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Abstract. To address the difficulties in extracting fault features of rolling bearings and the low
diagnostic accuracy, a fault diagnosis method for rolling bearings is proposed. This method
integrates the Golden Sine Algorithm (GSA) with the Subtraction-Average-Based Optimizer
(SABO) to form a Golden Sine Improved SABO Optimization Algorithm (GSABO). The GSABO
algorithm is used for parameter optimization of Variational Mode Decomposition (VMD) and
Kernel Extreme Learning Machine (KELM) in the fault diagnosis process. Firstly, the chaotic
mapping strategy is used to optimize the population initialization of the Subtractive Clustering-
Based Adaptive Optimization (SCAO) algorithm, enhancing population diversity. Secondly, the
Golden Sine Algorithm (GSA) is integrated to improve the displacement algorithm, enhancing
global search capability and effectively avoiding getting trapped in local optima. Then, the
GSABO-VMD (Golden Sine Algorithm-Based Optimized Variational Mode Decomposition) is
employed to decompose the rolling bearing fault signals, and the envelope entropy minimum
criterion is used to select the effective modal components. Finally, time-frequency domain
indicators of the selected modal components are computed to form a feature matrix, which is then
input into GSABO-KELM (Golden Sine Algorithm-Based Optimized Kernel Extreme Learning
Machine) for fault classification and recognition. Experimental analysis shows that compared to
the unmodified SABO algorithm, GSABO has significant advantages in terms of escaping local
optima, convergence speed, and accuracy. When compared with other traditional algorithms,
GSABO-VMD-KELM achieves recognition accuracies of 99.3333 % and 99.0476 % on bearing
data from Case Western Reserve University (CWRU) and Xi'an Jiao tong University (XJTU),
respectively. This demonstrates the accuracy and superiority of the algorithm and provides
valuable insights for engineering applications in rolling bearing fault diagnosis.

Keywords: subtraction average based optimizer, golden sine algorithm, variational mode
decomposition, kernel extreme learning machine, rolling bearing fault diagnosis.

1. Introduction

The health condition of rolling bearings is directly related to the safe and stable operation of
equipment. Timely detection of faults in key rolling bearings is crucial for ensuring the reliability
and safety of machinery [1-3]. Once a rolling bearing in mechanical equipment fails, it may lead
to equipment downtime, production interruptions, or even safety accidents, which can have a
severe impact on production and operations [4-6]. Therefore, it is especially important to diagnose
and predict bearing faults in a timely manner. However, due to the complex working environment
of mechanical equipment, bearings are susceptible to issues such as wear and fatigue [7], which
increases the difficulty of fault diagnosis. Therefore, researching high-precision bearing fault
diagnosis methods is of great significance for enhancing the safety and reliability of mechanical
equipment.

The fault signals of rolling bearings exhibit non-stationary and nonlinear characteristics [8].
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Therefore, signal decomposition algorithms are regarded as useful tools for extracting fault
features [9]. Empirical Mode Decomposition (EMD) [10] decomposes signals based on the time-
scale characteristics of the data itself, without the need to preset any basis functions. Once
proposed, this methodology has been extensively and successfully implemented in the domain of
fault diagnosis. Nevertheless, the ultimate efficacy and the mode admixture have significantly
constrained its applicability. To effectively resolve these challenges, a sequence of recursive
decomposition methodologies has been systematically developed, such asLocal Mean
Decomposition (LMD) [11], and Ensemble Empirical Mode Decomposition (EEMD) [12],
Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(ICEEMDAN) [13]. Nevertheless, the recursive decomposition approach fails to fundamentally
resolve the issue of mode mixing [14]. In addressing this particular concern, Konstantin et al. [15]
proposed the Variational Mode Decomposition (VMD) technique. Due to its superior filtering
capabilities and rigorous theoretical foundation, VMD has gained widespread popularity and
recognition among researchers since its introduction [16]. Meng [17] proposed an enhanced VMD
method that precisely extracts fault features through adaptive adjustment of the penalty factor.
Yang et al. [18] employed the simulated annealing (SA) algorithm to optimize VMD parameters,
successfully achieving early fault detection. Wang et al. [19] introduced a particle swarm
optimization-based VMD method for complex rotating machinery fault diagnosis. Although these
optimization algorithms demonstrate satisfactory performance in parameter optimization, these
algorithms frequently converge to local optima, potentially leading to overfitting or underfitting
scenarios that may degrade overall performance.

Following the completion of feature extraction from rolling bearing fault signals, the extracted
feature matrix requires identification and diagnosis. With the rapid development of science and
technology, deep learning diagnostic models are increasingly applied in the fault diagnosis of
rolling bearings. Such as dynamic collaborative adversarial domain adaptation networks
(DCADAN) [20], task-oriented Theil index-based meta-learning networks (TTIMN-GCS) [21],
attention-guided hierarchical wavelet convolutional networks (AHWCN) [22]. Although these
methods have all demonstrated excellent performance in the application of fault diagnosis for
rolling bearings, they still face problems such as complex computation, long diagnosis time, lack
of hyperparameter optimization strategies, and reliance on prior knowledge of fault features for
parameter setting. Common fault recognition models include Backpropagation Neural Networks
(BPNN) [23] and Extreme Learning Machines (ELM) [24], among others. The BP neural network
fault identification model suffers from several limitations, including high learning costs and
susceptibility to overfitting when handling noisy data [25]. Meanwhile, ELM faces challenges
such as random initialization of input weights and potential overfitting issues [26]. In response to
the issues, Huang et al. [27] proposed the KELM algorithm, which combines the kernel method
with the framework of extreme learning machines. It can effectively handle nonlinear relationships
and high-dimensional data, offering fast training speeds and strong generalization capabilities.
However, the KELM algorithm also has some limitations, as its performance is significantly
influenced by the regularization coefficient C and the kernel function parameter g . If C and g are
not selected properly, they may negatively impact the model’s classification accuracy. Zhao et al.
[28] employed the Particle Swarm Optimization (PSO) algorithm to optimize the regularization
coefficient C and kernel function parameter g of the KELM algorithm, thereby enhancing its
effectiveness in gearbox fault diagnosis. Yang et al. [29] proposed a rolling bearing fault diagnosis
method based on variational mode decomposition optimized by an improved artificial fish swarm
algorithm and multi-feature vector fusion with extreme learning machines. However, both particle
swarm optimization and artificial fish swarm algorithms are prone to premature convergence and
getting trapped in local optima, exhibiting poor robustness. The subtraction-average-based
optimization algorithm is a novel optimization algorithm [30] with outstanding optimization
performance. Lu Fan [31] verified that using the subtraction-average-based optimizer (SABO) to
optimize the selection process of the mode number and penalty factor in variational mode
decomposition (VMD) improved the classification accuracy of rolling bearing fault diagnosis.
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However, the SABO algorithm also has the issue of easily falling into local optima. In their study
on rolling bearing fault diagnosis based on adaptive local iterative filtering (ALIF) and
time-shifted multi-scale fluctuation dispersion entropy (TMFDE), Zhao Jiahao et al. [32] noted
that the MFDE method achieved a maximum classification accuracy of 82 % and a minimum
classification accuracy of 74 %, with a difference of 8 %. This indicates that falling into local
optima significantly impacts the classification accuracy of rolling bearing fault diagnosis.

In summary, to further improve the classification accuracy of rolling bearing fault diagnosis,
this paper proposes an improved subtraction-average-based optimizer algorithm, GSABO. The
method combines GSABO with VMD and KELM, where the GSABO-KELM model classifies
the feature matrix formed by calculating the envelope entropy of the IMF components screened
after GSABO-VMD decomposition. Ultimately, this approach identifies the fault types of rolling
bearings. The superiority of the proposed method is validated using datasets from Case Western
Reserve University and Xi’an Jiaotong University.

The main contributions of this paper are as follows:

(1) The SABO algorithm is improved by incorporating chaotic mapping strategies and the
golden sine algorithm. Compared with other optimization algorithms, the proposed GSABO
algorithm demonstrates superior performance in optimization accuracy, computational efficiency,
and convergence capability.

(2) The GSABO algorithm is employed to achieve adaptive selection of VMD parameters,
thereby reducing the complexity of the problem.

(3) By integrating the GSABO algorithm with VMD and KELM, this study provides enhanced
accuracy and convergence for rolling bearing mechanical fault diagnosis, offering new
possibilities for existing fault diagnosis technologies.

2. Fundamental theory
2.1. VMD

The key step of the VMD algorithm lies in constructing and solving the constrained variational
model. The constrained variational model is defined as follows:

{{ukr,n{iik}} {Z

k

st Y w(®) = f(0)

k

3, [S(t) + % . uk(t)] e-Jont 2},

(1

where, {u; } represents the set of IMF components obtained from the decomposed original signal;
{w} denotes the set of center frequencies corresponding to the IMF components; d, is the time
derivative operator; f(t) is the original input signal; k indicates the number of decomposition
layers.

To obtain the optimal solution for Eq. (1), it is essential to introduce penalty factor a and
Lagrange multiplier A(t), thereby transforming Eq. (1) into an unconstrained variational model as
follows:

2
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By employing the Alternating Direction Method of Multipliers (ADMM), the original
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minimization problem is transformed into a saddle-point problem involving the augmented
Lagrangian function, thereby facilitating the determination of the optimal solution for Eq. (1). The
update procedures for u; and wy, are as follows:

f ~ AMw)
an+1(a)) _ f(w) = Xizk (@) + T} o
‘ 14 2a(w — wy)?
1y 0l (w)2dw
n+1 =0 - 4
O T T @) Pde W

2.2. SABO

This algorithm exhibits strong optimization capability and rapid convergence speed. The
algorithmic procedure is as follows:

1) Algorithm initialization.

The initial positions of search agents in the search space are randomly initialized using the
following equation:

xi,d = lbd + ri,d(ubd - lbd)l i = 1;"';N; d= 11"':m: (5)

where, x; 4 represents its d-th dimensional decision variable in the search space; N represents the
number of search agents; m denotes the dimensionality of decision variables; 7; 4 is a random
number within the interval [0, 1]; ub,; and lb,; represent the upper bound and lower bound,
respectively, of the d-th dimensional decision variable.

2) Mathematical model of SABO.

The concept of computing the arithmetic mean in SABO is entirely unique, as it is based on a
special operator "—," defined as the subtraction of search agent A from search agent B, as shown
in Eq. (6):

A—y B =sign(F(A) —F(B))(A—v B), (6)

where, ¥ is an m-dimensional vector; F(A) and F(B) represent the objective function values of
search agent A and search agent B.

In the SABO algorithm, the displacement of any search agent X; in the search space is
computed as the arithmetic mean of the —, subtraction from each search agent X;
(j = 1,2,---,N). The position update scheme is as follows:

N
1
Xl'neW:XiZFi*NZXi _VXjJ i=1;2,"':N: (7)
=1

where N is the total number of search agents, and 7; is an m-dimensional vector, each component
is a random number sampled from a normal distribution over the interval [0, 1].
The particle position update formula is as follows:

X _ {Xinew’ Finew < Fi;
PlX;,  else,

®)

are the objective function values of search agent X; and X[**".

where F; and F**%
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2.3. Golden sine-enhanced SABO optimization algorithm

Although the SABO optimization algorithm exhibits stronger optimization capabilities than
traditional optimization algorithms, it still suffers from issues such as premature convergence and
getting trapped in local optima. To avoid these problems, chaotic mapping and the golden sine
method are integrated to enhance the global search ability and optimization accuracy of the SABO
algorithm. The main improvement steps consist of the following three steps:

1) Chaotic mapping can enhance the exploration and exploitation capabilities of the algorithm,
prevent the algorithm from converging to local optimal solutions, and it can increase the
randomness and diversity of the algorithm, improving the global search accuracy and convergence
speed. Among them, the Tent map [33] is simple and has better traversal uniformity and search
speed. Therefore, the Tent map is used to optimize the initial positions of particles, with the
formula as follows:

(B, 6, <05,
Ouvs = {[5’(1 —-6,), 6,>05, ©)

where, u represents the number of mapping iterations; 8,, denotes the value of the particle position
after the u-th mapping; 8,, € [0,1]; controls parameter B € [0,2]:

3 _ (B8, 6,c<[00.5),
Ourr = f(6u) = {3(1 -6,), 6,c][0.5,1]. (10)

The Lyapunov exponent A measures the sensitivity of the system to initial conditions (the
intensity of chaos), and its calculation formula is as follows:

U-
1 !
= Uz Inl" (8. (an
u=0
The derivative of the Tent map is obtained as follows:
, _ (B, 6,<0.5,
f6) = {—ﬁ, 6, > 0.5. (12)

The absolute value of the derivative is always: |[f'(8,)| = 8 .
Substituting the |f'(6,,)| into the Lyapunov exponent formula yields:

U-1
1 1

2 llmUZ)lnﬁ lim = (U-Inf) =Inp (13)
u=

U—oo

So, when 8 = 2, the system exhibits maximum chaotic behavior, so § = 2 is selected.

2)The Piecewise chaotic map is employed to generate random values for replacing r; in the
original SABO algorithm. In Eq. (7) of the SABO algorithm, 7; is a random value within the
interval [0, 1]. By substituting r; with random values generated using the Piecewise chaotic map,
the algorithm benefits from a more uniform distribution of randomness, thereby enhancing particle
diversity during the computation of average differences. The formula for the Piecewise chaotic
map is as follows:
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1% < Ti(t) < 05,
r(t+1) =1 (14)

05<nrn)<1-p,

, 1-p<r(®) <1

where the range of p and r; is [0, 1].

3) Integrate the Golden Sine Algorithm to assist particles in escaping local optima. The SABO
algorithm does not utilize the global best value in each iteration but instead updates particle
positions by computing the subtraction average of all particles’ positions. Consequently, if the
initial particle positions are poorly distributed, the algorithm is highly prone to falling into local
optima. To address this issue, the proposed improvement strategy is as follows: if the fitness value
of a particle remains unchanged in the current iteration, the Golden Sine Algorithm (GSA) is
employed to update the particle’s position [34]. This approach neither significantly increases the
computational burden of fitness evaluations nor leverages the global optimization strength of the
Golden Sine Algorithm to help SABO escape local optima. The position update formula of the
Golden Sine Algorithm is shown in Eq. (15):

XAt + 1) = XA(0)|sin(ry)| + rzsin(r1)|x1Pd(t) — szL-d(t)|, (15)

where, X2 (t) represents the spatial position of the i-th individual in the d-dimensional search
space during the t-th iteration; P4(t) is the global best position at the t-th iteration; r; is a random
number within the range [0, 27]; 7, is a random number within the range [0, 7]; x; and x, are
coefficients derived from the golden ratio. These coefficients effectively narrow the search space
while guiding the current values toward the optimum, ensuring the algorithm’s convergence;
Golden ratio coefficient T = (52 — 1)/2, x; = at + b(1 — 1), x, = a(1 — 7) + bt. The initial
values of a and b are set to —m and 7, respectively. Subsequently, a and b adapt dynamically
based on changes in the objective value, leading to corresponding updates in coefficients x;
and x,.

2.4. KELM

While retaining ELM's three-layer network structure (input layer, hidden layer, and output
layer), KELM transforms complex, linearly inseparable datasets in low-dimensional space into
inner product operations in high-dimensional space. This approach significantly improves the
model’s stability and generalization capability.

For N sets of fault samples {(x;,t;)} = 1V, the number of hidden layer neurons in the ELM
network is P, and the activation function is g(+), whose mathematical expression is:

F(x) =HB =Y, (16)
gwix; +by) -+ g(wpxy + bp)

H= ; : , (17)
gwixy +by) - gwpxy + bp

where, wy, -, wp denotes the connection weights between the input layer and hidden layer;
by, -+, bp represents the bias vector of the hidden layer neurons; H is the hidden layer output
matrix; f is the output weight matrix between the hidden layer and output layer; Y is the target
output matrix.
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The formula for £ is:

B =HT (HHT + é)_l Y, (18)

where, [ is the identity matrix, and C is the regularization coefficient.
Introduce the kernel function, expressed as:

HHT(U) = h(xl)h(x]) = K(xl-, Xj).
where, K (*) is the kernel function.
The radial basis function (RBF), a commonly used kernel function, is selected as the kernel.
The RBF kernel can be defined as:

K(a,b) = exp(—=glla — blI*), (20)

where, g is the nuclear parameter.
Therefore, F(x) can be rewritten as:

-1

PG = HHT (HT 1) ¥ = (00 +2) on

where n represents the number of samples.
2.5. Fault diagnosis process

The overall flowchart for fault diagnosis is shown in Fig. 1. The specific steps for optimizing
VMD and KELM using GSABO are as follows:

Step 1: Input the original vibration data and set the fitness function as well as the GSABO
parameters.

Step 2: Initialize the population and positions of particles in the GSABO algorithm for VMD
parameters using the Tent chaotic map.

Step 3: Decompose the signal using VMD and calculate the envelope entropy of each IMF
component

Step 4: Replace 7; in the position update formula with the Piecewise chaotic map and
selectively fuse the golden sine strategy to update particle positions based on fitness value
variations.

Step 5: Evaluate whether to update the current best solution. If the fitness value of the particle's
current position is better than the historical best fitness value, update this position as the new
position for the corresponding population particle and save this fitness value as the optimal fitness
value

Step 6: Perform iterative cycles until the preset stopping criteria are met.

Step 7: Decompose the signal using the optimal parameters obtained from GSABO-optimized
VMD.

Step 8: Divide the dataset into training samples and testing samples.

Step 9: Initialize the population and positions of GSABO particles within the KELM parameter
range by incorporating the Tent chaotic mapping.

Step 10: Optimize the regularization coefficient C and kernel parameter g in KELM using
GSABO, and calculate the fitness value of each GSABO individual

Step 11: Update particle positions using the GSABO algorithm.
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Step 12: Determine whether the termination criteria are met. If satisfied, proceed to the next
step; otherwise, return to Step 10.
Step 13: Obtain the optimal regularization parameter and kernel parameter.

GSABO optimizes

VMD decomposition
{ Original vibration signal }

Set the fitness function and GSABO
parameters

The fusion Tent Chaotic map initializes the
VMD parameters within the parameters of the

GSABO particle population location

The number of modes & and penalty factor a in
VMD are optimized by GSABO

l

The minimum envelope entropy of each IMF
component is calculated

|

1; in the position update formula is replaced by
Piecewise chaotic mapping, and the fusion golden sine
update particle position is selected according to whether
the fitness value changes or not

‘Whether the
termination
condition is met

[ Save the optimal VMD parameters }

[ Use GSABO-VMD to decompose the signal ]

l

[ Enter training samples and test samples ]

|

The fusion Tent Chaotic map initializes the KELM
parameters within the parameters of the GSABO particle
population location

l

The regularization parameter C and kernel parameter g]

GSABO optimizes
classification KELM

in KELM are optimized by GSABO

|

[The fitness values of GSABO individuals were calculated}

l

{ GSABO was used to update particle positions }

‘Whether the
termination
condition is met

Output the optimal regularization
parameter C and the kernel parameter g

!
End
Fig. 1. Flowchart of the GSABO-VMD-KELM fault diagnosis method
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3. Simulation experiment

To demonstrate the advantages of the improved SABO optimization algorithm incorporating
golden sine (GSABO) over SABO and other traditional optimization algorithms, the F1, F5, and
F8 functions from the CEC2005 benchmark test set were selected for testing and comparison. The
expressions of these functions are shown in Table 1, and the comparison results are illustrated in

Fig. 2-4.

Table 1. Basic function test information

Function Dimensionality | Search range
n
Fi(x) = Z x? 30 [~100, 100]
i
n-1
Fo(x) = 2[100(;:”1 — X + (- 17 30 (30, 30]
L n
Fg(x) = Z —x; sin(y/|x; D) 30 [-500, 500]
i
F1
10°%
x10*
2
1.5 10—100
2
o 1 g
0.5 E 107200
0
100
100
10—300
y -100 -100 % 0 200 400 600 800 1000

Iteration
Fig. 2. Comparison of optimization results on F1 function

F5 Convergence curve

1 01 0
' —¥*— SABO
—A—DBO
—b>—GWO
—*— GSABO
1 05 L }

Fitness value

0 200 400 600 800 1000
Iteration

Fig. 3. Comparison of optimization results on F5 function
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F8

Convergence curve

—%— SABO
—A—DBO
—p—GWO

—#— GSABO

Fitness value

-10° : : : :
0 200 400 600 800 1000
Iteration

Fig. 4. Comparison of optimization results on F8 function

From the comparative results, it can be observed that F5 and F8 are among the most
challenging functions in the CEC2005 benchmark set for evaluating optimization algorithm
performance. For F5, whose theoretical minimum is 0, the improved algorithm achieved an
optimization value of 6.19x10°, whereas the Whale Optimization Algorithm (WOA), Dung
Beetle Optimizer (DBO), and Subtraction-Average-Based Optimizer (SABO) all yielded values
around 27. For F8, a multimodal function with multiple peaks, intelligent algorithms are highly
prone to falling into local optima during optimization. Its theoretical minimum is —12569.5, and
GSABO obtained a near-optimal value of —12569.4737, which is extremely close to the theoretical
optimum. Combined with the results in Fig. 4, GSABO outperforms the other three algorithms
and exhibits faster convergence speed. In summary, based on the test results of three functions,
the improved GSABO demonstrates significant advantages in both convergence speed and final
optimization accuracy compared to the other algorithms.

4. Experimental analysis
4.1. Case 1
4.1.1. Data collection

To validate the effectiveness of the GSABO algorithm in rolling bearing fault diagnosis, an
empirical evaluation was conducted using the bearing dataset from CWRU. Fig. 5 shows the basic
configuration of the test rig. The specifications of the bearing data are as follows: SKF bearings
were used, the motor was running at a speed of 1797 r/min, and the load was set to zero
horsepower, with a sampling frequency of 12 kHz. The dataset covers four different fault
conditions: normal state, inner race fault, outer race fault, and ball fault, with corresponding fault
diameters of 0.007 inches, 0.014 inches, and 0.021 inches, respectively.

There are 10 types of faults. For the convenience of the experiment, these faults are coded as
follows: “1” represents the normal state, “2-4” represent inner ring faults with diameters of 0.007,
0.014, and 0.021 inches, “5-7” represent rolling element faults with diameters of 0.007, 0.014, and
0.021 inches, and “8-10” represent outer ring faults with diameters of 0.007, 0.014, and 0.021
inches. Each fault signal contains 2048 sampling points, and there are 120 fault samples collected
for each type of fault, with 90 samples used for the training set and 30 samples used for the testing
set.
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Fig. 5. Bearing data acquisition patform gf Case Western Reserve University
4.1.2. Fault signal GSABO-VMD decomposition

After acquiring the fault signal, the first step is to set the parameters for GSABO-VMD. The
population size of GSABO is set to 15, and the maximum number of iterations is set to 20. The
decomposition layer k and the penalty factor a are optimized within the ranges k € [3,10] and
a € [100,2500], with the objective of minimizing the envelope entropy. Taking a fault signal
with a fault size of 0.007 inches as an example, the optimization results obtained through GSABO
are (k, a) = (5,482). The VMD decomposition results optimized by GSABO are shown in Fig. 6,
while the decomposition results using the default parameter set [4, 2000] [35] are shown in Fig. 7.

Spectrum plot
_ 50F T T T =
= X 608
E Y 54.0186 i ‘ : :
P -
0 1000 2000 3000 4000 5000 6000
Frequency
50 F T . T T e |
& X 1464
E Y 55.8544 i . ;
0
0 1000 2000 3000 4000 5000 6000
Frequency
T * T
% A ( X 2584
=R ‘ L bl Y62.2424 . ‘
0 1000 2000 3000 4000 5000 6000
Frequency
40 T T .-
E X 3376
E 20 L £ 23/ i) -
=, ; . " Y 38.9705 ‘
0 1000 2000 3000 3000 5000 6000
Frequency
T T -
i Sor X 3536 i
= J| Y 66.8328
0 L 1 L - L
0 1000 2000 3000 4000 5000 6000
Frequency

Fig. 6. VMD frequency spectrum decomposition diagram after parameter optimization

According to the theoretical frequency calculation formula of the inner ring fault of rolling
bearings, as shown in Eq. (22):

d
fi = 0.5zf (1 + 3 cos a), (22)
where, d represents the diameter of the rolling element; D represents the raceway pitch diameter;
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a represents the contact angle of the bearing; z represents the number of rolling elements; f
represents the frequency conversion.

Spectrum plot
T

50 F T T T -
= X 608
= Y 53.7499
0 AL L ! ! 1
0 1000 2000 3000 4000 5000 6000
Frequency
50 T ° T T T
b Y 50.1791
0 il adl 1 1 1
0 1000 2000 3000 4000 5000 6000
Frequency
50F T T ° T T ]
3% X 2744
= MM Y 56.6583
0 ! L ML PR 1 |
0 1000 2000 3000 4000 5000 6000
Frequency
T T ° T
& 50 AMJ X 3536 ]
= Y 79.7803
0 1 I 1 L7 e I
0 1000 2000 3000 4000 5000 6000
Frequency

Fig. 7. VMD frequency spectrum decomposition diagram with default parameters

The theoretical frequency of the inner ring fault of the 6205-2RS bearing can be calculated as
134.775 Hz, the fault frequency of the IMF4 component in Fig. 6 is 3376 Hz, which is very close
to the 25 times fault frequency of the inner ring at 3369.375 Hz, while the fault frequency
decomposed in Fig. 7 differs significantly from the fault frequency of the inner ring.

The optimized VMD decomposition includes inner ring failure frequency. As observed from
the amplitude of the spectrogram, this component represents significant features of the original
signal that were overlooked under default parameters. The results demonstrate that the optimized
parameters can more effectively characterize the features of the original signal.

Fig. 8 shows the evolutionary curve comparison of the algorithms. GSABO achieves
convergence at the 3rd generation, while the unimproved SABO converges at the 6th generation.
DBO completes convergence at the 6th generation, and WOA reaches convergence at the 8th
generation. Notably, GSABO demonstrates significantly better optimization performance than the
other three algorithms, which clearly illustrates the superiority of the proposed optimization
method.

4.1.3. Feature extraction from signal decomposition results

Prior to feature extraction from the IMF components obtained through GSABO-VMD
decomposition, it should be noted that a smaller envelope entropy value indicates richer fault
information, while a larger value suggests less fault information [36]. Given that each IMF
component contains different characteristic quantities, we select the IMF component with the
smallest envelope entropy for feature extraction. The calculated envelope entropy values for each
IMF component are presented in Table 2.

Table 2. Computed envelope entropy values
IMF1 IMF2 IMF3 IMF4 IMF5
7.3045 | 7.30464 | 7.30471 | 7.30445 | 7.30451
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Among these five IMF components, IMF4 has the smallest envelope entropy value, so it is
selected as the optimal IMF component. After completing the IMF component selection, we
calculate time-frequency domain features including mean and variance of the optimal IMF
components as characteristic indicators for feature extraction.
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Fig. 8. Performance comparison of convergence curves

Using the same methodology as presented in the provided examples, the parameter
combinations (k, &) for these 10 fault types and their corresponding optimal IMF components can
be obtained. Detailed data are shown in Table 3.

Table 3. Optimal VMD parameters and corresponding IMF components

Condition | Fault Size | Label (k,a) Optimal IMF
Normal 0.007 1 (8, 1369) IMF8
IRF 0.007 2 (5,482) IMF4
IRF 0.014 3 (7, 3000) IMF5
IRF 0.021 4 (3, 190) IMF3
REF 0.007 5 (6, 583) IMF3
REF 0.014 6 (4, 3000) IMF3
REF 0.021 7 | (8,158) IMF5
ORF 0.007 8 (6, 705) IMF6
ORF 0.014 9 (8,152) IMF3
ORF 0.021 10 (4,1274) IMF4

4.1.4. Fault feature identification

By computing time-frequency domain features of the screened IMF components as
characteristic indicators, a fault feature vector matrix is constructed for fault type classification
using GSABO-KELM. The samples are fed into KELM, with its kernel parameter C and
regularization coefficient g optimized by GSABO. For the algorithm parameters, the population
size is set to 20, the maximum iterations to 30, and the optimization ranges for C and g are set as
[0, 1000] respectively. The optimization process uses classification accuracy as the fitness
function. The best parameter set (C,g) = (1000,0.546) obtained through GSABO-KELM
optimization yields an accuracy of 99.3333 %, while Fig. 9 shows the test set confusion matrix
using GSABO-VMD decomposition.
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GSABO-KELM Classification accuracy: 99.3333%
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Fig. 9. Confusion matrix of GSABO on the test set
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Fig. 10. Confusion matrix of SABO on the test set

For comparative analysis, we employed the previously benchmarked unoptimized SABO,
DBO, and WOA algorithms for VMD decomposition of the experimental dataset. Maintaining
identical feature extraction and classification procedures, the test set recognition accuracies
achieved were 95 %, 93.6667 %, and 91 % respectively. The corresponding test results and
confusion matrices are presented in Fig. 10 through 12.

Following the procedure, the GSABO-VMD-KELM algorithm was compared with existing
state-of-the-art methods, introduce accuracy, precision, recall, and F1 score as evaluation metrics,
the formula is as follows:

2 _ TP +TN (23)
ccuary =rp +EP TN+ FN

e 24

Precision 77:11: + FP’ (24)

_ 25

Recall TP+ FN' 25)
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(26)

where, True Positive (TP): the model predicted a positive case and it was a positive case; False
Positive (FP): the model predicted a positive case, but it was a negative case. True Negative (TN):
the model predicted a negative case, and it was a negative case. False Negative (FN): the model
predicted a negative case, but it was a positive case.

DBO-KELM classification accuracy: 93.6667%

y 0.0% 00% 00% 00% 00% 00% 00% 00% 0.0%
0 0 0 0 0 0 0 0
5 0.0% 00% 00% 00% 00% 00% 67% 0.0%
0 0 0 0 0 0 0 2 0
5| 0.0% 0.0% 33% 0.0% 100% 0.0% 0.0% 0.0%
0 0 1 0 3 0 0 0
4| 00% 00%  0.0% 0.0% 00% 00% 0.0% 0.0%
0 0 0 0 0 0 0 0
35| 00% 00% 00% 33% 00% 00% 00% 0.0%
8 0 0 0 1 0 0 0 0
- 6| 00% 00% 00% 00% 00% KCEREZN 00% 00% 00% 00%
= 0 0 0 0 0 29 0 0 0 0
;| 00% 00% 100% 00% 00%  0.0% 0.0% 13.3% 0.0%
0 0 3 0 0 0 0 4 0
g | 00% 00% 00% 00% 00% 00% 00% [RICKEZN 00%  0.0%
0 0 0 0 0 0 0 30
g| 00% 00% 67% 00% 00% 00% 100% 0.0%
0 0 2 0 0 0 3 0
10| 00% 00% 00% 00% 00% 00% 00% 0.0%
0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10
Predicted label
Fig. 11. Confusion matrix of DBO on the test set
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Fig. 12. Confusion matrix of WOA on the test set
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The preparation rates of different fault diagnosis models are shown in Table 4, the precision is
presented in Table 5, recall rates are presented in Table 6 and the F1 scores are illustrated in

Table 7.

In the comprehensive assessment, both GSABO-VMD-KELM and SABO-VMD-KELM
Nevertheless,
SABO-VMD-KELM displayed relatively lower accuracy and F1 score in diagnosing the seventh
category of faults, indicating a minor limitation. Conversely, Method 1 effectively mitigated the

exhibited outstanding performance across the four diagnostic metrics.
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issue of misdiagnosis, demonstrating robust diagnostic capabilities.

Table 4. Performance comparison of different algorithms

Number Algorithm Name Classification accuracy
1 GSABO-VMD-KELM 99.3333 %
2 SABO-VMD-KELM [37] 95 %

3 DBO-VMD-KELM [38] 93.6667 %
4 WOA-VMD-KELM [39] 91 %
5 VMD-ELM [40] 83.3333 %
6 VMD-KELM [41] 89.6667 %
7 VMD-CNN [42] 87.6667 %
8 DCADAN [20] 90 %
9 TTIMN-GCS [21] 92.3333 %
10 AHWCN [22] 93 %

Table 5. Comparative analysis of (Precision %) across various methodologies

. Fault labels
Algorithm Name 1 5 3 4 5 6 7 3 9 10
GSABO-VMD-KELM | 96.7 | 100 | 96.7 | 100 | 100 | 100 | 100 | 100 | 100 | 100
SABO-VMD-KELM [37] | 96.7 | 100 | 93.3 | 100 | 100 | 100 | 70.0 | 96.7 | 93.3 | 100
DBO-VMD-KELM [38] | 100 | 100 | 83.3 | 100 | 96.7 | 96.7 | 80 100 | 80 | 100
WOA-VMD-KELM [39] | 93.5 | 76.9 | 93.3 | 100 | 73.2 | 100 | 90.9 | 100 | 100 | 100
VMD-ELM [40] 100 | 100 | 86.7 | 100 | 60 30 | 83.3 | 100 | 73.3 | 100
VMD-KELM [41] 70 | 96.8 | 85.3 | 100 | 93.8 | 95.2 | 78.9 | 853 | 96.6 | 100
VMD-CNN [42] 62.5 | 100 | 77.1 | 100 | 100 | 100 | 86.2 | 88.2 | 87.5 | 100
DCADAN [20] 100 | 100 | 86.7 | 100 | 96.7 | 53.3 | 96.7 | 100 | 66.7 | 100
TTIMN-GCS [21] 100 | 100 | 86.7 | 100 | 100 | 80.0 | 90.0 | 100 | 66.7 | 100
AHWCN [22] 82.4 1 93.8 | 833 | 100 | 93.8 | 93.1 | 92.0 | 96.7 | 100 | 100

Table 6. Comparison of (recall%) among different methods.

. Fault labels
Algorithm Name 1 5 3 4 s 6 7 3 9 10
GSABO-VMD-KELM 100 | 100 | 96.7 | 100 | 100 | 100 | 100 | 100 | 100 | 100
SABO-VMD-KELM [37] | 100 | 93.8 | 82.4 | 100 | 100 | 88.2 | 91.3 | 96.7 | 100 | 100
DBO-VMD-KELM [38] | 100 | 93.8 | 86.2 | 100 | 96.7 | 100 | 77.4 | 100 | 82.8 | 100
WOA-VMD-KELM [39] | 96.7 | 100 | 93.3 | 70.0 | 100 | 63.3 | 100 | 100 | 90 | 100
VMD-ELM [40] 60.0 | 100 | 76.5 | 100 | 100 | 100 | 89.2 | 66.7 | 85.5 | 100
VMD-KELM [41] 93.3 | 100 | 96.7 | 100 | 100 | 66.7 | 50 | 96.7 | 93.3 | 100
VMD-CNN [42] 100 | 100 | 90.0 | 100 | 96.7 | 36.7 | 83.3 | 100 | 70.0 | 100
DCADAN [20] 71.4 | 100 | 81.3 | 100 | 100 | 100 | 87.9 | 93.8 | 83.3 | 100
TTIMN-GCS [21] 88.2 | 100 | 83.9 | 100 | 100 | 100 | 79.4 | 96.8 | 77.0 | 100
AHWCN [22] 93.3 | 100 | 100 | 100 | 100 | 90.0 | 76.7 | 96.7 | 73.3 | 100

Table 7. Comparison of (F1%) of different methods

. Fault labels

Algorithm name 1 2 3 4 5 6 7 3 9
GSABO-KELM 98.3 | 100 | 96.7 | 100 | 100 | 100 | 100 | 100 | 100 | 100
SABO-KELM [37] | 98.3 | 96.8 | 87.5 | 100 | 100 | 93.7 | 79.2 | 96.7 | 96.5 | 100
DBO-KELM [38] 100 | 96.5 | 84.7 | 100 | 96.7 | 98.3 | 78.7 | 100 | 81.4 | 100
WOA-KELM [39] | 95.1 | 87.0 | 93.3 | 82.3 | 84.5 | 100 | 95.2 | 100 | 94.7 | 100
VMD-ELM [40] 75.0 | 100 | 81.3 | 100 | 75.0 | 46.2 | 86.1 | 80.0 | 78.9 | 100
VMD-KELM [41] | 80.0 | 98.3 | 90.6 | 100 | 96.8 | 78.4 | 61.2 | 90.6 | 94.9 | 100
VMD-CNN [42] 76.9 | 100 | 83.0 | 100 | 98.3 | 53.7 | 84.7 | 93.7 | 77.8 | 100
DCADAN [20] 833 | 100 | 83.9 | 100 | 98.3 | 69.5 | 92.1 | 96.8 | 74.1 | 100
TTIMN-GCS [21] | 93.7 | 100 | 85.3 | 100 | 100 | 88.9 | 84.4 | 98.3 | 71.5 | 100
AHWCN [22] 87.5 1 96.8 | 90.9 | 100 | 96.8 | 91.5 | 83.7 | 96.7 | 84.6 | 100
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4.2. Case 2
4.2.1. Data Collection

To revalidate the effectiveness of GSABO in rolling bearing diagnosis, verification tests were
conducted using the XJTU-SY dataset [43]. The signal acquisition setup is illustrated on Fig. 13.
Experiments were performed on a mechanical fault simulator (Spectra Quest Inc.) with seeded
faults on NSK 6203 bearings (inner/outer races). Under a constant 1-horsepower load, vibration
signals were meticulously collected at three rotational speeds (19.05 Hz, 29.05 Hz, 39.05 Hz) and
three fault severity levels (mild, moderate, severe). The test rig comprised three core components:
induction motor, rotor assembly, and loading system. A piezoelectric accelerometer (sensitivity:
50 mV/g) acquired motor bearing signals, with data recorded at 25.6 kHz sampling frequency
using a CoCo80 data logger.

In this experiment, bearing data with a rotational frequency of 39.05 Hz was utilized,
encompassing seven distinct fault conditions: normal operation, mild inner race fault, moderate
inner race fault, severe inner race fault, mild outer race fault, moderate outer race fault, and severe
outer race fault. Each fault signal contains 2048 sample points, with 120 samples collected per
fault category (90 for training, 30 for testing).

recorder<’ senseor<’

Fig. 13. XJTU-SY bearing fault diagnosis test rig
4.2.2. Fault signal decomposition

Taking the mild inner race fault as an example, the GSABO was configured with a population
size of 15 and maximum iterations of 20 to optimize the decomposition level k € [3,10] and
penalty factor @ € [100,2500]. Using minimum envelope entropy as the objective function, the
optimization yielded (k, @) = (4,164). The optimization curve is shown on Fig. 14.

The GSABO achieved convergence in the 2nd generation, outperforming the baseline SABO
(6th generation), DBO (4th generation), and WOA (7th generation). This experiment further
demonstrates GSABO’s superior convergence characteristics.

The best parameter combinations and the best IMF components for each fault type are shown
in Table 8.

Table 8. Optimal VMD parameters and corresponding IMF components

Condition Labels (k,a) Optimal IMF

Normal 1 (10, 517) IMF6

Minor internal ring fault 2 (5,164) IMF 3
Moderate internal ring fault 3 (3,463) IMF 3
Major internal ring fault 4 (4,582) IMF 2
Minor external ring fault 5 (8, 630) IMF 7
Moderate external ring fault 6 (7,319) IMF 7
Major external ring fault 7 (4,734) IMF 4
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Fig. 14. Performance comparison of convergence curves

4.2.3. Fault feature identification

Consistent with the previous experiment, time-frequency domain features of the screened IMF
components were computed as characteristic indicators to construct the fault feature vector matrix
for GSABO-KELM classification. Using identical optimization parameters, the optimization
process uses classification accuracy as the fitness function. The best parameter set
(C,g) = (402.775,0.205) obtained through GSABO-KELM optimization yields an accuracy of

99.0476 %, while Fig. 15 displays the test set confusion matrix obtained through GSABO-VMD
decomposition.

GSABO-KELM Classification accuracy: 99.0476%

10(
1 H 0.0% 0.0% 0.0%

True label
»

Prediction label

Fig. 15. Confusion matrix of GSABO on the test set

For control experiments, the unoptimized SABO, DBO, and WOA algorithms were employed
for VMD decomposition of the sample data while maintaining identical feature extraction and
classification procedures. The test set recognition accuracies achieved were 98.5417 % (SABO),
97.619 % (DBO), and 90 % (WOA) respectively. The corresponding test results and confusion
matrices are presented in Figs. 16 through 18.

The confusion matrix analysis reveals that GSABO-VMD-KELM misclassified only two
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Label 6 fault samples as Label 1. Among the four optimization algorithms, GSABO-KELM
achieved the fastest diagnostic speed at merely 6.31 seconds 2.35s faster than SABO-KELM
(8.66s), 2.67s quicker than DBO-KELM (8.98s), and 4.11s swifter than WOA-KELM (10.42s).
The improved SABO algorithm not only enhances diagnostic accuracy but also reduces processing
time, demonstrating its superior performance in rolling bearing fault diagnosis.

SABO-KELM Classification accuracy: 98.5714%

10(
100.0%
30

0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0 0 0 0 0 90

100.0% 0.0%
0 30

True label
S

0.0%

0.0%

0.0%
0

1 2 3 4 5 6 @
Prediction label

Fig. 16. Confusion matrix of SABO on the test set

DBO-KELM Classification accuracy: 97.619%
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Fig. 17. Confusion matrix of DBO on the test set

5. Conclusions

In this paper, an optimized VMD based on GSABO decomposition of rolling bearing vibration
signals is proposed. The IMF component obtained by the decomposition is screened by the
envelope entropy, and then the time-frequency domain is calculated as the feature vector for
feature extraction.
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WOA-KELM Classification accuracy: 90%
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Fig. 18. Confusion matrix of WOA on the test set

Finally, the GSABO optimized nuclear extreme learning machine is input to identify and
diagnose the fault types. Through the analysis of experimental data, the following conclusions can
be drawn:

1) The GSABO algorithm is employed to optimize the VMD parameters k and «, eliminating
the need for manual or heuristic selection and effectively addressing the challenge of VMD
parameter configuration.

2) To enhance the efficiency of the optimization algorithm and address the issue of getting
trapped in local optima, a chaotic map and golden sine strategy were integrated to improve the
SABO algorithm. Through testing the CEC2005 benchmark functions and comparisons of
evolutionary curves, the GSABO algorithm demonstrates certain advantages over the original
SABO and other optimization algorithms.

3) The GSABO-optimized KELM is employed to classify the feature vectors extracted from
GSABO-VMD decomposition. By comparing the recognition results with those of unimproved
SABO, DBO, and WOA optimized KELM and VMD, the advancement of the proposed method
is demonstrated. Further validation is conducted using rolling bearing vibration signals from
CWRU and XJTU, the accuracy rates reached 99.3333 % and 99.0476 %, respectively, confirming
the effectiveness of the proposed method in rolling bearing fault identification. This approach
provides valuable insights for research in the field of rolling bearing fault diagnosis.

Although the proposed method demonstrates satisfactory performance in rolling bearing fault
diagnosis, certain limitations need to be addressed. The present research is confined to vibration
signal analysis, whereas industrial practice involves additional measurable parameters (e.g.,
temperature, current) that contain critical equipment, health information. Subsequent studies will
focus on developing multi-sensor data fusion techniques to deliver more reliable and informative
diagnostic solutions for maintenance engineers.
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