagnosis. 

1. Introduction 

The health condition of rolling bearings is directly related to the safe and stable operation of 
equipment. Timely detection of faults in key rolling bearings is crucial for ensuring the reliability 
and safety of machinery [1-3]. Once a rolling bearing in mechanical equipment fails, it may lead 
to equipment downtime, production interruptions, or even safety accidents, which can have a 
severe impact on production and operations [4-6]. Therefore, it is especially important to diagnose 
and predict bearing faults in a timely manner. However, due to the complex working environment 
of mechanical equipment, bearings are susceptible to issues such as wear and fatigue [7], which 
increases the difficulty of fault diagnosis. Therefore, researching high-precision bearing fault 
diagnosis methods is of great significance for enhancing the safety and reliability of mechanical 
equipment. 

The fault signals of rolling bearings exhibit non-stationary and nonlinear characteristics [8]. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2025.25095&domain=pdf&date_stamp=2025-10-31
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Therefore, signal decomposition algorithms are regarded as useful tools for extracting fault 
features [9]. Empirical Mode Decomposition (EMD) [10] decomposes signals based on the time-
scale characteristics of the data itself, without the need to preset any basis functions. Once 
proposed, this methodology has been extensively and successfully implemented in the domain of 
fault diagnosis. Nevertheless, the ultimate efficacy and the mode admixture have significantly 
constrained its applicability. To effectively resolve these challenges, a sequence of recursive 
decomposition methodologies has been systematically developed, such as Local Mean 
Decomposition (LMD) [11], and Ensemble Empirical Mode Decomposition (EEMD) [12], 
Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 
(ICEEMDAN) [13]. Nevertheless, the recursive decomposition approach fails to fundamentally 
resolve the issue of mode mixing [14]. In addressing this particular concern, Konstantin et al. [15] 
proposed the Variational Mode Decomposition (VMD) technique. Due to its superior filtering 
capabilities and rigorous theoretical foundation, VMD has gained widespread popularity and 
recognition among researchers since its introduction [16]. Meng [17] proposed an enhanced VMD 
method that precisely extracts fault features through adaptive adjustment of the penalty factor. 
Yang et al. [18] employed the simulated annealing (SA) algorithm to optimize VMD parameters, 
successfully achieving early fault detection. Wang et al. [19] introduced a particle swarm 
optimization-based VMD method for complex rotating machinery fault diagnosis. Although these 
optimization algorithms demonstrate satisfactory performance in parameter optimization, these 
algorithms frequently converge to local optima, potentially leading to overfitting or underfitting 
scenarios that may degrade overall performance. 

Following the completion of feature extraction from rolling bearing fault signals, the extracted 
feature matrix requires identification and diagnosis. With the rapid development of science and 
technology, deep learning diagnostic models are increasingly applied in the fault diagnosis of 
rolling bearings. Such as dynamic collaborative adversarial domain adaptation networks 
(DCADAN) [20], task-oriented Theil index-based meta-learning networks (TTIMN-GCS) [21], 
attention-guided hierarchical wavelet convolutional networks (AHWCN) [22]. Although these 
methods have all demonstrated excellent performance in the application of fault diagnosis for 
rolling bearings, they still face problems such as complex computation, long diagnosis time, lack 
of hyperparameter optimization strategies, and reliance on prior knowledge of fault features for 
parameter setting. Common fault recognition models include Backpropagation Neural Networks 
(BPNN) [23] and Extreme Learning Machines (ELM) [24], among others. The BP neural network 
fault identification model suffers from several limitations, including high learning costs and 
susceptibility to overfitting when handling noisy data [25]. Meanwhile, ELM faces challenges 
such as random initialization of input weights and potential overfitting issues [26]. In response to 
the issues, Huang et al. [27] proposed the KELM algorithm, which combines the kernel method 
with the framework of extreme learning machines. It can effectively handle nonlinear relationships 
and high-dimensional data, offering fast training speeds and strong generalization capabilities. 
However, the KELM algorithm also has some limitations, as its performance is significantly 
influenced by the regularization coefficient 𝐶 and the kernel function parameter 𝑔 . If 𝐶 and 𝑔 are 
not selected properly, they may negatively impact the model’s classification accuracy. Zhao et al. 
[28] employed the Particle Swarm Optimization (PSO) algorithm to optimize the regularization 
coefficient 𝐶 and kernel function parameter 𝑔 of the KELM algorithm, thereby enhancing its 
effectiveness in gearbox fault diagnosis. Yang et al. [29] proposed a rolling bearing fault diagnosis 
method based on variational mode decomposition optimized by an improved artificial fish swarm 
algorithm and multi-feature vector fusion with extreme learning machines. However, both particle 
swarm optimization and artificial fish swarm algorithms are prone to premature convergence and 
getting trapped in local optima, exhibiting poor robustness. The subtraction-average-based 
optimization algorithm is a novel optimization algorithm [30] with outstanding optimization 
performance. Lu Fan [31] verified that using the subtraction-average-based optimizer (SABO) to 
optimize the selection process of the mode number and penalty factor in variational mode 
decomposition (VMD) improved the classification accuracy of rolling bearing fault diagnosis. 
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However, the SABO algorithm also has the issue of easily falling into local optima. In their study 
on rolling bearing fault diagnosis based on adaptive local iterative filtering (ALIF) and 
time-shifted multi-scale fluctuation dispersion entropy (TMFDE), Zhao Jiahao et al. [32] noted 
that the MFDE method achieved a maximum classification accuracy of 82 % and a minimum 
classification accuracy of 74 %, with a difference of 8 %. This indicates that falling into local 
optima significantly impacts the classification accuracy of rolling bearing fault diagnosis. 

In summary, to further improve the classification accuracy of rolling bearing fault diagnosis, 
this paper proposes an improved subtraction-average-based optimizer algorithm, GSABO. The 
method combines GSABO with VMD and KELM, where the GSABO-KELM model classifies 
the feature matrix formed by calculating the envelope entropy of the IMF components screened 
after GSABO-VMD decomposition. Ultimately, this approach identifies the fault types of rolling 
bearings. The superiority of the proposed method is validated using datasets from Case Western 
Reserve University and Xi’an Jiaotong University. 

The main contributions of this paper are as follows: 
(1) The SABO algorithm is improved by incorporating chaotic mapping strategies and the 

golden sine algorithm. Compared with other optimization algorithms, the proposed GSABO 
algorithm demonstrates superior performance in optimization accuracy, computational efficiency, 
and convergence capability. 

(2) The GSABO algorithm is employed to achieve adaptive selection of VMD parameters, 
thereby reducing the complexity of the problem. 

(3) By integrating the GSABO algorithm with VMD and KELM, this study provides enhanced 
accuracy and convergence for rolling bearing mechanical fault diagnosis, offering new 
possibilities for existing fault diagnosis technologies. 

2. Fundamental theory 

2.1. VMD 

The key step of the VMD algorithm lies in constructing and solving the constrained variational 
model. The constrained variational model is defined as follows: 

⎩⎪⎨
⎪⎧൝ min൛𝑢௞, ሼ𝜔௞ሽൟ ൝෍ฯ𝜕௧ ൤𝛿ሺ𝑡ሻ + 𝑗𝜋𝑡 ∗ 𝑢௞ሺ𝑡ሻ൨ 𝑒ି௝ఠೖ௧ฯଶଶ௞ ൡ ,

 s. t.  ෍𝑢௞ሺ𝑡ሻ௞ = 𝑓ሺ𝑡ሻ,  (1)

where, ሼ𝑢௞ሽ represents the set of IMF components obtained from the decomposed original signal; ሼ𝜔௞ሽ denotes the set of center frequencies corresponding to the IMF components; 𝜕௧ is the time 
derivative operator; 𝑓ሺ𝑡ሻ is the original input signal; 𝑘 indicates the number of decomposition 
layers. 

To obtain the optimal solution for Eq. (1), it is essential to introduce penalty factor 𝛼 and 
Lagrange multiplier 𝜆(𝑡), thereby transforming Eq. (1) into an unconstrained variational model as 
follows: 

𝐿 = (ሼ𝑢௞ሽ, ሼ𝜔௞ሽ,𝜆) = 𝛼෍ฯ𝜕௧ ൤𝛿(𝑡) + 𝑗𝜋𝑡 ∗ 𝑢௞(𝑡)൨ 𝑒ି௝ఠೖ௧ฯଶଶ௞ + ะ𝑓(𝑡) −෍𝑢௞(𝑡)௞ ะଶ
ଶ   

      + 〈𝜆(𝑡), 𝑓(𝑡) −෍𝑢௞(𝑡)௞ 〉. (2)

By employing the Alternating Direction Method of Multipliers (ADMM), the original 
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minimization problem is transformed into a saddle-point problem involving the augmented 
Lagrangian function, thereby facilitating the determination of the optimal solution for Eq. (1). The 
update procedures for 𝑢௞ and 𝜔௞ are as follows: 

𝑢ො௞௡ାଵ(𝜔) = 𝑓መ(𝜔) − ∑ 𝑢ො௞(𝜔) + 𝜆መ(𝜔)2௜ஷ௞1 + 2𝛼(𝜔 −𝜔௞)ଶ , (3)

𝜔௞௡ାଵ = ׬ 𝜔|𝑢ො௞(𝜔)|ଶ𝑑𝜔ஶ଴׬ |𝑢ො௞(𝜔)|ଶ𝑑𝜔ஶ଴ . (4)

2.2. SABO 

This algorithm exhibits strong optimization capability and rapid convergence speed. The 
algorithmic procedure is as follows: 

1) Algorithm initialization.  
The initial positions of search agents in the search space are randomly initialized using the 

following equation: 𝑥௜,ௗ = 𝑙𝑏ௗ + 𝑟௜,ௗ(𝑢𝑏ௗ − 𝑙𝑏ௗ),     𝑖 = 1,⋯ ,𝑁,     𝑑 = 1,⋯ ,𝑚, (5)

where, 𝑥௜,ௗ represents its 𝑑-th dimensional decision variable in the search space; 𝑁 represents the 
number of search agents; 𝑚 denotes the dimensionality of decision variables; 𝑟௜,ௗ  is a random 
number within the interval [0, 1]; 𝑢𝑏ௗ and 𝑙𝑏ௗ represent the upper bound and lower bound, 
respectively, of the 𝑑-th dimensional decision variable. 

2) Mathematical model of SABO. 
The concept of computing the arithmetic mean in SABO is entirely unique, as it is based on a 

special operator "−௏" defined as the subtraction of search agent 𝐴 from search agent 𝐵, as shown 
in Eq. (6): 𝐴 −௏ 𝐵 = 𝑠𝑖𝑔𝑛൫𝐹(𝐴) − 𝐹(𝐵)൯(𝐴 − 𝑣⃑ ∗ 𝐵), (6)

where, 𝑣⃑ is an 𝑚-dimensional vector; 𝐹(𝐴) and 𝐹(𝐵) represent the objective function values of 
search agent 𝐴 and search agent 𝐵. 

In the SABO algorithm, the displacement of any search agent 𝑋௜ in the search space is 
computed as the arithmetic mean of the −௏ subtraction from each search agent 𝑋௝  (𝑗 = 1,2,⋯ ,𝑁). The position update scheme is as follows: 

𝑋௜௡௘௪ = 𝑋௜ = 𝑟௜ ∗ 1𝑁෍𝑋௜ே
௝ୀଵ  −௏ 𝑋௝ ,     𝑖 = 1,2,⋯ ,𝑁, (7)

where 𝑁 is the total number of search agents, and 𝑟௜ is an 𝑚-dimensional vector, each component 
is a random number sampled from a normal distribution over the interval [0, 1]. 

The particle position update formula is as follows: 𝑋௜ = ൜𝑋௜௡௘௪ ,     𝐹௜௡௘௪ < 𝐹௜ ,𝑋௜ ,     else,  (8)

where 𝐹௜ and 𝐹௜௡௘௪ are the objective function values of search agent 𝑋௜ and 𝑋௜௡௘௪. 
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2.3. Golden sine-enhanced SABO optimization algorithm 

Although the SABO optimization algorithm exhibits stronger optimization capabilities than 
traditional optimization algorithms, it still suffers from issues such as premature convergence and 
getting trapped in local optima. To avoid these problems, chaotic mapping and the golden sine 
method are integrated to enhance the global search ability and optimization accuracy of the SABO 
algorithm. The main improvement steps consist of the following three steps: 

1) Chaotic mapping can enhance the exploration and exploitation capabilities of the algorithm, 
prevent the algorithm from converging to local optimal solutions, and it can increase the 
randomness and diversity of the algorithm, improving the global search accuracy and convergence 
speed. Among them, the Tent map [33] is simple and has better traversal uniformity and search 
speed. Therefore, the Tent map is used to optimize the initial positions of particles, with the 
formula as follows: 𝜃௨ାଵ = ൜𝛽𝜃௨,     𝜃௨ < 0.5,𝛽(1 − 𝜃௨),     𝜃௨ ≥ 0.5, (9)

where, 𝑢 represents the number of mapping iterations; 𝜃௨ denotes the value of the particle position 
after the 𝑢-th mapping; 𝜃௨ ∈ ሾ0,1ሿ; controls parameter 𝛽 ∈ ሾ0,2ሿ: 𝜃௨ାଵ = 𝑓(𝜃௨) = ൜𝛽𝜃௨,      𝜃௨ ⊂ ሾ0,0.5),𝛽(1 − 𝜃௨),    𝜃௨ ⊂ ሾ0.5, 1ሿ. (10)

The Lyapunov exponent 𝜆 measures the sensitivity of the system to initial conditions (the 
intensity of chaos), and its calculation formula is as follows: 

𝜆 = lim௎→ஶ 1𝑈෍ ln|𝑓′(𝜃௨)|௎ିଵ
௨ୀ଴ . (11)

The derivative of the Tent map is obtained as follows: 𝑓ᇱ(𝜃௨) = ൜𝛽,    𝜃௨ < 0.5,   −𝛽,    𝜃௨ ≥ 0.5. (12)

The absolute value of the derivative is always: |𝑓ᇱ(𝜃௨)| = 𝛽 . 
Substituting the |𝑓ᇱ(𝜃௨)| into the Lyapunov exponent formula yields: 

𝜆 = lim௎→ஶ 1𝑈෍ ln𝛽௎ିଵ
௨ୀ଴ = lim௎→ஶ 1𝑈 (𝑈 ∙ ln𝛽) = ln𝛽. (13)

So, when 𝛽 = 2, the system exhibits maximum chaotic behavior, so 𝛽 = 2 is selected. 
2)The Piecewise chaotic map is employed to generate random values for replacing 𝑟௜ in the 

original SABO algorithm. In Eq. (7) of the SABO algorithm, 𝑟௜ is a random value within the 
interval [0, 1]. By substituting 𝑟௜ with random values generated using the Piecewise chaotic map, 
the algorithm benefits from a more uniform distribution of randomness, thereby enhancing particle 
diversity during the computation of average differences. The formula for the Piecewise chaotic 
map is as follows: 
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𝑟௜(𝑡 + 1) =
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑟௜(𝑡)𝑝 ,     0 ≤ 𝑟௜(𝑡) < 𝑝,𝑟௜(𝑡) − 𝑝0.5 − 𝑝 ,     𝑝 ≤ 𝑟௜(𝑡) < 0.5,1 − 𝑟௜(𝑡) − 𝑝0.5 − 𝑝 ,     0.5 ≤ 𝑟௜(𝑡) < 1 − 𝑝,1 − 𝑟௜(𝑡)𝑝 ,     1 − 𝑝 ≤ 𝑟௜(𝑡) < 1.

 (14)

where the range of 𝑝 and 𝑟௜ is [0, 1]. 
3) Integrate the Golden Sine Algorithm to assist particles in escaping local optima. The SABO 

algorithm does not utilize the global best value in each iteration but instead updates particle 
positions by computing the subtraction average of all particles’ positions. Consequently, if the 
initial particle positions are poorly distributed, the algorithm is highly prone to falling into local 
optima. To address this issue, the proposed improvement strategy is as follows: if the fitness value 
of a particle remains unchanged in the current iteration, the Golden Sine Algorithm (GSA) is 
employed to update the particle’s position [34]. This approach neither significantly increases the 
computational burden of fitness evaluations nor leverages the global optimization strength of the 
Golden Sine Algorithm to help SABO escape local optima. The position update formula of the 
Golden Sine Algorithm is shown in Eq. (15): 𝑋௜ௗ(𝑡 + 1) = 𝑋௜ௗ(𝑡)|sin(𝑟ଵ)| + 𝑟ଶsin(𝑟ଵ)ห𝑥ଵ𝑃ௗ(𝑡) − 𝑥ଶ𝑋௜ௗ(𝑡)ห, (15)

where, 𝑋௜ௗ(𝑡) represents the spatial position of the 𝑖-th individual in the 𝑑-dimensional search 
space during the 𝑡-th iteration; 𝑃ௗ(𝑡) is the global best position at the 𝑡-th iteration; 𝑟ଵ is a random 
number within the range [0, 2𝜋]; 𝑟ଶ is a random number within the range [0, 𝜋]; 𝑥ଵ and 𝑥ଶ are 
coefficients derived from the golden ratio. These coefficients effectively narrow the search space 
while guiding the current values toward the optimum, ensuring the algorithm’s convergence; 
Golden ratio coefficient 𝜏 = (5ଵ ଶ⁄ − 1) 2⁄ , 𝑥ଵ = 𝑎𝜏 + 𝑏(1 − 𝜏), 𝑥ଶ = 𝑎(1 − 𝜏) + 𝑏𝜏. The initial 
values of 𝑎 and 𝑏 are set to −𝜋 and 𝜋, respectively. Subsequently, 𝑎 and 𝑏 adapt dynamically 
based on changes in the objective value, leading to corresponding updates in coefficients 𝑥ଵ  
and 𝑥ଶ. 

2.4. KELM 

While retaining ELM's three-layer network structure (input layer, hidden layer, and output 
layer), KELM transforms complex, linearly inseparable datasets in low-dimensional space into 
inner product operations in high-dimensional space. This approach significantly improves the 
model’s stability and generalization capability. 

For 𝑁 sets of fault samples ሼ(𝑥௜ , 𝑡௜)ሽ = 1ே, the number of hidden layer neurons in the ELM 
network is 𝑃, and the activation function is 𝑔(∙), whose mathematical expression is: 𝐹(𝑥) = 𝐻𝛽 = 𝑌, (16)𝐻 = ൥𝑔(𝑤ଵ𝑥ଵ + 𝑏ଵ) ⋯ 𝑔(𝑤௉𝑥ଵ + 𝑏௉)⋮ ⋱ ⋮𝑔(𝑤ଵ𝑥ே + 𝑏ଵ) ⋯ 𝑔(𝑤௉𝑥ே + 𝑏௉ ൩, (17)

where, 𝑤ଵ,⋯ ,𝑤௉ denotes the connection weights between the input layer and hidden layer; 𝑏ଵ,⋯ , 𝑏௉ represents the bias vector of the hidden layer neurons; 𝐻 is the hidden layer output 
matrix; 𝛽 is the output weight matrix between the hidden layer and output layer; 𝑌 is the target 
output matrix. 
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The formula for 𝛽 is: 

𝛽 = 𝐻் ൬𝐻𝐻் + 𝐼𝐶൰ିଵ 𝑌, (18)

where, 𝐼 is the identity matrix, and 𝐶 is the regularization coefficient. 
Introduce the kernel function, expressed as: 

ቊΩா௅ெ = 𝐻𝐻் ,𝐻𝐻்(௜,௝) = ℎ(𝑥௜)ℎ൫𝑥௝൯ = 𝐾൫𝑥௜ , 𝑥௝൯. (19)

where, 𝐾(∙) is the kernel function. 
The radial basis function (RBF), a commonly used kernel function, is selected as the kernel. 

The RBF kernel can be defined as: 𝐾(𝑎,𝑏) = exp(−𝑔‖𝑎 − 𝑏‖ଶ), (20)

where, 𝑔 is the nuclear parameter. 
Therefore, 𝐹(𝑥) can be rewritten as: 

𝐹(𝑥) =  𝐻𝐻் ൬𝐻𝐻் + 𝐼𝐶൰ିଵ 𝑌 = ൥𝐾(𝑥, 𝑥ଵ)⋮𝐾(𝑥, 𝑥௡)൩ ൬Ωா௅ெ + 𝐼𝐶൰ିଵ, (21)

where 𝑛 represents the number of samples. 

2.5. Fault diagnosis process 

The overall flowchart for fault diagnosis is shown in Fig. 1. The specific steps for optimizing 
VMD and KELM using GSABO are as follows: 

Step 1: Input the original vibration data and set the fitness function as well as the GSABO 
parameters. 

Step 2: Initialize the population and positions of particles in the GSABO algorithm for VMD 
parameters using the Tent chaotic map. 

Step 3: Decompose the signal using VMD and calculate the envelope entropy of each IMF 
component 

Step 4: Replace 𝑟௜ in the position update formula with the Piecewise chaotic map and 
selectively fuse the golden sine strategy to update particle positions based on fitness value 
variations. 

Step 5: Evaluate whether to update the current best solution. If the fitness value of the particle's 
current position is better than the historical best fitness value, update this position as the new 
position for the corresponding population particle and save this fitness value as the optimal fitness 
value 

Step 6: Perform iterative cycles until the preset stopping criteria are met. 
Step 7: Decompose the signal using the optimal parameters obtained from GSABO-optimized 

VMD. 
Step 8: Divide the dataset into training samples and testing samples. 
Step 9: Initialize the population and positions of GSABO particles within the KELM parameter 

range by incorporating the Tent chaotic mapping. 
Step 10: Optimize the regularization coefficient 𝐶 and kernel parameter 𝑔 in KELM using 

GSABO, and calculate the fitness value of each GSABO individual 
Step 11: Update particle positions using the GSABO algorithm. 
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Step 12: Determine whether the termination criteria are met. If satisfied, proceed to the next 
step; otherwise, return to Step 10. 

Step 13: Obtain the optimal regularization parameter and kernel parameter. 

 
Fig. 1. Flowchart of the GSABO-VMD-KELM fault diagnosis method 



APPLICATION OF GSABO-VMD-KELM IN ROLLING BEARING FAULT DIAGNOSIS.  
QIANG LI, CHAO WU, QING LV, JIN WANG 

1482 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

3. Simulation experiment 

To demonstrate the advantages of the improved SABO optimization algorithm incorporating 
golden sine (GSABO) over SABO and other traditional optimization algorithms, the F1, F5, and 
F8 functions from the CEC2005 benchmark test set were selected for testing and comparison. The 
expressions of these functions are shown in Table 1, and the comparison results are illustrated in 
Fig. 2-4. 

Table 1. Basic function test information 
Function Dimensionality Search range 𝐹ଵ(𝑥) = ෍𝑥௜ଶ௡

௜  30 [–100, 100] 

𝐹ହ(𝑥) = ෍ൣ100(𝑥௜ାଵ − 𝑥௜ଶ)ଶ + (𝑥௜ − 1)ଶ൧௡ିଵ
௜  30 [–30, 30] 

𝐹 (𝑥) = ෍−𝑥௜ 𝑠𝑖𝑛(ඥ|𝑥௜|)௡
௜  30 [–500, 500] 

 
Fig. 2. Comparison of optimization results on F1 function 

 
Fig. 3. Comparison of optimization results on F5 function 
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Fig. 4. Comparison of optimization results on F8 function 

From the comparative results, it can be observed that F5 and F8 are among the most 
challenging functions in the CEC2005 benchmark set for evaluating optimization algorithm 
performance. For F5, whose theoretical minimum is 0, the improved algorithm achieved an 
optimization value of 6.19×10-6, whereas the Whale Optimization Algorithm (WOA), Dung 
Beetle Optimizer (DBO), and Subtraction-Average-Based Optimizer (SABO) all yielded values 
around 27. For F8, a multimodal function with multiple peaks, intelligent algorithms are highly 
prone to falling into local optima during optimization. Its theoretical minimum is –12569.5, and 
GSABO obtained a near-optimal value of –12569.4737, which is extremely close to the theoretical 
optimum. Combined with the results in Fig. 4, GSABO outperforms the other three algorithms 
and exhibits faster convergence speed. In summary, based on the test results of three functions, 
the improved GSABO demonstrates significant advantages in both convergence speed and final 
optimization accuracy compared to the other algorithms. 

4. Experimental analysis 

4.1. Case 1 

4.1.1. Data collection 

To validate the effectiveness of the GSABO algorithm in rolling bearing fault diagnosis, an 
empirical evaluation was conducted using the bearing dataset from CWRU. Fig. 5 shows the basic 
configuration of the test rig. The specifications of the bearing data are as follows: SKF bearings 
were used, the motor was running at a speed of 1797 r/min, and the load was set to zero 
horsepower, with a sampling frequency of 12 kHz. The dataset covers four different fault 
conditions: normal state, inner race fault, outer race fault, and ball fault, with corresponding fault 
diameters of 0.007 inches, 0.014 inches, and 0.021 inches, respectively. 

There are 10 types of faults. For the convenience of the experiment, these faults are coded as 
follows: “1” represents the normal state, “2-4” represent inner ring faults with diameters of 0.007, 
0.014, and 0.021 inches, “5-7” represent rolling element faults with diameters of 0.007, 0.014, and 
0.021 inches, and “8-10” represent outer ring faults with diameters of 0.007, 0.014, and 0.021 
inches. Each fault signal contains 2048 sampling points, and there are 120 fault samples collected 
for each type of fault, with 90 samples used for the training set and 30 samples used for the testing 
set. 
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Fig. 5. Bearing data acquisition platform of Case Western Reserve University 

4.1.2. Fault signal GSABO-VMD decomposition 

After acquiring the fault signal, the first step is to set the parameters for GSABO-VMD. The 
population size of GSABO is set to 15, and the maximum number of iterations is set to 20. The 
decomposition layer 𝑘 and the penalty factor 𝛼 are optimized within the ranges 𝑘 ∈ ሾ3,10ሿ and 𝛼 ∈ ሾ100,2500ሿ, with the objective of minimizing the envelope entropy. Taking a fault signal 
with a fault size of 0.007 inches as an example, the optimization results obtained through GSABO 
are (𝑘,𝛼) = (5,482). The VMD decomposition results optimized by GSABO are shown in Fig. 6, 
while the decomposition results using the default parameter set [4, 2000] [35] are shown in Fig. 7. 

 
Fig. 6. VMD frequency spectrum decomposition diagram after parameter optimization 

According to the theoretical frequency calculation formula of the inner ring fault of rolling 
bearings, as shown in Eq. (22): 

𝑓௜ = 0.5𝑧𝑓 ൬1 + 𝑑𝐷 cos𝛼൰, (22)

where, 𝑑 represents the diameter of the rolling element; 𝐷 represents the raceway pitch diameter; 
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𝛼 represents the contact angle of the bearing; 𝑧 represents the number of rolling elements; 𝑓 
represents the frequency conversion. 

 
Fig. 7. VMD frequency spectrum decomposition diagram with default parameters 

The theoretical frequency of the inner ring fault of the 6205-2RS bearing can be calculated as 
134.775 Hz, the fault frequency of the IMF4 component in Fig. 6 is 3376 Hz, which is very close 
to the 25 times fault frequency of the inner ring at 3369.375 Hz, while the fault frequency 
decomposed in Fig. 7 differs significantly from the fault frequency of the inner ring. 

The optimized VMD decomposition includes inner ring failure frequency. As observed from 
the amplitude of the spectrogram, this component represents significant features of the original 
signal that were overlooked under default parameters. The results demonstrate that the optimized 
parameters can more effectively characterize the features of the original signal. 

Fig. 8 shows the evolutionary curve comparison of the algorithms. GSABO achieves 
convergence at the 3rd generation, while the unimproved SABO converges at the 6th generation. 
DBO completes convergence at the 6th generation, and WOA reaches convergence at the 8th 
generation. Notably, GSABO demonstrates significantly better optimization performance than the 
other three algorithms, which clearly illustrates the superiority of the proposed optimization 
method. 

4.1.3. Feature extraction from signal decomposition results 

Prior to feature extraction from the IMF components obtained through GSABO-VMD 
decomposition, it should be noted that a smaller envelope entropy value indicates richer fault 
information, while a larger value suggests less fault information [36]. Given that each IMF 
component contains different characteristic quantities, we select the IMF component with the 
smallest envelope entropy for feature extraction. The calculated envelope entropy values for each 
IMF component are presented in Table 2. 

Table 2. Computed envelope entropy values 
IMF1 IMF2 IMF3 IMF4 IMF5 
7.3045 7.30464 7.30471 7.30445 7.30451 
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Among these five IMF components, IMF4 has the smallest envelope entropy value, so it is 
selected as the optimal IMF component. After completing the IMF component selection, we 
calculate time-frequency domain features including mean and variance of the optimal IMF 
components as characteristic indicators for feature extraction. 

 
Fig. 8. Performance comparison of convergence curves 

Using the same methodology as presented in the provided examples, the parameter 
combinations (𝑘,𝛼) for these 10 fault types and their corresponding optimal IMF components can 
be obtained. Detailed data are shown in Table 3. 

Table 3. Optimal VMD parameters and corresponding IMF components 
Condition Fault Size Label (𝑘,𝛼) Optimal IMF 
Normal 0.007 1 (8, 1369) IMF8 

IRF 0.007 2 (5,482) IMF4 
IRF 0.014 3 (7, 3000) IMF5 
IRF 0.021 4 (3, 190) IMF3 
REF 0.007 5 (6, 583) IMF3 
REF 0.014 6 (4, 3000) IMF3 
REF 0.021 7 (8, 158) IMF5 
ORF 0.007 8 (6, 705) IMF6 
ORF 0.014 9 (8, 152) IMF3 
ORF 0.021 10 (4, 1274) IMF4 

4.1.4. Fault feature identification 

By computing time-frequency domain features of the screened IMF components as 
characteristic indicators, a fault feature vector matrix is constructed for fault type classification 
using GSABO-KELM. The samples are fed into KELM, with its kernel parameter 𝐶 and 
regularization coefficient 𝑔 optimized by GSABO. For the algorithm parameters, the population 
size is set to 20, the maximum iterations to 30, and the optimization ranges for 𝐶 and 𝑔 are set as 
[0, 1000] respectively. The optimization process uses classification accuracy as the fitness 
function. The best parameter set (𝐶,𝑔) = (1000,0.546) obtained through GSABO-KELM 
optimization yields an accuracy of 99.3333 %, while Fig. 9 shows the test set confusion matrix 
using GSABO-VMD decomposition. 
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Fig. 9. Confusion matrix of GSABO on the test set 

 
Fig. 10. Confusion matrix of SABO on the test set 

For comparative analysis, we employed the previously benchmarked unoptimized SABO, 
DBO, and WOA algorithms for VMD decomposition of the experimental dataset. Maintaining 
identical feature extraction and classification procedures, the test set recognition accuracies 
achieved were 95 %, 93.6667 %, and 91 % respectively. The corresponding test results and 
confusion matrices are presented in Fig. 10 through 12. 

Following the procedure, the GSABO-VMD-KELM algorithm was compared with existing 
state-of-the-art methods, introduce accuracy, precision, recall, and F1 score as evaluation metrics, 
the formula is as follows: 𝐴𝑐𝑐𝑢𝑎𝑟𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁, (23)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃, (24)𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁, (25)
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𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙, (26)

where, True Positive (TP): the model predicted a positive case and it was a positive case; False 
Positive (FP): the model predicted a positive case, but it was a negative case. True Negative (TN): 
the model predicted a negative case, and it was a negative case. False Negative (FN): the model 
predicted a negative case, but it was a positive case. 

 
Fig. 11. Confusion matrix of DBO on the test set 

 
Fig. 12. Confusion matrix of WOA on the test set 

The preparation rates of different fault diagnosis models are shown in Table 4, the precision is 
presented in Table 5, recall rates are presented in Table 6 and the F1 scores are illustrated in 
Table 7. 

In the comprehensive assessment, both GSABO-VMD-KELM and SABO-VMD-KELM 
exhibited outstanding performance across the four diagnostic metrics. Nevertheless, 
SABO-VMD-KELM displayed relatively lower accuracy and F1 score in diagnosing the seventh 
category of faults, indicating a minor limitation. Conversely, Method 1 effectively mitigated the 
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issue of misdiagnosis, demonstrating robust diagnostic capabilities. 

Table 4. Performance comparison of different algorithms 
Number Algorithm Name Classification accuracy 

1 GSABO-VMD-KELM 99.3333 % 
2 SABO-VMD-KELM [37] 95 % 
3 DBO-VMD-KELM [38] 93.6667 % 
4 WOA-VMD-KELM [39] 91 % 
5 VMD-ELM [40] 83.3333 % 
6 VMD-KELM [41] 89.6667 % 
7 VMD-CNN [42] 87.6667 % 
8 DCADAN [20] 90 % 
9 TTIMN-GCS [21] 92.3333 % 
10 AHWCN [22] 93 % 

Table 5. Comparative analysis of (Precision %) across various methodologies 

Algorithm Name Fault labels 
1 2 3 4 5 6 7 8 9 10 

GSABO-VMD-KELM 96.7 100 96.7 100 100 100 100 100 100 100 
SABO-VMD-KELM [37] 96.7 100 93.3 100 100 100 70.0 96.7 93.3 100 
DBO-VMD-KELM [38] 100 100 83.3 100 96.7 96.7 80 100 80 100 
WOA-VMD-KELM [39] 93.5 76.9 93.3 100 73.2 100 90.9 100 100 100 

VMD-ELM [40] 100 100 86.7 100 60 30 83.3 100 73.3 100 
VMD-KELM [41] 70 96.8 85.3 100 93.8 95.2 78.9 85.3 96.6 100 
VMD-CNN [42] 62.5 100 77.1 100 100 100 86.2 88.2 87.5 100 
DCADAN [20] 100 100 86.7 100 96.7 53.3 96.7 100 66.7 100 

TTIMN-GCS [21] 100 100 86.7 100 100 80.0 90.0 100 66.7 100 
AHWCN [22] 82.4 93.8 83.3 100 93.8 93.1 92.0 96.7 100 100 

Table 6. Comparison of (recall%) among different methods. 

Algorithm Name Fault labels 
1 2 3 4 5 6 7 8 9 10 

GSABO-VMD-KELM 100 100 96.7 100 100 100 100 100 100 100 
SABO-VMD-KELM [37] 100 93.8 82.4 100 100 88.2 91.3 96.7 100 100 
DBO-VMD-KELM [38] 100 93.8 86.2 100 96.7 100 77.4 100 82.8 100 
WOA-VMD-KELM [39] 96.7 100 93.3 70.0 100 63.3 100 100 90 100 

VMD-ELM [40] 60.0 100 76.5 100 100 100 89.2 66.7 85.5 100 
VMD-KELM [41] 93.3 100 96.7 100 100 66.7 50 96.7 93.3 100 
VMD-CNN [42] 100 100 90.0 100 96.7 36.7 83.3 100 70.0 100 
DCADAN [20] 71.4 100 81.3 100 100 100 87.9 93.8 83.3 100 

TTIMN-GCS [21] 88.2 100 83.9 100 100 100 79.4 96.8 77.0 100 
AHWCN [22] 93.3 100 100 100 100 90.0 76.7 96.7 73.3 100 

Table 7. Comparison of (F1%) of different methods 

Algorithm name Fault labels 
1 2 3 4 5 6 7 8 9 10 

GSABO-KELM 98.3 100 96.7 100 100 100 100 100 100 100 
SABO-KELM [37] 98.3 96.8 87.5 100 100 93.7 79.2 96.7 96.5 100 
DBO-KELM [38] 100 96.5 84.7 100 96.7 98.3 78.7 100 81.4 100 
WOA-KELM [39] 95.1 87.0 93.3 82.3 84.5 100 95.2 100 94.7 100 
VMD-ELM [40] 75.0 100 81.3 100 75.0 46.2 86.1 80.0 78.9 100 

VMD-KELM [41] 80.0 98.3 90.6 100 96.8 78.4 61.2 90.6 94.9 100 
VMD-CNN [42] 76.9 100 83.0 100 98.3 53.7 84.7 93.7 77.8 100 
DCADAN [20] 83.3 100 83.9 100 98.3 69.5 92.1 96.8 74.1 100 

TTIMN-GCS [21] 93.7 100 85.3 100 100 88.9 84.4 98.3 71.5 100 
AHWCN [22] 87.5 96.8 90.9 100 96.8 91.5 83.7 96.7 84.6 100 
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4.2. Case 2 

4.2.1. Data Collection 

To revalidate the effectiveness of GSABO in rolling bearing diagnosis, verification tests were 
conducted using the XJTU-SY dataset [43]. The signal acquisition setup is illustrated on Fig. 13. 
Experiments were performed on a mechanical fault simulator (Spectra Quest Inc.) with seeded 
faults on NSK 6203 bearings (inner/outer races). Under a constant 1-horsepower load, vibration 
signals were meticulously collected at three rotational speeds (19.05 Hz, 29.05 Hz, 39.05 Hz) and 
three fault severity levels (mild, moderate, severe). The test rig comprised three core components: 
induction motor, rotor assembly, and loading system. A piezoelectric accelerometer (sensitivity: 
50 mV/g) acquired motor bearing signals, with data recorded at 25.6 kHz sampling frequency 
using a CoCo80 data logger. 

In this experiment, bearing data with a rotational frequency of 39.05 Hz was utilized, 
encompassing seven distinct fault conditions: normal operation, mild inner race fault, moderate 
inner race fault, severe inner race fault, mild outer race fault, moderate outer race fault, and severe 
outer race fault. Each fault signal contains 2048 sample points, with 120 samples collected per 
fault category (90 for training, 30 for testing). 

 
Fig. 13. XJTU-SY bearing fault diagnosis test rig 

4.2.2. Fault signal decomposition 

Taking the mild inner race fault as an example, the GSABO was configured with a population 
size of 15 and maximum iterations of 20 to optimize the decomposition level 𝑘 ∈ ሾ3,10ሿ and 
penalty factor 𝛼 ∈ ሾ100,2500ሿ. Using minimum envelope entropy as the objective function, the 
optimization yielded (𝑘,𝛼) = (4,164). The optimization curve is shown on Fig. 14. 

The GSABO achieved convergence in the 2nd generation, outperforming the baseline SABO 
(6th generation), DBO (4th generation), and WOA (7th generation). This experiment further 
demonstrates GSABO’s superior convergence characteristics. 

The best parameter combinations and the best IMF components for each fault type are shown 
in Table 8. 

Table 8. Optimal VMD parameters and corresponding IMF components 
Condition Labels (𝑘,𝛼) Optimal IMF 
Normal 1 (10, 517) IMF6 

Minor internal ring fault 2 (5, 164) IMF 3 
Moderate internal ring fault 3 (3, 463) IMF 3 

Major internal ring fault 4 (4, 582) IMF 2 
Minor external ring fault 5 (8, 630) IMF 7 

Moderate external ring fault 6 (7, 319) IMF 7 
Major external ring fault 7 (4, 734) IMF 4 
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Fig. 14. Performance comparison of convergence curves 

4.2.3. Fault feature identification 

Consistent with the previous experiment, time-frequency domain features of the screened IMF 
components were computed as characteristic indicators to construct the fault feature vector matrix 
for GSABO-KELM classification. Using identical optimization parameters, the optimization 
process uses classification accuracy as the fitness function. The best parameter set  (𝐶,𝑔) = (402.775,0.205) obtained through GSABO-KELM optimization yields an accuracy of 
99.0476 %, while Fig. 15 displays the test set confusion matrix obtained through GSABO-VMD 
decomposition. 

 
Fig. 15. Confusion matrix of GSABO on the test set 

For control experiments, the unoptimized SABO, DBO, and WOA algorithms were employed 
for VMD decomposition of the sample data while maintaining identical feature extraction and 
classification procedures. The test set recognition accuracies achieved were 98.5417 % (SABO), 
97.619 % (DBO), and 90 % (WOA) respectively. The corresponding test results and confusion 
matrices are presented in Figs. 16 through 18. 

The confusion matrix analysis reveals that GSABO-VMD-KELM misclassified only two 
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Label 6 fault samples as Label 1. Among the four optimization algorithms, GSABO-KELM 
achieved the fastest diagnostic speed at merely 6.31 seconds 2.35s faster than SABO-KELM 
(8.66s), 2.67s quicker than DBO-KELM (8.98s), and 4.11s swifter than WOA-KELM (10.42s). 
The improved SABO algorithm not only enhances diagnostic accuracy but also reduces processing 
time, demonstrating its superior performance in rolling bearing fault diagnosis. 

 
Fig. 16. Confusion matrix of SABO on the test set 

 
Fig. 17. Confusion matrix of DBO on the test set 

5. Conclusions 

In this paper, an optimized VMD based on GSABO decomposition of rolling bearing vibration 
signals is proposed. The IMF component obtained by the decomposition is screened by the 
envelope entropy, and then the time-frequency domain is calculated as the feature vector for 
feature extraction.  
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Fig. 18. Confusion matrix of WOA on the test set 

Finally, the GSABO optimized nuclear extreme learning machine is input to identify and 
diagnose the fault types. Through the analysis of experimental data, the following conclusions can 
be drawn: 

1) The GSABO algorithm is employed to optimize the VMD parameters 𝑘 and 𝛼, eliminating 
the need for manual or heuristic selection and effectively addressing the challenge of VMD 
parameter configuration. 

2) To enhance the efficiency of the optimization algorithm and address the issue of getting 
trapped in local optima, a chaotic map and golden sine strategy were integrated to improve the 
SABO algorithm. Through testing the CEC2005 benchmark functions and comparisons of 
evolutionary curves, the GSABO algorithm demonstrates certain advantages over the original 
SABO and other optimization algorithms. 

3) The GSABO-optimized KELM is employed to classify the feature vectors extracted from 
GSABO-VMD decomposition. By comparing the recognition results with those of unimproved 
SABO, DBO, and WOA optimized KELM and VMD, the advancement of the proposed method 
is demonstrated. Further validation is conducted using rolling bearing vibration signals from 
CWRU and XJTU, the accuracy rates reached 99.3333 % and 99.0476 %, respectively, confirming 
the effectiveness of the proposed method in rolling bearing fault identification. This approach 
provides valuable insights for research in the field of rolling bearing fault diagnosis. 

Although the proposed method demonstrates satisfactory performance in rolling bearing fault 
diagnosis, certain limitations need to be addressed. The present research is confined to vibration 
signal analysis, whereas industrial practice involves additional measurable parameters (e.g., 
temperature, current) that contain critical equipment, health information. Subsequent studies will 
focus on developing multi-sensor data fusion techniques to deliver more reliable and informative 
diagnostic solutions for maintenance engineers. 
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