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Abstract. Unmanned Aerial Vehicles (UAVs) often face infrequent fault occurrences and high
manual annotation costs, resulting in a critical shortage of valid fault samples for diagnostic
research. Traditional fault diagnosis methods struggle with small sample sizes. This paper
proposes a novel deep metric learning method, the Multi-Scale Convolutional Siamese Network
(MSCSN), to address the few-shot learning problem in UAV rotor fault diagnosis. First, discrete
wavelet transform (DWT) is used to compress and normalize the vibration signals, enhancing the
prominence of signal features. Then, based on the multi-scale convolutional neural network
(MS-CNN) model, the network automatically extracts multi-level features from rotor fault
vibration signals, improving its adaptability to complex data. Finally, the Siamese network
structure, with shared parameters and identical architecture, processes sample pairs and
incorporates a small number of support samples for few-shot learning. Experimental results show
that the proposed model achieves a highest accuracy of 94.42 % in few-shot tasks. In cross-domain
transfer learning tests, the model achieves an average accuracy of 90.28 %, demonstrating its
superior generalization ability and robustness across different environments. We also validated
the model's stability using the publicly available MVS-UAV-BF dataset.

Keywords: UAV fault diagnosis, few-shot learning, multi-scale convolutional neural network
(MSCNN), Siamese network, metric learning.

1. Introduction

Technology has been a key driver of globalization, with Unmanned Aerial Vehicles (UAVs)
being increasingly adopted across various sectors such as military, healthcare, and agriculture.
UAV fault diagnosis technology is critical for improving system reliability, ensuring safety during
flight, and minimizing unnecessary costs. In recent years, fault diagnosis techniques have seen
significant advancements [1]-[4].

In intelligent UAV fault diagnosis, machine learning and early deep learning methods have
achieved promising results. Chen et al. [5] developed a UAV sensor fault diagnosis approach based
on a BP neural network combined with a genetic algorithm. Gino lannace [6] constructed a
decision-tree-based classification model using UAV-generated noise measurements to detect
imbalanced rotor blades. Chen et al. [7] replaced traditional shallow neural networks with deep
belief networks (DBNs) trained on a large dataset to enable early fault warnings. Yang et al. [8]
proposed a UAV fault pattern recognition method using sequential information fusion and support
vector machines.

With the rise of deep learning, fault diagnosis has been significantly enhanced, eliminating the
need for time-consuming manual analysis. Techniques like Convolutional Neural Networks
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(CNN) [9]-[13] and Long Short-Term Memory networks (LSTM) [14]-[16] effectively extract
fault information but typically require large amounts of training data. However, in practical
industrial settings, fault data is often limited, and labeled samples are scarce. Recent studies have
focused on diagnosing faults with limited data. For instance, Chen et al. [16] proposed a hybrid
neural network model combining width learning and CNN, which showed promising results in
few-shot fault diagnosis. Hang et al. [17] applied Principal Component Analysis (PCA) to handle
imbalanced fault diagnosis data, and Duan et al. [18] introduced the Support Vector Data
Description (SVDD) method for dealing with imbalanced datasets. Recently, deep neural
networks leveraging few-shot learning have gained traction for solving data scarcity issues and
have been applied in areas such as intelligent agriculture [19], image classification [20], [21],
incremental learning [22], and mechanical fault diagnosis [23]-[25].

Despite the success of few-shot learning in fault diagnosis, its application to UAV fault
diagnosis has been limited. To tackle the problem of diagnosing UAV faults with limited samples,
this paper introduces a Multi-Scale Convolutional Siamese Network (MSCSN), using metric
learning to achieve effective rotor fault diagnosis in few-shot scenarios. The contributions of this
paper are as follows:

1) Multi-Scale convolutional neural network automatically extracts feature representations
from UAV rotor fault vibration signals using convolutional neural networks at different scales,
effectively capturing multi-level signal features.

2) Siamese network enhances generalization through pair generation and feature comparison,
while the contrastive loss function drives similar samples to cluster and dissimilar samples to
separate, further improving the accuracy of fault diagnosis.

3) Exact fault types of drone rotors are automatically diagnosed by leveraging vibration signals
through a Siamese network-based metric learning algorithm, overcoming data scarcity without
requiring additional frequency analysis. When considering the challenges in UAV fault diagnosis,
such as the necessity for cross-domain fault identification.

2. Related work

In recent years, hybrid approaches that combine deep learning with mathematical modeling or
signal processing have been increasingly applied to unmanned aerial vehicle fault diagnosis.
Among mathematical models, state observer-based methods are commonly used, especially when
data augmentation is needed. A well-known technique in this category is filtering, which relies on
the dynamic equations of the system being analyzed. By processing these equations, the key
harmonic components in generated signals can be identified. In fault detection systems, control
signal filtering is commonly employed for diagnosis. Xu et al. [26] proposed a Physics-Informed
Probabilistic Deep Network (PIPDN) that integrates physical priors into the loss function while
quantifying uncertainty, thus improving reliability in fault diagnosis. Lai et al. [27] developed a
Physics-Informed Deep Autoencoder for fault detection in newly designed systems, embedding
physical laws into training to enhance detection under small-sample and weakly labeled
conditions. Zarchi et al. [28] presented an adaptive physics-guided hybrid diagnostic method
combining physics-based feature libraries with evolutionary optimization for cross-condition fault
identification. The establishment of precise physical models is a necessary prerequisite for
diagnosis. However, building accurate physical models for UAVs is both difficult and time-
consuming. Moreover, when fault diagnosis is required for different UAVs, the constructed
models are often not reusable.

Signal-based techniques such as the Fast Fourier Transform (FFT) and its variants are still
dominant, but decomposition methods and signal envelope analysis are gaining attention due to
their excellent feature extraction capabilities. These approaches bridge the gap between traditional
signal processing and deep learning techniques. Xu et al. [29] proposed LTFAFormer, a
lightweight Transformer architecture capable of robust bearing fault diagnosis in high-noise
environments, suitable for industrial deployment. Yuan et al. [30] introduced the
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IWOA-VMD-KELM pipeline, achieving high accuracy on CWRU and SEU datasets. Jiang et al.
[31] presented a parallel TCN-Transformer hybrid model, capturing both local temporal features
and global dependencies for improved diagnostic accuracy. These methods have achieved notable
results; however, selecting appropriate signal processing techniques and extracting suitable signal
features often requires researchers to possess extensive knowledge and expertise. Although this
approach is highly popular among researchers, it raises the threshold for practical application.

In the field of intelligent fault diagnosis, researchers have proposed various few-shot learning
methods to address the issue of sample scarcity, including meta-learning, data augmentation, and
metric learning. Li et al.'s Meta-Feature Enhancement Meta-Learning (MFEML) [32] for bearing
fault identification across different rigs, and Luo et al. Elastic Prototypical Network (EProtoNet)
[33] for unstable-speed fault diagnosis. Tang et al. [34] proposed a prior-knowledge-enhanced
self-supervised framework using time—frequency invariance, reducing labeled data needs while
improving cross-condition transfer. Pan et al. [35] proposed CWDAN-SCL, integrating supervised
contrastive learning with a complementary weighted dual-adversarial network for open-set
domain-adaptive fault diagnosis.

Metric learning approaches — particularly Siamese networks optimized with contrastive or
triplet objectives — have become a mainstay for few-shot fault diagnosis because they learn an
embedding in which intra-class samples are close while inter-class samples are separated by a
margin. Their pairwise (or episodic) formulation effectively amplifies scarce labels by generating
o(N?) training pairs from N samples, easing data scarcity and class imbalance. In vibration-based
diagnosis, Siamese models are also attractive for cross-condition generalization: once a stable
metric space is learned, novel classes or operating conditions can be handled with lightweight
support sets and nearest-neighbor classification, avoiding full model retraining. Nevertheless,
many existing Siamese pipelines rely on single-scale convolutional encoders or hand-crafted
features, which may under-represent multi-frequency, transient, and long-range temporal patterns
that are characteristic of UAV rotor signals. These limitations motivate a multi-scale,
sequence-aware encoder coupled with a simple metric objective. The Principle of Metric Learning
Based on Siamese Networks in Fig. 1. By inputting a pair of samples (such as images) into a
shared-parameter feature extractor, their feature representations are extracted, and then their
distance or similarity is computed to determine whether they belong to the same or different

categories.

[ Distance Metric: d}(xy,X;) = ||h(,2) - h(zz)”z ]

A pair of faces

Fig. 1. The- prinl of metric learning based on Siamese networks
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Building on the above, we adopt a Siamese architecture trained with a contrastive loss while
designing a Multi-Scale CNN encoder augmented with LSTM-based temporal modeling. Two
parallel convolutional paths capture complementary global (low-frequency, long-range) and local
(high-frequency, transient) attributes; element-wise feature fusion yields a compact embedding
used with Euclidean distance at test time for support-query matching. This design preserves the
label efficiency and generalization of metric learning while better aligning the encoder with the
spectral-temporal structure of rotor vibrations. In Section 3 we formalize the metric and loss, and
in Section 4 we introduce the experimental setup, fault configuration, and datasets used for model
evaluation. In Section 5 we analysis the performance of the MSCSN model in few-shot
experiments, cross-condition experiments, and in Section 6 we conclude the paper and outlines
future research directions.

3. Proposed method

This paper proposes a diagnostic model, MSCSN, combining Multi-Scale Convolutional
Neural Networks (MS-CNN) with Siamese Networks to address the issue of sample scarcity in
UAYV rotor fault diagnosis. The model is designed to solve the fault classification problem with
limited training samples by integrating signal resampling, multi-scale feature extraction, and
metric learning. The overall diagnostic steps are shown in Fig. 2, which consists of five phases:
data preprocessing, feature extraction, metric learning, classification, and fine-tuning. To enhance
reproducibility, the theoretical motivations for design choices are elaborated below.
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Fig. 2. Diagnostic steps of the MSCSN method
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3.1. Preprocessing module

Raw vibration signals are acquired at 1024 Hz. To ensure timely inference while retaining
discriminative content, each sample spans two rotor cycles and is then compressed using a
two-level discrete wavelet transform (DWT) with Daubechies db4; only the approximation
coefficients are retained, yielding a 1-D sequence of length 512 (each DWT level halves the length
from 2048 to 1024 to 512). Specific procedure:

Step 1: We select db4 as the compression scheme.

Step 2: Perform a two-level discrete wavelet decomposition on the signal:

x(©) = ) [klyu(®) + i D el o), (M
¢lk] = kz hin - Zk]c,-_lfr_z]l, k @)
d;lk] = Z gn— 2kle;4[n], 3)
% = {cj[l\?],dj (k] d;_y[K], ..., dy [K]}. 4)

Step 3: To align with the learning mechanism of neural networks, we further normalize the
compressed signal:

X; — min(X)

* = *€e[0,1
xl. max(f) —mln(f)’ xl [05 ]1 (5)
L _Xi—p
N
1.
12 =NZ Xi, (7)
i=1

(®)

In Table 1, we explain the parameters involved in the above signal processing procedure. After
preprocessing, the data are split for few-shot learning: per class, a small subset forms the
training/support pool, and the remainder forms the test/query pool; pairs are down sampled to
balance positive and negative pairs.

Table 1. Parameters involved in the signal processing process

Symbol Parameter Description
cjlk] Wavelet coefficients Wavelet coefficients
d;[k] Wavelet detail coefficients Wavelet detail coefficients
) Scaling function Scaling function for DWT
Y k() Wavelet function Wavelet function for DWT
h[n] Approximation filter Filter used for approximation coefficients
gln] Detail filter Filter used for detail coefficients
X; Normalized value Normalized values of the data
u Mean Mean of the data
o Standard deviation Standard deviation of the data
max(X), min(X) Max value Maximum value of the data
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3.2. Feature extraction module

Each preprocessed sample has a length of 512. To capture broadband spectral-temporal
patterns with different characteristic scales, we use multiple convolutional kernels (64, 32, 16, 8).
Intuitively, larger kernels emphasize low-frequency/global trends, whereas smaller kernels
highlight high-frequency/transient details; this choice also accords with Nyquist-Shannon
considerations for harmonics in the signal.

We adopt two parallel paths:

1) EC1 (global path): larger kernels and strides extract global patterns under a wider receptive
field; two convolutional layers followed by max pooling progressively condense features.

2) EC2 (local path): smaller kernels emphasize fine-grained, local variations.

Both paths use LSTM blocks to strengthen temporal modeling; features are fused by Hadamard
product, and the fused vector is flattened to a 256-D embedding. Design summary from the
manuscript’s MS-CNN blueprint (Fig. 3) with the same two-path topology and fusion operation.
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Fig. 3. The network architecture of MS-CNN

| e

3.3. Metric module

In the Siamese network, feature vectors are compared using Cosine similarity, Euclidean
distance, or center loss to measure their similarity. These are calculated using the formulas in
Eq. (9), Eq. (10), and Eq. (11), respectively. The range of Cosine similarity is [-1, 1], where a
larger value indicates higher directional alignment. For Euclidean distance, a smaller value
indicates higher similarity between samples. Subsequently, a contrastive loss function is used for
optimization. The goal of this loss function is to minimize the distance between samples of the
same class while maximizing the distance between samples of different classes. Center loss, on
the other hand, uses a “learnable feature center for each class” to measure similarity by minimizing
the Euclidean distance between the sample features and their corresponding class centers, thus
reducing the intra-class variance:

JOURNAL OF VIBROENGINEERING. DECEMBER 2025, VOLUME 27, ISSUE 8 1459



A MULTI-SCALE CONVOLUTIONAL STAMESE NETWORK FOR FEW-SHOT FAULT DIAGNOSIS OF UNMANNED AERIAL VEHICLE ROTOR.
TUBAO HAN, CANYI DU, XIAOQING Y ANG, YONGXIAN HUANG, XIANGKUN ZENG, FEIFEI YU, YONGKANG GONG, ET AL.

, X1 X2
Sim os(x1, %) = ———, 9
S P T ©)
Deuclidean(xlixz) =+ (x1 — x2)2: (10)
Dcenter = D]\(;uclidean(x: xc), 1D
1
Loss = Nz{y * Deuclidean[f(xl)' f(xz)]z (12)

+(1 - ;’_)1* max[0,m — Deyciigeanf (1), f(xz)]z]}:

where: x;and x, are two vectors represent data points from two samples in a pair and x; - x, is
the dot product of the two vectors, x. represents the learnable feature center for each class, f(x;)
and f(x,) represent the feature representations of sample pair. || || represents the norm of the
vectors. When y = 1 indicating samples of the same class and y = 0 indicating samples of
different classes, m is the threshold hyperparameter, used to set the minimum distance between
samples of different classes.

In the testing phase, training set are selected from the training set to form the support set. The
support set remains fixed throughout the entire testing phase [36]. For each testing set sample, its
feature vector is compared with the feature vectors of all samples in the support set using
Euclidean distance. Each query sample is classified using the nearest neighbor rule. The specific
formula is:

YVprea = arg mcin Deuciigean (xq’ xg,k)' (13)
where: x? and x7, represent the query set and support set. ¥4 is the predicted fault category of
the unknown sample by the model:

dec=—PHTN. o0y (14)
T TPYTN+FP+FN o

4. Rotor blade fault diagnosis dataset

In this study, the experimental setup is based on the DJI Phantom 4 Pro+ V20 quadrotor UAV,
as described in reference [37]. The test system includes an accelerometer and the ECNO AVANT
series data acquisition and analysis device. The accelerometer is mounted at the center of the top
of the UAV body to collect vibration acceleration data from the body during flight under different
rotor fault conditions. The system sampling frequency is set at 1024 Hz, and each flight lasts
approximately 350 seconds. Three types of rotor faults were considered in this experiment: no
fault, rotor damage, and rotor crack. The rotor damage fault has three levels: mirror, moderate,
and severe, while the rotor crack fault includes four levels, ranging from slight to severe, resulting
in a total of 8 fault states. The label information corresponding to each fault type is shown in
Table 2.

Table 2. The number of samples for each fault type and corresponding labels

Rotor blade fault types Sample size Label
Mirror broken fault 140 Rotor broken mirror
Moderate broken fault 140 Rotor broken moderate
Severe broken fault 140 Rotor broken severe
One crack on one rotor 140 Rotor cracked slight
Two cracks on two rotors 140 Rotor cracked mirror
Four cracks on two rotors 140 Rotor cracked moderate
Six cracks on one rotor 140 Rotor cracked severe
Normal 140 Normal
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Considering the complexity of UAV flight missions in practical applications, three distinct
flight states with different payloads and heights were designed. The raw vibration signal was
cropped to retain only the central 80 % of the data excluding 10 % from both the beginning and
the end. For each sample, 2048 data points were collected, and after each collection, a sliding
window moved 256 data points forward to continue the data collection. Ultimately, 140 samples
were obtained for each fault state. The flight information for each dataset is shown in Table 3.

Table 3. The payload and flight posture corresponding to Datasets A, B, and C

Dataset Load Flight attitude Samples
A 0 grams | 0.3 meters-2 meters-0.3 meters Sample length: 2048
B 53 grams | 0.3 meters-2 meters-0.3 meters o
Sample size: 1120
C 53 grams 2 meters
D A+B+C Sample size: 3360

5. Model validation

The proposed MSCSN model is implemented using the PyTorch library and Python 3.8, and
runs on an NVIDIA GeForce RTX 3080 GPU. The hyperparameters of the MSCSN model are
summarized in Table 4. After calculations, the model has 965,230 parameters, with a parameter
memory of 3.68MB. The average computation time for a sample pair is approximately 0.586
milliseconds.

Table 4. The hyperparameters of the MSCSN model

Hyperparameters | Value | Hyperparameters Value

Sample-length 2048 Optimizer Adam

Batch-size 256 Learning rate 0.001
Epoch 100 | Optimize functions | Contrastive loss

5.1. Performance of the model under different training sample sizes

To investigate the specific impact of the number of training samples on the performance of the
Siamese network model, this study randomly selects different numbers of samples from Dataset
A. Specifically, 10, 15, and 20 samples are selected for each fault category, forming three distinct
sample sets, named Dataset A1, A2, and A3. The aim is to simulate the scenario of insufficient
fault training samples, while the total number of test samples is set to 120. Using the data from
these three sample sets, positive and negative sample pairs are constructed and divided into
support set sample pairs and query set sample pairs in a 9:1 ratio, as detailed in Table 5.

The performance was also compared with a few-shot learning fault diagnosis method [36],
which uses wide kernel convolutional neural networks to extract fault features and performs
multiple 1-shot tests for bearing fault diagnosis. The fault accuracy of different methods tested on
various training sets, as shown in Table 5, is illustrated in Fig. 4.

Table 5. Training sample distribution

Dataset | Samples size per class | All samples size | Support set sample pairs | Query set sample pairs
Dataset Al 10 80 1440 160
Dataset A2 15 120 3240 360
Dataset A3 20 160 5760 640

Clearly, the proposed method and Zhang’s net significantly outperform MS-CNN. Traditional
deep learning methods require large labeled datasets for training, and insufficient samples can lead
to overfitting, reducing fault diagnosis performance. Both MSCSN and Zhang’s net use Siamese
networks with simple input pairs, increasing the learning task and alleviating the sample
limitation. As training samples increase, the accuracy of the proposed method rises quickly.
MSCSN outperforms Zhang’s net in diagnostic accuracy, with a 7 % difference when there are
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only 80 samples. As the sample size grows, the gap narrows, but MSCSN retains its advantage.
Overall, MSCSN outperforms other methods, likely due to the multi-scale convolutional feature
extraction network being more suitable for UAV fault diagnosis than the wide-kernel version.

To better understand the performance with varying training sample sizes, we take the model
with no prior training, the models trained on Datasets Al, A2, and A3, and plot the t-SNE
visualization results of test samples to observe generalization on unseen data, as shown in Fig 5.
We observe overall changes in the feature space: after training, samples of the same class cluster
well, and with more training samples, classification boundaries become clearer.

100

g 90

2 80

<% 60
50 Dataset Al Dataset A2 Dataset A3 Mean
MS-CNN 60.52 73.33 75 69.62
m Zhang's net 81.43 86.92 90.15 86.17
mMSCSN 90.54 92.71 94.42 92.56

Sample sizes
MS-CNN ®Zhang's net ®MSCSN
Fig. 4. The average accuracy (%) of 10 tests of different methods in few-shot diagnosis experiments

A more detailed analysis shows that, as seen in Fig. 5(a), the Normal class samples, Rotor
broken mirror samples, and Rotor broken mirror samples achieve excellent clustering results with
simple dimensionality reduction techniques, while the other classes show irregular distributions.
In Fig. 5(b), when the training sample size is small, most of the test samples fit well, but the
classification boundary for the Rotor broken moderate class and Rotor cracked fault classes is
somewhat fuzzy. This may lead to misclassification of Rotor cracked faults. However, as shown
in Fig. 5(c), as the number of labeled training samples increases, the classification boundaries for
the Rotor cracked fault classes become clearer, reflecting that the MSCSN model gradually
reduces the likelihood of misclassifying Rotor cracked faults. Overall, across various labeled
training sample sizes and different support set sizes, the proposed intelligent diagnostic model
maintains a diagnostic accuracy greater than 90.54 %, with an average accuracy exceeding
92.56 %. This fully demonstrates that the proposed MSCSN model is suitable for few-shot fault
diagnosis tasks in UAVs.

5.2. Performance of the model on various transfer tasks

In real UAV fault diagnosis applications, especially when the UAV operates under new
conditions, an important challenge arises: how to effectively classify fault types without rebuilding
a new model. Re-training a model typically requires significant computational resources and data,
which undoubtedly increases costs. Therefore, to verify the knowledge transfer ability of the
existing model under new conditions, this study adopts an evaluation strategy: 20 samples from
the source domain dataset are input into the MSCSN model for training, while a subset of labeled
samples from the target domain dataset is selected as the validation set, with the number of
validation samples being 10, 15, and 20. Additionally, 120 remaining samples from the target
domain are selected as the test set. In total, 12 transfer tasks are formed.

The process is divided into 12 different experimental tasks, aiming to comprehensively assess
the model's adaptability and robustness under unknown operating conditions. In the experiments
presented in Section 5.1, it has been shown that the proposed method outperforms the baseline
network and Zhang’s net, so further testing with these models is excluded in the following
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experiments. The average diagnostic accuracy of 10 tests of MSCSN under different transfer tasks

is shown in Table 6.
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Fig. 5. Data distribution of test samples under different training states

From Table 6, it can be observed that the classification accuracy of each different domain
transfer task varies significantly. Within the same transfer task category, as the number of training
samples increases, the fault classification accuracy shows a corresponding upward trend. Further
observation reveals that even when performing knowledge transfer between fixed domains, the
selection of different source domains affects the final classification performance.

Table 6. The average accuracy (%) of 10 tests with different domain transfer tasks

Task | Source domain | Target domain | Accuracy | Mean
1 Dataset Bl 92.28
2 Dataset A3 Dataset B2 93.24 93.81
3 Dataset B3 95.91
4 Dataset C1 85.01
5 Dataset B3 Dataset C2 93.24 91.15
6 Dataset C3 95.21
7 Dataset Al 91.12
8 Dataset B3 Dataset A2 92.50 92.62
9 Dataset A3 94.23
10 Dataset B1 84.43
11 Dataset C3 Dataset B2 92.54 90.28
12 Dataset B3 93.87

Specifically, during the transfer between domains A and B, when using A as the source
domain, the classification accuracy is, on average, 1.19 % higher than when using B as the source
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domain. Similarly, in the transfer between domains B and C, using B as the source domain results
in a classification accuracy 0.87 % higher than using C as the source domain.

From the flight information presented in Table 3, it can be analyzed that Domain A, compared
to Domain B, has smaller inertia characteristics and weaker vibration amplitude, making it more
challenging to extract fault sample features from Domain A. In contrast, Domain B involves more
complex flight tasks compared to Domain C, leading to more redundant information in fault
sample features. This means that more samples are required to allow the model to learn accurate
classification features effectively. Additionally, we believe that the performance decline from B
to C, compared to A to B, may be due to larger signal differences in the former. The dynamic
response time and system inertia during the ascent and descent process may have been relatively
consistent in the A and B datasets, but the C dataset, due to stable hovering, may not have involved
rapid changes and responses in system inertia.

The fine-tuning of MSCSN under different target domain training sample sizes, including the
loss change over epochs for each transfer task, is shown in Fig. 6. It can be observed that,
regardless of the target domain training sample size, the loss stabilizes after the first 10 epochs
during the fine-tuning process. This is because the knowledge learned from the source domain
training samples can be quickly transferred to the target domain. A detailed analysis and in-depth
study of the experimental data reveal that UAVs, under diverse operating conditions, inevitably
produce fault sample features with significant differences due to various factors such as flight
posture and payload weight. Even under conditions with significant domain differences, the model
maintains an accuracy of 84.43 %, fully demonstrating its stability and reliability under standard
operating conditions.
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Fig. 6. The loss changes over epochs for each transfer task

5.3. Performance of the model on the MVS-UAV-BF dataset

To further verify the general applicability of the proposed method, this study conducted
validation using the MVS-UAV-BF dataset [38]. The test setup of this dataset which includes a
multirotor UAV, an accelerometer sensor, healthy, damaged blades, and data acquisition. The
experiment designed five fault states, each of which was independently applied to a single blade.
For reference, the blade numbering follows a clockwise pattern when observed from top to bottom.
The fault specific fault details listed in Table 7. The experimental environment is an indoor, fixed-
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height flight without wind. Each fault was recorded for 7 minutes of continuous acceleration
vibration signals at a sampling frequency of 1024 Hz. Data were captured along the X, Y, and Z
axes, with approximately 400,000 data points per axis. The first 30 % of the data for each state
was selected as the training set, and the remaining 70 % as the test set. Each data collection
consisted of 2048 data points, with a sliding window moving 256 data points backward after each
collection. A total of 50 training samples and 120 test samples were obtained.

Table 7. The information for each fault type in the MVS-UAV-BF dataset

Fault type Label Fault location | Fault configuration
Healthy Healthy - -
Unbalanced bottom right blade Bladel .
Mass removal fault Unbalanced top right blade Blade2 Sticky tape
. Damaged bottom right blade Bladel
Weight unbalance fault Damaged top right blade Blade2 Shear

To explore the specific impact of the number of training samples on the performance of the
Siamese network model, three dataset configurations, similar to those in Table 5, were set, and
named Dataset 1, 2, and 3. The comparison of MSCSN model performance under three different
training sample sizes is shown in Fig. 7, which demonstrates that the training sample size
significantly affects the model’s convergence speed. As the total number of samples decreases,
the model receives less information, resulting in a slower convergence and a longer training time.
The accuracy improves more gradually. When a larger training sample size is used, the model
reaches a low loss value after around 50 iterations, and the classification accuracy stabilizes above
91 %. Even with a smaller training sample size, after around 80 iterations, the loss value generally
remains below 0.25, with the classification accuracy staying around 88 %. Ultimately, under all
three sample configurations, stable classification accuracy was achieved. This highlights the
excellent generalization capability of MSCSN when dealing with small sample problems.

5.4. Performance of the model on the ablation study

To observe the impact of hyperparameters on model performance, such as learning rate, batch
size, and the boundary threshold in contrastive loss, we set three candidate values for each
hyperparameter and conduct a sensitivity analysis to identify the optimal parameter combination.
Additionally, in metric learning, common metric methods like cosine similarity and triplet loss
will also be considered. Based on the optimal hyperparameters, we will compare the impact of
different metric strategies on model performance.

5.4.1. Performance of the model on different hyperparameters

In this study, we aim to investigate the impact of three hyperparameters — Learning Rate, Batch
Size, and Margin — on the performance of the proposed model. The learning rate is set to three
possible values: 0.01, 0.001, and 0.0001; the batch size is set to three possible values: 128, 256,
and 512; the margin in contrastive loss is set to three possible values: 0.8, 1.0, and 1.2, resulting
in a total of 27 parameter combinations. We conducted 27 training sessions using Dataset A3, with
each trained model tested three times. The experimental results are shown in Fig. 8. Additionally,
we observed the change in training loss across different Epochs for the 27 parameter combinations,
as shown in Fig. 9.

As can be seen from Fig. 8, the learning rate has a decisive impact on whether the model can
effectively learn. When the learning rate is 0.01, the accuracy is only around 50 %. However,
when the learning rate is 0.001, the model performs exceptionally well. At a learning rate of
0.0001, the accuracy remains between 80 % and 90 %. This is because, during backpropagation,
a larger learning rate causes large updates to the learnable parameters, which may lead the model
parameters to “skip” the optimal solution in the parameter space, resulting in fluctuating or
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unstable loss reduction. In contrast, a smaller learning rate results in more gradual updates to the
parameters, allowing the model to fine-tune and converge to the optimal solution more precisely.
We found that the best parameter combination for the highest accuracy is (0.001, 256, 1.0).
However, when the margin is set to 1.2, the classification performance is generally more stable
than when the margin is set to 1.0. Therefore, we chose 1.2 as the final margin value.

—e— Dataset 1
Dataset 2
—e— Dataset 3

o 20 40 60 80 100
Epoch

a) Loss curve

[ 20 40 60 80 100
Epoch

b) Accuracy curve
Fig. 7. Network training performance with different sample sets

Fig. 9 includes four subplots, with the thick lines representing the average changes. The top-
left subplot shows the trend of training loss across different parameter combinations. It can be
seen that there is a significant difference in training loss between combinations. The top-right
subplot shows the effect of different learning rates on training loss. With a learning rate of 0.01,
the training loss fails to effectively converge. With a learning rate of 0.001, the loss curve is
relatively stable and reaches a lower final loss. With a learning rate of 0.0001, the convergence is
slower, but due to the larger number of iterations, the loss eventually converges. The loss values
for the latter two are similar and small, which results in overlapping lines. In practical applications,
a learning rate of 0.001 effectively reduces the number of iterations. This is because a larger
learning rate causes the gradient updates to be too large, leading to missed optimal convergence
paths, and may even prevent convergence. On the other hand, a smaller learning rate results in
slower convergence and may require more epochs to achieve better performance, potentially
getting stuck in local minima. The bottom-left subplot shows the change in training loss for
different batch sizes. A batch size of 128 shows more significant fluctuations, with slower loss
reduction in the early stages. For batch sizes of 256 and 512, the training loss stabilizes, gradually
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decreasing and leveling off. Notably, the setting of 256 performs best during the final convergence
phase. This is because, while smaller batch sizes are computationally efficient, they are more
susceptible to fluctuations caused by outliers. Larger batch sizes help achieve more accurate
gradient estimation, allowing the model to converge more smoothly. The bottom-right subplot
shows the effect of different margin thresholds on training loss, which has little impact on
convergence. This indicates that the margin does not directly affect the training loss convergence
process. In summary, learning rate and batch size significantly influence the model’s convergence
speed, while selecting the appropriate margin is crucial for forming clear classification boundaries.
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Fig. 8. Performance of the model on different hyperparameters
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Fig. 9. The change in training loss across different Epochs for the 27 parameter combinations

5.4.2. Performance of the model on different metric strategies

We analyzed the adaptability of common metric strategies such as contrastive loss, cosine
similarity loss, and center loss in the model proposed in this paper. Under the condition that the
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other modules remain unchanged, we selected the parameter combination (0.001, 256, 1.2), and
retrained the model by changing the similarity metric using DatasetD1, DatasetD2, and DatasetD3.
The results of the training are shown in Fig. 10. As can be seen from Fig. 10, the contrastive loss
metric is more suitable for the model proposed in this paper compared to the other two strategies.
Our analysis suggests that this is because contrastive loss directly measures the absolute distance
between two samples in the feature space, making it effective in handling features with different
magnitudes or units. For high-dimensional data such as vibration signals, the absolute distance
between features often contains sufficient information to distinguish between samples of different
categories. Therefore, using Euclidean distance in contrastive loss can more directly reflect the
differences between samples, especially when dealing with features with varying magnitudes. In
contrast, cosine similarity loss primarily measures the directional similarity between vectors,
without considering the specific size or magnitude of the vectors. When dealing with vibration
signals or similar data, this approach may overlook critical fault information. Center loss, on the
other hand, mainly focuses on tightly clustering samples within the same category during
optimization and does not directly impose constraints on the separation between categories. As a
result, there may be overlap between categories, leading to poor classification performance,
especially when there are many categories or when the samples are complex.
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Fig. 10. Performance of different metric strategies in MSCSN
6. Conclusions

This study proposes a UAV fault diagnosis method based on a multi-scale convolutional
Siamese network. The method combines a Siamese network with an improved multi-scale
convolutional network to automatically extract multi-level fault features. Using Euclidean
distance-based metrics and contrastive loss, the model ensures that samples of the same class are
compact in feature space, while the distance between samples from different classes is
significantly larger, leading to better classification boundaries. Experimental results show that,
across three training sample sizes, the model achieves an average diagnostic accuracy of no less
than 90.54 %. In cross-domain transfer tasks, the method achieves an average accuracy of no less
than 84.43 % in diverse flight environments. We also conducted sensitivity analysis of model
parameters and an evaluation of various metric strategies for model adaptation. Additionally,
experiments on the public dataset MVS-UAV-BF demonstrated that the proposed model exhibits
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stable generalization performance in small-sample UAV fault diagnosis.

The significant contribution of this study lies in proposing a potential UAV fault diagnosis
solution. Given its performance in transfer tasks and on the public dataset, the model is shown to
be suitable for a broad range of rotary-wing UAYV fault diagnosis tasks. Although there is room
for further improvement in accuracy, the lightweight nature of the model reduces the risk of
overfitting in small-sample scenarios and shortens fault diagnosis time.

However, there are still limitations in our study, such as the need to verify the model's stability
in more complex dynamic flight scenarios and its ability to detect subtle faults with fewer samples.
These represent potential directions for future research.
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