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Abstract. To address the demands for precision and generalization in fault diagnosis of rolling 
bearings within resource-limited industrial settings, an intelligent diagnostic model utilizing Mean 
Impact Value (MIV), Crested porcupine optimizer (CPO) algorithm, and Backpropagation Neural 
Network (BPNN) (MCB-Net) is proposed. First, MIV ranks and filters features based on feature 
significance, thereby diminishing input dimensionality and enhancing model interpretability. 
Second, the CPO technique is implemented to improve BPNN parameters, thereby improving 
global search capabilities and expediting convergence, and addressing the conventional BPNN’s 
propensity to become trapped in local optima. Finally, MCB-Net was assessed utilizing rolling 
bearing fault datasets from Case Western Reserve University and Southeast University. 
Experimental results indicate that MCB-Net surpasses 97 % classification accuracy on three 
distinct datasets, exhibiting minimum performance variability compared to other approaches, 
confirming the model's efficacy and practicality. 
Keywords: rolling bearing, mean impact value, crested porcupine optimizer, backpropagation 
neural Network, fault diagnosis. 

1. Introduction 

Rolling bearings, a critical component of rotating machinery, are widely employed in industrial 
machinery transmission shafts, hydraulic shafts, automotive engines, aerospace applications, and 
other contexts requiring high torque and high preload [1]. Data suggests that, under equivalent 
working conditions, the lifespan of bearings can differ by up to ten times. Additionally, around 
30 % of failures in rolling machinery and equipment are attributed to rolling bearing damage, 
while rolling bearings account for nearly 40 % of failures in electronic equipment. Inaccurate and 
delayed diagnosis of bearing failures can result in unanticipated downtime, incur significant 
financial losses, and lead to serious injuries or fatalities [2]. Thus, bearing fault diagnosis 
technology is essential for maintaining modern industrial systems' safe, stable, and cost-effective 
operation [3]. 

Conventional bearing fault diagnosis techniques typically include feature extraction with 
model diagnostics. During the feature extraction phase, techniques such as short-time Fourier 
transform (STFT) [4], continuous wavelet transform (CWT) [5], and empirical mode 
decomposition (EMD) [6] are frequently employed to transform the original high-dimensional 
signal into a more distinctive low-dimensional feature vector. Thereafter, the diminished features 
are fed into models, including support vector machine (SVM) [7] and random forest (RF) [8], for 
classification purposes. For example, Lu et al. [9] proposed a fault diagnosis method that combines 
empirical sparsity, wavelet transform and dynamic adaptive least squares SVM, which can fully 
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use the sparse characteristics of the signal and improve the classification accuracy. Patil et al. [10] 
extracted features through wavelet transform and input them into an artificial neural network 
(ANN) for classification, thus effectively identifying bearing faults. Wang et al. [11] innovatively 
combined wavelet packet decomposition with an RF classifier to establish an efficient diagnostic 
model for rolling bearing faults. However, the aforementioned conventional diagnostic procedures 
exhibit specific issues: (1) The expert’s prior knowledge significantly influences the efficacy of 
feature extraction; (2) The artificially constructed feature set has limited generalization capability 
and resilience in complex and variable operational environments. 

The emergence of deep learning (DL) has significantly compensated for the deficiencies of 
conventional diagnostic. In contrast to conventional methods, deep learning does not depend on 
manually crafted features. It can autonomously extract distinguishing features from raw signals 
via multi-layer nonlinear architectures. Various DL architectures, including convolutional neural 
networks (CNNs), Transformer architecture, graph convolutional networks (GCNs), and others, 
have been effectively utilized for bearing defect diagnosis tasks. For example, Li et al. [12] 
proposed a CNN-Transformer-based reinforcement learning agent that extracts local and global 
features from vibration signals and adaptively adjusts the classification strategy through reward 
signals, achieving excellent diagnostic accuracy under different operating conditions. To cope 
with variable working conditions, Zhang [13] proposed a bearing fault diagnosis method using a 
dual-path CNN and a multi-parallel GCN. Cui et al. [14] developed a Transformer-based 
self-supervised feature extraction method for fault diagnosis, which utilized time-frequency data 
to improve performance with limited labeled samples. Furthermore, researchers have integrated 
transfer learning (TL) with DL to mitigate the obstacles posed by inadequate samples and 
variations in working condition distributions in industrial contexts. Wen et al. [15] designed a 
TCNN (ResNet-50) network with 51 convolutional layers for fault diagnosis. TCNN method 
combines TL with a pre-trained ResNet-50 Network to process the original two-dimensional 
vibration signal, achieving effective fault diagnosis. Du et al. [16] converted vibration signals into 
time-frequency images and then used images as input to the Transmitted Deep Residual Network 
(TDRN), using TDRN to resolve regional differences. However, despite the excellent 
performance of above methods in fault diagnosis, also face significant limitations in practical 
industrial applications. Most DL models primarily possess substantial parameter sets and depend 
on high-performance computer resources for training, rendering challenging to implement in 
real-time inside resource-limited industrial settings. Moreover, DL models typically exhibit a 
deficiency in interpretability, a concern especially significant in safety-critical industrial contexts. 

For the above reasons, the back propagation neural network (BPNN) possesses a 
straightforward architecture and a minimal parameter scale, which confers notable advantages in 
resource-constrained environments. BPNN can quickly execute fault identification tasks while 
possessing remarkable nonlinear mapping and self-learning skills [17]. Nonetheless, BPNN 
encounters issues such as susceptibility to local optima, sensitivity to initial weights, and sluggish 
convergence during training [18]. To overcome the abovementioned limitations, researchers 
proposed incorporating meta-heuristic optimization approaches to improve network structure or 
parameters through global search, enhancing network performance. For example, Liu et al. [19] 
proposed a method that combines empirical mode decomposition, genetic algorithm (GA) and 
BPNN. The method effectively separates fault-related components and noise in the signal through 
empirical mode decomposition technology. Chen et al. [20] proposed a fault diagnosis method 
that integrates deep learning models and Network technology, providing new ideas and 
approaches for this research direction. Nonetheless, despite considerable advancements in the 
study of intelligent optimization algorithms both domestically and internationally, the efficacy of 
classical optimization algorithms on BPNN models remains constrained. 

To achieve real-time deployment in resource-constrained industrial environments and 
overcome the limitations of BPNN models in high-dimensional input and parameter optimization, 
this paper proposes an intelligent diagnosis framework that integrates the mean influence value 
(MIV), crested porcupine optimizer (CPO) algorithm and BPNN (MCB-Net). First, the MIV 
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approach identifies essential characteristics and decreases input dimensionality, mitigating the 
overfitting issue associated with high-dimensional inputs and improving the model's 
interpretability. Secondly, the CPO method is implemented to enhance BPNN optimization. In 
comparison to optimization algorithms like the Love Evolution Algorithm (LEA) [21], 
Hippopotamus Optimization Algorithm (HO) [22], and Particle Swarm Optimization (PSO) [23], 
CPO exhibits superior global search capabilities and efficiently circumvents local optima. 
Simultaneously, through the cyclic population reduction, CPO demonstrates considerable 
improvements in convergence efficiency and stability, and displays commendable robustness in 
addressing complicated and high-dimensional optimization challenges. This paper’s primary 
contributions are as follows: 

(1) Aiming at resource-constrained industrial environments, an intelligent diagnosis 
framework MCB-Net is proposed that integrates MIV, CPO and BPNN to achieve high-precision 
fault identification.  

(2) The MIV method is used to quantify the impact of input features on output, which not only 
reduces the input dimension and alleviates the risk of BPNN overfitting, but also enhances the 
interpretability of the model and makes the diagnostic results more transparent.  

(3) Compared with existing optimization algorithms and other models, MCB-Net has 
advantages in global search capability, convergence efficiency and stability. It can effectively 
avoid falling into local optimality and maintain high diagnostic accuracy and robustness. 

This paper is organized as follows: Section 2 explains the relevant theoretical basis and 
methods involved in this study; Section 3 describes the proposed MCB-Net model in detail; 
Section 4 conducts experimental verification; Section 5 summarizes the entire paper and discusses 
future research directions. 

2. Algorithmic models 

2.1. Back propagation neural network  

Artificial neural networks, algorithmic mathematical models that emulate biological neural 
networks’ activities, demonstrate self-learning, self-adaptation, and strong nonlinear processing 
capabilities. The backpropagation neural network is the most utilized type of neural network, due 
to its practicality and flexible architecture [24]. Fig. 1 depicts the architecture of a backpropagation 
neural network [25]. 

 
Fig. 1. Topology of backpropagation neural network 

The input signals (𝑋ଵ, 𝑋ଶ, 𝑋௡) are fed into the input layer and then through the weights and 
biases (𝑊௝௜) to the hidden layer. The data are then processed in the hidden layer and transmitted 
to the output layer, where they undergo a nonlinear transformation via the activation function.  

The output layer performs a weighted summation and applies the activation function to 
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produce the network’s final output, which is known as the forward propagation of the signal [26], 
as expressed by Eq. (1): 

𝐴 = 𝑓 ൭෍𝑤௝௜𝑥௜௡
௜ୀଵ + 𝑏௝൱, (1)

where, 𝐴 indicates output result; 𝑤௝௜ denotes weight from the 𝑖 neuron of the input layer to the 𝑗 
neuron of the hidden layer; 𝑥௜ is the input value; 𝑏௝ is the bias term of the 𝑗 neuron of the hidden 
layer. 

Secondly, error backpropagation utilizes gradient descent to calculate the deviation between 
output and real values, which is subsequently propagated backward to adjust the network weights, 
often evaluated using mean square error (MSE): 

𝑀𝑆𝐸 = ∑ ሺ𝑦௜ − 𝑦௜ᇱሻ௡௜ୀଵ ଶ𝑛 , (2)

where,𝑛 is the number of sample; 𝑦௜ is the true value; 𝑦௜ᇱ is the predicted value; ሺ𝑦௜ − 𝑦௜ᇱሻଶ is the 
square of the difference between the true value and the predicted value. 

2.2. Mean impact value (MIV) 

Determining the input variables is difficult in the practical use of neural network models. 
Including superfluous or trivial variables in the network input may extend the training period and 
reduce the model’s accuracy. Thus, the identification of suitable criteria is imperative. Commonly 
utilized methods for variable selection include principal component analysis, factor analysis, and 
the mean impact method. Table 1 presents a comparative analysis of their performance. 

Table 1. Difference of dimensionality reduction methods 
 Influencing factors Linear/non-linear Accuracy 

PCA First Principal Linear Good 
FA Specified Factor Linear Average 

MIV Almost no effect Nonlinear Better 

The accuracy and comprehensiveness of the initial data in the MIV algorithm might 
significantly impact the results, hence requiring data pretreatment [27]. The MIV sign indicates 
the direction of the independent variable concerning the output variable, while the absolute value 
represents the magnitude of the effect. Fig. 2 depicts the flowchart of the MIV algorithm, outlining 
the specific phases as follows [28]: 

Step 1: In the neural Network architecture, decrease and increase the training samples by 10 % 
to create new training samples.  

Step 2: The two novel training samples are then simulated utilizing the constructed Network, 
yielding two simulation outputs. The disparity between these two simulation outcomes is 
computed, reflecting the variation in impact (Impact Value, IV). 

Step 3: The mean of the IV values is computed to derive the MIV (Mean Impact Value) of the 
Network output. 

Step 4: The preceding procedures are reiterated for each independent variable to compute its 
MIV. The variables are ultimately sorted according to the absolute values of their MIVs, 
facilitating the assessment of each input feature's impact on the Network’s output. 

2.3. Crested porcupine optimizer (CPO) 

The crested porcupine optimizer is an innovative optimization method introduced by 
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Abdel-Basset et al., inspired by the four protective behaviors of CP: visual perception, acoustic 
defense, olfactory recognition, and physical attack [29]. By replicating four behaviors, CPO 
inherently equilibrates global exploration and local exploitation, hence mitigating the risk of 
becoming ensnared in local optima. Moreover, in contrast to conventional optimization methods, 
CPO enhances convergence speed while ensuring the creation of high-quality solutions for 
intricate multimodal or high-dimensional problems by implementing a periodic population 
reduction mechanism. 

 
Fig. 2. Flowchart of the MIV Algorithm 

2.3.1. Initialization phase 

In this phase, the CPO operates similarly to other population-based metaheuristic algorithms. 
CPO begins by randomly initializing a set of candidate solutions, with the initialization formula 
given by: 𝑋⃗௜ = 𝐿ሬ⃗ + 𝑟 × ൫𝑈ሬሬ⃗ − 𝐿ሬ⃗ ൯, (3)

where, 𝑋⃗௜ is the 𝑖 alternative scheme in the solution space, 𝐿ሬ⃗  and 𝑈ሬሬ⃗  are the maximums and 
minimums in space scope, respectively, and 𝑟 is stochastic number from 0 to 1.  

2.3.2. Cyclic population reduction 

In this phase, the algorithm simulates only the defensive mechanisms activated by threatened 
crested porcupines. This phase occurs when the population size decreases to a certain threshold, 
after which the algorithm increases the population size to enhance diversity and accelerate 
convergence, continuing this process until the maximum number of epochs is reached. The 
mathematical formula is: 

𝑁 = 𝑁௠௜௡ + (𝑁ᇱ − 𝑁௠௜௡) × ൮1 − ቌ𝑡%𝑇௠௔௫𝑇𝑇௠௔௫𝑇 ቍ൲, (4)

where, 𝑇 is a parameter of the frequency of circulation, 𝑡 is the circulation frequency evaluation, 𝑇௠௔௫ is 𝑡 upper limit, % is remainder, 𝑁 is the newly population and 𝑁௠௜௡ is the min number of 
newly population. 

2.3.3. Exploration phase 

(1) First and second defense strategies. The CPO algorithm explores the solution by simulating 
the first two defense mechanisms of the crested porcupine. This phase can be considered a global 
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search in the algorithm, aimed at discovering potentially optimal regions within the solution space. 
The equation for visual perception is Eq. (5), and the equation for acoustic defense is Eq. (6): 𝑋ప௧ାଵሬሬሬሬሬሬሬሬሬሬ⃗ = 𝑋ప௧ሬሬሬሬሬ⃗ + 𝜏ଵ × ቚ2 × 𝜏ଶ × 𝑋஼௉௧ሬሬሬሬሬሬ⃗ − 𝑦ప௧ሬሬሬሬ⃗ ቚ, (5)𝑋ప௧ାଵሬሬሬሬሬሬሬሬሬሬ⃗ = ൫1 − 𝑈ଵሬሬሬሬ⃗ ൯ × 𝑋ప௧ሬሬሬሬሬ⃗ + 𝑈ଵሬሬሬሬ⃗ × ൬𝑦⃗ + 𝜏ଷ × ቀ𝑋௥ଵ௧ሬሬሬሬሬሬ⃗ − 𝑋௥ଶ௧ሬሬሬሬሬሬ⃗ ቁ൰, (6)

where, 𝑋஼௉௧ሬሬሬሬሬሬ⃗  is the optimal solution of 𝑡, predator at the 𝑡 moment position is indicated by 𝑦ప௧ሬሬሬሬ⃗ , 𝜏ଵ is 
the stochastic number of normal distribution, 𝜏ଶ and 𝜏ଷ are random values in the interval [0, 1]. 𝑟1 and 𝑟2 are two stochastic number from ሾ1,𝑁ሿ. 

(2) Third and fourth defense strategies. The CPO algorithm refines the identified optimal 
region by simulating the last two defense mechanisms of the crown porcupine. This phase can be 
seen as a local search in the algorithm, aiming to find a more precise solution within the identified 
region. The equation for olfactory recognition is Eq. (7), and the equation for physical attack 
defense is Eq. (8): 𝑋ప௧ାଵሬሬሬሬሬሬሬሬሬሬ⃗ = ൫1 − 𝑈ଵሬሬሬሬ⃗ ൯ × 𝑋ప௧ሬሬሬሬሬ⃗ + 𝑈ଵሬሬሬሬ⃗ × ቀ𝑋௥ଵ௧ሬሬሬሬሬሬ⃗ + 𝑆௜௧ × ቀ𝑋௥ଶ௧ሬሬሬሬሬሬ⃗ − 𝑋௥ଷ௧ሬሬሬሬሬሬ⃗ ቁ − 𝜏ଷ × 𝛿 × 𝛾௧ × 𝑆௜௧ቁ, (7)𝑋ప௧ାଵሬሬሬሬሬሬሬሬሬሬ⃗ = 𝑋஼௉௧ሬሬሬሬሬሬ⃗ + (𝛼(1 − 𝜏ସ) + 𝜏ସ) × ቀ𝛿 × 𝑋஼௉௧ሬሬሬሬሬሬ⃗ − 𝑋ప௧ሬሬሬሬሬ⃗ ቁ − 𝜏ହ × 𝛿 × 𝛾௧ × 𝐹ప௧ሬሬሬሬ⃗ , (8)

where, 𝑟3 is stochastic number from ሾ1,𝑁ሿ. 𝛿 is the parameter of the control search route. 𝜏ଷ and 𝜏ସ are random values in the interval ሾ0,1ሿ. 𝑆௜௧ is the olfactory diffusion factor. 𝛼 is the convergence 
speed factor, and 𝐹ప௧ሬሬሬሬ⃗  represents 𝑖 predator for CP strength. 

To more intuitively demonstrate the implementation steps of CPO, the pseudocode of CPO is 
shown in Table 2. 

The defense mechanism integrated within the CPO algorithm inherently mitigates the 
shortcomings of BPNN. The initial and secondary defense mechanisms prioritize global 
exploration, thus reducing the propensity of BPNN to converge on local minima. Simultaneously, 
the third and fourth defense mechanisms promote regional development, expediting the 
convergence to the best solution by identifying prospective areas. The cyclic population reduction 
process preserves diversity while balancing exploration and exploitation, thus diminishing the 
susceptibility of BPNN to initial weight selection. 

3. Intelligent diagnostic framework for MCB-Net 

This study employs CPO to optimize the essential hyperparameters of BPNN adaptively. The 
fundamental parameters of CPO are established as follows: the number of search people is 8, the 
maximum number of epochs is 20, and the search boundary is first defined as the interval [−2, 2], 
which is then increased in accordance with the optimization dimension. The search space of BPNN 
is set as the number of hidden layer neurons [5, 19], learning rate {0.0001, 0.001, 0.01}, and 
maximum number of epochs [100, 500]. The range is primarily derived from that utilized in prior 
studies. An excessively small network size or insufficient training epochs may result in 
underfitting, whereas an excessively large configuration may substantially elevate computing 
demands and heighten the danger of overfitting. The objective of optimization is to enhance the 
classification accuracy of the test set to improve the model’s generalization capability and 
predictive precision while maintaining convergence efficiency. 

Table 3 presents the mean square error (MSE) outcomes associated with varying quantities of 
hidden layer nodes. The table indicates that the MSE of the network model attains its minimum 
when the number of hidden layer nodes is 7, thereby establishing 7 nodes as the ideal configuration 
for the hidden layer. The optimization results for the remaining BPNN hyperparameters are as 
follows: the maximum number of epochs is 200, and the learning rate is 0.0001. Regarding the 
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Network structure, the number of nodes in the input and output layers is 4 and 10, respectively. 
The hidden layers use the Tansig activation function, the output layer uses the Purelin activation 
function, and the training function is Trainlm. In addition, the training and test set sizes are 756 
and 324 respectively, the target accuracy is set to 10−6, and the number of failures allowed is 6. 

Table 2. CPO algorithm pseudocode 
Algorithm: Crested Porcupine Optimizer (CPO) 
Input:  
    Population size 𝑁 
    Maximum epochs 𝑇 
    Search space dimension 𝐷 
    Upper and lower bounds [𝐿,𝑈] for each dimension 
    Fitness function 𝐹(𝑥) 
 
Output: 
    Best solution 𝑋௕௘௦௧ 
 
Procedure: 
1: Initialize population 𝑋௜(𝑖 = 1,2,3,⋯𝑁) randomly within [𝐿,𝑈] 
2: Evaluate fitness 𝐹(𝑥௜) for each candidate 
3: Set the best solution 𝑋௕௘௦௧ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐹 (𝑋௜) 
 
4: For 𝑡 = 1to 𝑇 do 
5:     For each 𝑋௜ in population do 
               a) Visual perception: 𝑋௜_௡௘௪ = 𝑋௜ + 𝑟1 × (𝑋௕௘௦௧ − 𝑋௜) 
               b) Acoustic defense: 𝑋௜_௡௘௪ = 𝑋௜ + 𝑟2 × (𝑋௝ − 𝑋௞) 
               c) Olfactory recognition: 𝑋௜_௡௘௪ = 𝑋௜ + 𝑟3 × (𝑋௕௘௦௧ − 𝑋௜) 
               d) Physical attack: 𝑋௜_௡௘௪ = 𝑋௜ − 𝑟4 × (𝑋௝ − 𝑋௞) 
           where 𝑟1, 𝑟2, 𝑟3, 𝑟4 are random numbers in (0,1),  
           and 𝑋௝ ,𝑋௞ are random individuals from population 
6:         Apply boundary control to 𝑋௜_௡௘௪ within [𝐿,𝑈] 
7:         Evaluate fitness 𝐹(𝑋௜_௡௘௪) 
8:         If 𝐹(𝑋௜_௡௘௪) < 𝐹(𝑥௜), then 𝑋௜ = 𝑋௜_௡௘௪ 
9:    End 
10:    Update best solution 𝑋௕௘௦௧ 
11:    If cyclic population reduction condition is satisfied: 
           Reduce population by removing worst individuals 
12: End 
 
Return: 𝑋௕௘௦௧ 

Table 3. Number of nodes in the hidden layer 
Number of hidden layer nodes Training set MSE Number of hidden layer nodes Training set MSE 

5 0.039342 8 0.019172 
6 0.030574 9 0.018585 
7 0.017678 10 0.018927 

Fig. 3 illustrates the flowchart of the MCB-Net algorithm, with the specific steps for model 
construction detailed as follows:  

Step 1: Enter the bearing data and standardize the data. 
Step 2: Organize the feature indicators via the MIV method. 
Step 3: Enter the organized feature indicators into the CPO algorithm and BPNN.  
Step 4: Initiate the CPO algorithm and neural Network.  
Step 5: Assess the population's present fitness utilizing the four defense mechanisms of the 

CPO algorithm and modify the answer accordingly.  
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Step 6: Verify if the algorithm has attained optimal fitness. By the fulfillment of prerequisites, 
proceed to Step 7 and assess whether to iterate towards the maximum. If not, revert to Step 5 to 
revise the four defensive behaviors of the non-communicating algorithm.  

Step 7: Verify if the method has fulfilled the maximum epochs criteria. If satisfied, ascertain 
the optimal outcome and revise the output accordingly with the best answer. Should the condition 
remain unfulfilled, revert to step 5 to revise the four defensive behaviors of the non-
communicating algorithm.  

Step 8: After the CPO algorithm identifies the optimal hyperparameters, train the BPNN and 
conduct the fault diagnosis. 

 
Fig. 3. Flowchart of MCB-Net algorithm 

4. Experimental verification 

To validate MCB-Net, comparison experiments will be executed against the SVM, Simple 
CNN (S-CNN), MIV-HO-BP, and MIV-LEA-BP. The efficacy of these approaches will be 
evaluated based on error, volatility and accuracy. All methodologies will be trained and evaluated 
utilizing the features extracted in this investigation. All methodologies will be trained and 
evaluated utilizing the features extracted in this investigation. 

The random initialization of neural network parameters in each training session may influence 
the final output outcomes. To precisely demonstrate the distinction between the optimization 
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model, twenty experimental iterations were done, and the models were assessed utilizing the Mean 
Squared Error (MSE), Mean Absolute Error (MAE), and Cross-Entropy Loss metrics. The 
equations for these metrics are presented: 

𝑀𝑆𝐸 = ∑ (𝑦௜ − 𝑦௜ᇱ)௡௜ୀଵ ଶ𝑛 , 𝑀𝐴𝐸 = ∑ |𝑦௜ − 𝑦௜ᇱ|௡௜ୀଵ 𝑛 , 𝐿𝑂𝑆𝑆 = ෍𝑦௜ 𝑙𝑜𝑔(𝑦௜ᇱ)௡
௜ୀଵ , (9)

where, 𝑛 is the number of samples; 𝑦௜ is the true value; 𝑦௜ᇱ is the predicted value; (𝑦௜ − 𝑦௜ᇱ) and |𝑦௜ − 𝑦௜ᇱ| are the difference and absolute value between the true value and the predicted value. The 
experimental results show that the MCB-Net algorithm has great advantages of time and accuracy 
in the paper. 

4.1. Feature selection 

Table 4 presents the initial nine distinctive indications of bearing faults identified in this study. 
Indicators 1-4 delineate the statistical properties of the data, whilst the subsequent indicators 
concentrate on temporal features. The indicators not only signify the extent of bearing failure but 
may also be integrated with machine learning and fault diagnosis algorithms for categorization, 
prediction, and fault identification.  

Table 4. Indicators of bearing failure characteristics 
Number Feature Number Feature 

1 Mean 6 Crest factor 
2 Variance 7 Pulse factor 
3 Peak 8 Shape factor 
4 Kurtosis 9 Margin factor 
5 RMS – – 

 
Fig. 4. Characterization indicator importance 

Fig. 4 illustrates the outcomes of the MIV algorithm. In conjunction with Table 4, which 
present the outcomes of the MIV algorithm, shows the practical value, impact factor, and margin 
factor to be the three distinctive indicators with the most significant influence on the diagnostic 
outcomes. The practical value directly indicates the operational condition of the bearing, but the 
impact factor and margin factor are essential for identifying bearing failure due to impact vibration 
and assessing the remaining lifespan and severity of failure. Conversely, metrics such as mean, 
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roughness, variability, and peak primarily represent mathematical trends and fail to indicate the 
bearing condition distinctly. This research identifies the three most influential feature indicators 
as input variables to enhance the diagnostic model’s accuracy and interpretability while 
maintaining the features’ validity. 

4.2. Case 1 

To validate the application of the proposed algorithmic model in real industrial fault diagnosis, 
this paper first uses the Case Western Reserve University (CWRU) bearing dataset [30]. The 
CWRU data acquisition setup is shown in Fig. 5. The test bench consists of a variable power 
motor, a torque transducer, and a power tester, with control electronics. The drive-side bearings 
are SKF 6205, used for failure tests at 7, 14, and 21 mil diameters at sampling frequencies of 
12 kHz and 48 kHz. The fan-side bearings are NTN-equivalent bearings, used for failure tests at 
28 mil and 40 mil diameters, with a sampling frequency of 12 kHz.  

The data types selected in this study include four conditions: healthy, outer ring failure, inner 
ring failure, and rolling body failure. Data was collected at diameters of 0.007, 0.014, and 0.021 
inches, with a rotational speed of 1797 RPM. The specific data models are shown in Table 5. 

Table 5. Data types (CWRU) 
Type Diameter (mils) Diameter (mils) Diameter (mils) 

Health – 1797 0 
Rolling body failure 7, 14, 21 1797 0 

Inner ring failure 7, 14, 21 1797 0 
Outer ring failure 7, 14, 21 1797 0 

 
Fig. 5. CWRU bearing experimental setup 

 
a) S-CNN 

 
b) MIV-LEA-BP 
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c) SVM 

 
d) MIV-HO-BP 

 
e) MIV-PSO-BP 

 
f) MIV-GA-BP 

 
g) MCB-Net 

Fig. 6. t-SNE visualization 

4.2.1. t-SNE visualization 

Fig. 6 displays the t-SNE visualization of each algorithmic model. A comparison of the t-SNE 
plots reveals that the MCB-Net model (Fig. 6(g)) exhibits superior clustering results compared to 
other models. Specifically, the t-SNE plot of MCB-Net shows clearer category separation and less 
overlap, which indicates that the model has higher accuracy and efficiency in feature extraction 
and classification. In addition, the MCB-Net model is able to handle complex nonlinear 
relationships more efficiently by optimizing the weights and thresholds of the BP neural Network, 
which improves the prediction accuracy of the model. As shown in the t-SNE plot, data points of 
different categories form more dispersed and independent clusters in the low-dimensional space. 
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4.2.2. Accuracy analysis 

Table 6 shows the accuracy and standard deviation of different methods. Fig. 7 plots the 
accuracy box plot of different methods under 20 times. As shown in Table 6, MCB-Net achieved 
an average accuracy of 98.20 %, the highest among all algorithms. The result was 3.95 % higher 
than the worst-performing LEA and 0.40 % higher than the best-performing S-CNN. Fig. 7 also 
shows that MCB-Net has the highest accuracy on the vertical axis, with the accuracy of the 
intermediate data concentrated in the high range. Compared with other algorithms, MIV-LEA-BP 
has the lowest box position and large fluctuations. The boxes of PSO and GA are also much lower 
than MCB-Net. Although HO and S-CNN have high performance, the accuracy of the middle 
segment data of MCB-Net is more concentrated. In addition, the standard deviation of MCB-Net 
is 1.52 %, second only to S-CNN’s 0.74 % among all models, but its 95 % confidence interval is 
[97.49, 98.91], which almost covers the upper limit of all other algorithms. The results 
demonstrate that even with fluctuations, the overall performance of MCB-Net remains 
significantly higher than that of most algorithms. 

Table 6. Comparison of various methods (CWRU) 
 Accuracy SD 

MCB-Net 98.2 % 1.52 % 
MIV-LEA-BP 94.25 % 1.81 % 
MIV-PSO-BP 95.3 % 1.21 % 
MIV-HO-BP 97.35 % 1.42 % 
MIV-GA-BP 95.68 % 1.32 % 

SVM 96.2 % 0 
S-CNN 97.8 % 0.74 % 

 
Fig. 7. Box plots of different methods 

To more clearly demonstrate the results of each method, Fig. 8 shows the confusion matrix of 
the corresponding model. MCB-Net shows significantly better classification performance than 
other methods. S-CNN misclassified categories 4, 7, 9, and 10, particularly category 10, where 
8.33 % were misclassified as category 6. The SVM correctly classified category 6 only 86.11 %, 
with a high percentage of misclassifications into category 8 (8.33 %). Misclassifications were also 
prominent in categories 7, 8, and 9, resulting in the worst overall performance. For example, the 
optimized algorithm MIV-LEA-BP misclassified 13.89 % of class 3 into class 9, 5.56 % of class 
7 into class 6, and 8.33 % into class 9. In contrast, MCB-Net, excluding classes 3, 4, and 9, had a 
100 % accuracy rate for all other classes, significantly higher than other methods. The good 
performance is mainly due to the precise measurement of feature importance by MIV, combined 
with the efficient optimization of BP neural network parameters by the CPO optimization strategy, 
which enables the model to more accurately capture the discriminative features of samples, 
thereby significantly improving the classification accuracy of samples in each category and 
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effectively reducing the degree of confusion between categories. 

 
a) S-CNN 

 
b) MIV-LEA-BP 

 
c) SVM 

 
d) MIV-HO-BP 

 
e) MIV-GA-BP 

 
f) MIV-PSO-BP 

 
g) MCB-Net 

Fig. 8. Accuracy analysis 
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4.2.3. Error analysis 

This research quantitatively evaluates the merits and demerits of the four algorithms by 
conducting 20 epochs for each and use MAE and MSE as comparative assessment measures. 
Table 7 and 8 present the MAE and MSE for each approach. Excluding MCB-Net, the MAE 
indicator reveals that the average error values of the remaining methods are clustered between 
0.037 and 0.043. Notably, MIV-PSO-BP exhibits the lowest average error at 0.037432; however, 
the discrepancy between the maximum and minimum values is considerable, suggesting that its 
overall performance stability is moderate. The average MAE of MCB-Net is 0.045083, marginally 
above that of certain approaches; however, the disparity between its highest and minimum values 
is merely 0.001884, indicating substantial stability and consistency. The fluctuation ranges of 
other approaches, specifically MIV-HO-BP and S-CNN, are 0.002398 and 0.000472, respectively, 
signifying a degree of uncertainty in both under varying operating conditions. 

Table 7. MAE comparison of four algorithms (CWUR) 
 Max value Min value Average value 

MIV-LEA-BP 0.040012 0.039854 0.039972 
MCB-Net 0.046399 0.044515 0.045083 

MIV-PSO-BP 0.042233 0.036244 0.037432 
MIV-HO-BP 0.044272 0.042982 0.043163 
MIV-GA-BP 0.041637 0.038627 0.040132 

SVM 0.043348 0.042622 0.043118 
S-CNN 0.042641 0.042169 0.042547 

Table 8. MSE comparison of four algorithms (CWUR) 
 Max value Min value Average value 

MIV-LEA-BP 0.015375 0.014287 0.014559 
MCB-Net 0.010019 0.009628 0.009752 

MIV-PSO-BP 0.011886 0.011607 0.011632 
MIV-HO-BP 0.012646 0.010248 0.011427 
MIV-GA-BP 0.011807 0.011377 0.011570 

SVM 0.012957 0.010365 0.011430 
S-CNN 0.013502 0.010801 0.012762 

In terms of MSE indicators, the advantage of MCB-Net is more obvious, with an average MSE 
of only 0.009752, which is significantly lower than other methods. Specifically, MCB-Net is 33 % 
higher than MIV-LEA-BP and 15 % higher than MIV-PSO-BP and MIV-GA-BP. In addition, the 
gap between the maximum and minimum values of MCB-Net is only 0.000391, further 
demonstrating that it can maintain highly consistent prediction performance. To more clearly 
demonstrate the differences between the methods, Fig. 9 plots the MAE and MSE comparisons 
for each method. The figure clearly shows that MCB-Net has the most significant overall 
advantage in MSE. In contrast, the other algorithms have higher mean errors or larger fluctuations 
in MSE, indicating greater instability in their prediction results. 

4.2.4. Volatility analysis 

Algorithm volatility is commonly used to evaluate the stability and predictability of its 
performance. This study conducted 20 independent epochs for each algorithm to analyze its 
convergence behavior. Fig. 10 illustrates the volatility of each algorithm during epochs. The 
horizontal axis represents the number of epochs, while the vertical axis shows the SD of the 
convergence curve, reflecting the degree of convergence fluctuation within a single run. Higher 
values on the vertical axis indicate lower convergence stability during that epochs. It should be 
noted that since the performance of SVM is extremely stable, volatility is not plotted. From the 
figure, we can see that the MCB-Net curve shows much better stability than other algorithms 
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during the 20 epochs. Specifically, MIV-PSO-BP and MIV-LEA-BP experience large fluctuations 
during epochs, and the S-CNN model exhibits large local interference. However, the overall 
fluctuation amplitude of the CPO curve is gentle and regular, indicating that when MCB-Net 
adjusts the BP neural network parameters through the CPO optimization strategy, combined with 
MIV's precise measurement of feature importance, the model can more stably approach the 
optimal solution during training epochs. 

 
a) MAE 

 
b) MSE 

Fig. 9. MAE and MSE comparison of four algorithms (CWUR) 

 
Fig. 10. Volatility across algorithms 
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4.3. Case 2 

In order to verify the generalization ability and robustness of the algorithm model proposed in 
this paper, the bearing data of Society for Machinery Failure Prevention Technology (MFPT) [31] 
in the United States are selected. The data set is also a public data set. Compared with CWUR, it 
only records inner ring faults, outer ring faults and normal states. Table 9 is selected data types of 
MFPT. 

Table 9. Selected data types (MFPT) 
Type Roller diameter Load Sampling frequency 

Health 0.235 270 48828 
Outer ring fault 0.235 50, 100, 270 (3) 48828 
Inner ring fault 0.235 50, 150, 300 48828 

4.3.1. Accuracy analysis 

Table 10 and Fig. 11 show the performance of different methods. The accuracy of MCB-Net 
reached 97.26 %, the highest among all methods, an improvement of 1.06 % compared to SVM 
and 1 % compared to S-CNN’s 96.93 %. Compared with other optimization algorithms, the 
accuracy of BPNN optimized by CPO is improved by 2.03 %. Further combining the SD, we can 
see that MCB-Net's SD is only 1.05%, indicating that its results are less volatile across multiple 
experiments and exhibit greater stability. Although S-CNN’s SD is 0.83 %, showing better 
stability, its accuracy is still lower than MCB-Net, indicating that CPO achieves a better balance 
between stability and accuracy. The box plot results further show that the distribution range of 
MCB-Net is more compact and its overall position is higher, which means that it cannot only 
remain stable in different experiments but also achieve better performance. 

Table 10. Comparison of various methods (MFTP) 
 Accuracy SD 

MCB-Net 97.26 % 1.05 % 
MIV-LEA-BP 94.81 % 1.68 % 
MIV-PSO-BP 95.23 % 1.43 % 
MIV-HO-BP 96.70 % 1.31 % 
MIV-GA-BP 95.08 % 1.48 % 

SVM 96.2 % 0 
S-CNN 96.93 % 0.83 % 

 
Fig. 11. Box plot of different methods (MFTP) 
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a) S-CNN 

 
b) MIV-LEA-BP 

 
c) SVM 

 
d) MIV-HO-BP 

 
e) MIV-GA-BP 

 
f) MIV-PSO-BP 

 
g) MCB-Net 

Fig. 12. Accuracy analysis 

Fig. 12 shows the confusion matrix of different methods. As can be seen from the figure, except 
for MCB-Net and MIV-PSO-BP, the other algorithms all made misclassifications in category 1. 
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The LEA-optimized model had the largest classification errors, with significant misclassifications 
in categories 1, 6, 7, 8, and 9. The SVM performed second worst, primarily in categories 4, 7, and 
8. Meanwhile, the MCB-Net achieved accuracy rates above 95 % for all categories except 
categories 2 and 9. Other algorithms, such as S-CNN and SVM, exhibit relatively high values in 
some off-diagonal locations. Judging from the confusion matrix, the MCB-Net algorithm 
demonstrates superior classification performance, thanks to CPO's fine-tuning of model 
parameters during the optimization process, which better captures data features and thus excels in 
multi-class classification tasks. 

4.3.2. Error analysis 

In this dataset, the same 20 experimental epochs were conducted, and the selection of 
evaluation index parameters aligned with the CWUR dataset. The results for MAE and MSE are 
presented in Table 11 and 12, as well as Fig. 13. As can be seen from the table, the MCB-Net 
algorithm shows both balance and superiority. The maximum MAE is 0.099026, which is 
significantly lower than 0.120079 of MIV-LEA-BP and 0.100611 of SVM. It effectively avoids 
large deviations in the prediction process, thereby reducing the adverse effects of extreme errors 
on the overall performance. Although the minimum value is 0.098726, which is slightly higher 
than some optimization algorithms, the difference between the maximum and minimum values is 
only about 0.0003, highlighting its robustness in terms of control errors. The MSE indicator shows 
that compared with other methods, the average MSE is only slightly higher than S-CNN's 
0.037496, and the overall performance is superior. In addition, the difference between the 
maximum and minimum MSE values is only about 0.0010, which is much smaller than 0.0037 of 
MIV-LEA-BP and 0.0023 of MIV-HO-BP. The visualization in Fig. 13 more directly 
demonstrates the performance of MCB-Net. With the exception of LEA, which has a significantly 
higher MAE, the other algorithms are largely comparable. A comparison of MSE reveals that 
MCB-Net achieves the best performance, further validating its ability to achieve high accuracy 
and stability in complex prediction tasks. 

Table 11. MAE comparison of four algorithms (MFPT) 
 Max value Min value Average value 

MIV-LEA-BP 0.120079 0.098434 0.099516 
MCB-Net 0.099026 0.098726 0.098756 

MIV-PSO-BP 0.095914 0.094645 0.094676 
MIV-HO-BP 0.098378 0.097305 0.097498 
MIV-GA-BP 0.095932 0.094169 0.094307 

SVM 0.100611 0.098835 0.099279 
S-CNN 0.097552 0.096730 0.097141 

Table 12. MSE comparison of four algorithms (MFPT) 
 Max value Min value Average value 

MIV-LEA-BP 0.041940 0.038204 0.038391 
MCB-Net 0.037735 0.036714 0.036816 

MIV-PSO-BP 0.038518 0.037426 0.037851 
MIV-HO-BP 0.039606 0.037270 0.037854 
MIV-GA-BP 0.038047 0.037943 0.037985 

SVM 0.039956 0.038175 0.038898 
S-CNN 0.037881 0.037112 0.037496 

4.3.3. Volatility analysis 

Fig. 14 shows the SD of the convergence curves of each algorithm after 20 epochs. Overall, 
the MCB-Net algorithm has a very small standard deviation fluctuation during the entire iteration 
process, showing high stability. In contrast, the standard deviation curve of the PSO algorithm 
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fluctuates greatly from the 10th to the 15th iteration, indicating that its optimization effect is 
unstable at this stage.  

 
a) MAE 

 
b) MSE 

Fig. 13. MAE and MSE comparison of four algorithms (MFPT) 

 
Fig. 14. Volatility of the MFPT bearing dataset 

The LEA algorithm also experienced similar dramatic fluctuations between the 5th and 10th 
epochs, indicating that its optimization process at this stage was greatly disturbed. Although the 
S-CNN and HO algorithms showed a certain downward trend in the middle and late stages, the 
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overall fluctuation range was still higher than that of the MCB-Net algorithm, and the convergence 
speed was relatively slow, failing to effectively suppress the uncertainty in the training process. 
For example, after the 15th iteration, the HO standard deviation curve shows a significant rebound. 
MCB-Net effectively reduces the randomness and uncertainty in the optimization process through 
optimized control strategies and improved update mechanisms, enabling the algorithm to converge 
more smoothly to the optimal solution. 

4.4. Case 3 

In this section, the data used in the experiment were provided by Southeast University, and the 
faults such as Inner ring fault, Outer ring fault, and Ball fault were recorded [32]. Fig. 15 shows 
the test bench, which consists of a motor controller, Planetary Gear box, and other components. 
Records data for 0 V load and 2 V at 20 Hz and 30 Hz speeds, respectively. Table 13 shows the 
data used in this experiment. 

 
Fig. 15. SEU test bench 

Table 13. Experimental data 
Type Speeds (Hz) Load (V) 

Health 20 0 
Inner ring fault 20 0 
Outer ring fault 20 2 

Ball fault 20 0 
Outer and inner ring fault 20 2 

4.4.1. Accuracy analysis 

Table 14 shows the comparative experimental results of various methods on the SEU dataset. 
From the experimental results of the SEU dataset presented in the table, the MCB-Net method 
achieved the highest accuracy of 97.78 %, with a standard deviation of 0.98 %, showing good 
stability. Although MIV-HO-BP is close in accuracy, reaching 96.82 %, its standard deviation is 
1.10 %, indicating that MCB-Net has more consistent classification performance while 
maintaining high accuracy. 

Table 14. Comparison of various methods (SEU) 
 Accuracy SD 

MCB-Net 97.78 % 0.98 % 
MIV-LEA-BP 95.19 % 1.05 % 
MIV-PSO-BP 95.83 % 1.22 % 
MIV-HO-BP 96.82 % 1.10 % 
MIV-GA-BP 95.64 % 1.16 % 

SVM 96.30 % 0 
S-CNN 97.32 % 0.78 % 
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Fig. 16. Box plot of different methods (SEU) 

 
a) S-CNN 

 
b) MIV-LEA-BP 

 
c) SVM 

 
d) MIV-HO-BP 

 
e) MIV-GA-BP 

 
f) MIV-PSO-BP 
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g) MCB-Net 

Fig. 17. Accuracy analysis 

Fig. 16 is a box plot of each method under the SEU dataset. Fig. 16 shows that the overall 
distribution of MCB-Net is relatively concentrated, and the median position is relatively high. 
However, it must be pointed out that MCB-Net has only outliers compared with other algorithms, 
indicating that there is still room for improvement in stability under extreme conditions. 

Fig. 17 plots the confusion matrix for the SEU dataset. From the confusion matrix, MCB-Net 
performs outstandingly in classification performance, and the prediction accuracy of each 
category is at a high level. Compared with other models, MCB-Net's overall accuracy and single 
category accuracy are better than most comparison models. For example, the 100 % accuracy for 
category 4 and 98.61 % for category 5 are far higher than the performance of some models in this 
category. At the same time, the accuracy of other categories such as categories 1, 2, and 3 also 
remains at a high level, and the misclassification rate is extremely low (for example, only 2.78 % 
of category 1 is misclassified as category 2, and only 2.78 % of category 3 is misclassified as 
category 4). This shows that MCB-Net has stronger discrimination between categories, better 
overall classification stability and accuracy, and can complete multi-category classification tasks 
more accurately than other models. 

4.4.2. Error analysis 

Table 15 and Table 16 show the comparison of error indicators under the SEU dataset. The 
MCB-Net algorithm demonstrated excellent performance. As shown in Table 15, MCB-Net also 
outperformed most of the comparison algorithms, with its average MAE only about 0.01 lower 
than the best-performing MIV-PSO-BP (0.037723) and S-CNN (0.036540) models. As can be 
seen from Table 16, the average value of MCB-Net is significantly lower than that of other 
comparison methods. Compared with MIV-LEA-BP, its MSE is reduced by 38.6 %, which fully 
demonstrates its core advantage in accuracy. At the same time, the maximum and minimum MSE 
values of MCB-Net are maintained at a low level, indicating that the algorithm has strong 
robustness and can effectively avoid extreme errors. Overall, MCB-Net has an absolute advantage 
in the MSE indicator, which more severely penalizes large errors, confirming its comprehensive 
superiority in improving the overall prediction accuracy and stability of the model. 

Table 15. MAE comparison of four algorithms (SEU) 
 Max value Min value Average value 

MIV-LEA-BP 0.048782 0.047714 0.047479 
MCB-Net 0.042512 0.034950 0.038731 

MIV-PSO-BP 0.037723 0.032839 0.035281 
MIV-HO-BP 0.045250 0.044515 0.044883 
MIV-GA-BP 0.039872 0.035250 0.037863 

SVM 0.042670 0.042169 0.042420 
S-CNN 0.036540 0.035586 0.035609 
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Table 16. MSE comparison of four algorithms (SEU) 
 Max value Min value Average value 

MIV-LEA-BP 0.017643 0.016198 0.016421 
MCB-Net 0.010512 0.009645 0.010079 

MIV-PSO-BP 0.012924 0.011745 0.012335 
MIV-HO-BP 0.013213 0.010350 0.011782 
MIV-GA-BP 0.011875 0.011391 0.011633 

SVM 0.014987 0.014300 0.014644 
S-CNN 0.013472 0.010820 0.012646 

Fig. 18 provides an intuitive display of MAE and MSE. The MCB-Net algorithm outperforms 
all other comparison models in terms of MSE. Its maximum, minimum, and average MSE values 
are all at the lowest, significantly lower than those of models like MIV-LEA-BP and SVM. In 
MAE, the average performance of MCB-Net is close to that of the optimal model, and the 
maximum value of MAE is significantly lower than that of BPNN optimized by other algorithms, 
showing a more stable error upper limit control ability. 

 
a) MAE 

 
b) MSE 

Fig. 18. MAE and MSE comparison of four algorithms (SEU) 

4.4.3. Volatility analysis 

Fig. 19 shows the SD of the convergence curve under the SEU dataset. As can be seen from 
the figure, the convergence error of MCB-Net shows a lower fluctuation amplitude and a more 
stable downward trend overall. In the first five cycles, the error decreased rapidly and remained at 
a low level, while the LEA model had obvious peak fluctuations. In the 5th to 15th cycles, although 
there are some fluctuations, the error fluctuation of MCB-Net is significantly smaller than that of 
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PSO, S-CNN and other algorithms. Later in the cycle, the error continues to decrease steadily. 
This low volatility and high stability stems from MIV's effective screening of input information 
and CPO’s precise control of the optimization process. The synergistic effect of the two enables 
the algorithm to avoid local optimal traps during training, while improving convergence efficiency 
and robustness. Compared with other algorithms, MCB-Net not only achieves a faster 
convergence speed within 20 cycles, but more importantly, its error fluctuation is effectively 
suppressed, reflecting the algorithm's stronger anti-interference ability and generalization 
performance in complex optimization tasks. 

 
Fig. 19. Volatility across algorithms 

4.5. Convergence performance and ablation experiment 

4.5.1. Convergence performance test 

To comprehensively evaluate the convergence performance of the CPO algorithm, this study 
selected commonly used multimodal benchmark test functions for experiments to verify its 
capabilities in global search and local development. All test functions solved in this paper have a 
dimension of 10, and the population size and number of epochs are 30 and 100, respectively. 
Multimodal functions contain multiple local extreme points and are often used to test the 
optimizer’s ability to explore and escape from local optimality. 

Fig. 20 shows the convergence curves of each algorithm. Overall, the advantages of CPO are 
particularly significant. Taking F19 as an example, LEA and GA show an overall slow decline 
during the iteration process, always maintaining a high fitness level, and the final result is 
significantly inferior to CPO; although PSO and HO can gradually reduce the fitness value, there 
is a gap in both convergence speed and final accuracy, while CPO can decline rapidly in the initial 
stage and eventually reach convergence. In terms of convergence speed, CPO’s rate of decline on 
all functions is significantly greater than that of the other compared algorithms. In F23, although 
GA and HO have certain optimization trends, their rate of decline is slower than that of CPO, and 
their final results are much higher than CPO. CPO can converge quickly and reach the optimal 
value at an early stage. The results of F28 further highlight the differences. Except for CPO, the 
fitness values of the other optimization algorithms always remain at a high level. From the 
perspective of convergence accuracy, the final fitness value of CPO always remains at the lowest 
level and is relatively stable. Specifically, on F31, LEA maintains a high level and hardly 
converges. GA, PSO, and HO converge significantly slower than CPO. 

In summary, CPO has both strong exploration efficiency and local convergence capabilities in 
the tested multimodal functions, and can obtain better solutions within a limited number of epochs, 
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demonstrating its stability and advantages in complex optimization problems. 

 
a) F19 

 
b) F23 

c) F28 
 

d) F31 
Fig. 20. Multimodal benchmark function test 

4.5.2. Ablation experiment 

In this subsection, systematic ablation experiments are conducted to verify the synergistic 
effect of the proposed algorithm in this paper. Due to the comparison of other optimizations in 
subsection 4.1.3, there are only two groups of experiments: Experiment 1 using only BPNN for 
diagnosis and Experiment 2 using MIV-BPNN. Each group of experiments is run independently 
on the CWRU dataset with the same Network structural parameters to eliminate the effect of 
randomness. 

Fig. 21 shows the confusion matrix of Experiment 1 and Experiment 2. As can be seen from 
the figure, the classification performance of a single BP model fluctuates to a certain extent. For 
example, the recognition rate for categories 6 and 7 is only 83.5 %, and the generalization ability 
is limited when processing certain complex patterns. The MIV-BP model improves the accuracy 
to 95.8 %, mainly due to the MIV algorithm's selection of characteristic indicators, which 
eliminates the influence of other interfering indicators on the results. The MCB-Net model 
achieved an even higher accuracy rate of 98.2 %. First, the MIV algorithm precisely selected the 
features that contributed most to classification, achieving 100 % accuracy for categories 2 and 8 
while minimizing interference from other information. Second, the CPO algorithm further 
optimized network parameters, avoiding local optimal solutions through global search. This 
significantly increased the model’s recognition rate for complex categories (such as categories 6 
and 7) from 83.5 % to 94.59 %, while also achieving enhanced recognition stability across all 
categories. In comparison, MCB-Net not only inherits the feature selection capability of MIV, but 
also enhances the robustness and convergence efficiency of the model through the dynamic 
parameter adjustment mechanism of CPO, and ultimately achieves near-optimal performance in 
classification tasks. 

In addition, combining subsection 4.1.2 with other optimization algorithms, best-performing 
optimization algorithm, MIV-HO-BP, achieved an accuracy rate of 97.35 %, MIV-LEA-BP is 
94.25 %, MIV-PSO-BP is 95.3 %, and BPNN performs the best after optimization with MIV 
feature selection and post-CPO algorithm. This result not only reflects the necessity of feature 
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selection to reduce redundancy and improve model efficiency but also the advantages of the CPO 
algorithm. 

 
a) BP 

 
b) MIV-BP 

 
c) MCB-Net 

Fig. 21. Experiment 1 and Experiment 2 confusion matrices 

4.6. Discussion 

The fault diagnosis approach presented in this paper, utilizing MIV and CPO-optimized 
BPNN, demonstrates considerable performance benefits. The ablation experiment depicted in 
Fig. 21 indicates that the practical value, impact factor, and margin factor identified by MIV 
substantially influence the performance of the BP neural network. When solely these high-impact 
characteristics are maintained as input, the model’s diagnostic accuracy improves by 14.73 % 
relative to the original BP, hence underscoring the efficacy of MIV in feature extraction. MIV not 
only markedly improves model performance but also mitigates the black box issue of deep models 
to some degree, rendering the diagnostic procedure more comprehensible. In the parameter 
optimization phase, CPO exhibited enhanced convergence properties and predictive accuracy 
relative to conventional optimization algorithms like GA, PSO, and LEA, achieving optimal MSE 
and MAE metrics performance. Fig. 20 indicates that CPO has superior convergence efficiency 
compared to other optimization techniques. 

This study empirically corroborates the MCB-Net model utilizing three bearing datasets across 
various operational situations. The findings indicate that the MCB-Net classification accuracy 
consistently exceeds 97 % with a minimal standard deviation across all three datasets. 
Demonstrating consistent diagnostic performance across various operational settings and failure 
modes, MCB-Net showcases significant robustness and generalization abilities. The advantages 
of MCB-Net differ from GA’s dependence on selection, crossover, and mutation and PSO’s 
reliance on individual and collective flight experience. CPO attains a dynamic equilibrium 
between global and local search by emulating the four defensive behaviors of porcupines, and 
enhances convergence through a cyclic population reduction strategy, thereby effectively 
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mitigating the risk of local optimality and ensuring the model's superior performance across 
various tasks. 

Moreover, the excellence of DL models like CNNs and GCNs in intricate feature extraction is 
offset by practical implementation challenges stemming from computational constraints at 
industrial sites. The CPO-BPNN, in conjunction with MIV feature selection, guarantees precise 
diagnosis and offers interpretable input metrics, rendering the method more appropriate for 
resource-limited industrial applications while maintaining a balance between performance and 
efficiency. 

5. Conclusions 

This study presents MCB-Net, an intelligent diagnostic system for resource-constrained 
industrial environments. MCB-Net leverages the minimal parameters and low computational 
demands of BPNN, integrating it with MIV feature selection and CPO optimization skills to get 
enhanced accuracy. The main conclusions of this paper are as follows:  

1) Introduces the MIV method to effectively screen out key features and reduce the input 
dimension, thereby alleviating the overfitting risk of BPNN in high-dimensional environments 
while also improving model interpretability and enhancing the transparency of diagnostic results. 

2) The introduction of the CPO algorithm significantly improves the shortcomings of 
traditional BPNN in terms of slow convergence speed and easy falling into local optimality. 
Compared with optimization methods such as PSO and GA, CPO has stronger global search 
capabilities and higher convergence efficiency, thereby effectively improving diagnostic accuracy 
and stability. 

3) Experimental results on three different working condition datasets show that MCB-Net 
outperforms existing methods in diagnostic accuracy, robustness, and stability, verifying its 
application potential in actual industrial scenarios. 

However, this approach still has limitations, such as lack of applicability in high-noise 
environments, extreme fault types, and multi-bearing systems. Future research will focus on 
improving noise robustness, extending to multi-source sensor data fusion, and combining transfer 
learning with federated learning to enhance generalization capabilities under different operating 
conditions. 
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