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Abstract. In wind turbines, rotating components serve as critical parts and are also prone to 
failures. The fault signals of wind turbines represent typical non-stationary and nonlinear signals 
susceptible to noise interference. Existing time-frequency analysis methods exhibit insufficient 
energy concentration when extracting time-varying non-stationary fault features, making feature 
extraction from signals more challenging. The primary drawbacks of single-data fault diagnosis 
methods lie in their limited information scope, poor robustness, lack of redundancy and fault 
tolerance, and difficulty in handling complex or multi-dimensional fault patterns. To address these 
issues, this paper proposed a model based on Improved TFMST and DSC-CNN-GRU. Firstly, the 
original Time-Frequency-Multisqueezing Transform (TFMST) technique was enhanced by 
optimizing its window function, introducing multi-scale adaptive thresholding to improve 
robustness, and relaxing the curvature criterion to enhance feature sensitivity. Furthermore, eps 
protection was incorporated throughout the algorithm to ensure numerical stability. Secondly, two 
datasets were constructed: one comprising two-dimensional data derived from the improved 
TFMST and the other containing one-dimensional raw data. Subsequently, a dual-input 
DSC-CNN-GRU model was developed, and both datasets were fed into it. Notably, the proposed 
model adopts a lightweight design. Finally, information from both data branches is fused and 
delivered to the classifier for the fault diagnosis task. To demonstrate the effectiveness of the 
proposed method, comparisons with other relevant methods were conducted on various datasets, 
indicating that the proposed method achieved desirable fault diagnosis accuracy. 
Keywords: fault diagnosis, wind turbine, information fusion, deep learning. 

1. Introduction 

Wind power is considered a green and sustainable energy option, playing a crucial role in the 
future transition of the energy structure [1, 2]. With the growing global focus on climate change, 
wind power will continue to play a vital role in contributing to the sustainable development of 
global energy [3, 4]. When wind drives the wind turbine blades to convert energy, due to the 
instability of wind speed, the strength and direction of the wind frequently change, resulting in 
intermittent and fluctuating characteristics. Components such as bearings, gears, and hubs, which 
are key power conversion elements of the turbine, often bear heavy loads and unloads. 
Additionally, due to prolonged exposure to complex natural environments during operation, these 
components are prone to various faults. These faults not only affect the normal operation of the 
wind turbine but can also lead to downtime, damage, energy waste, and even impact the 
surrounding environment and grid system [5, 6]. Therefore, fault diagnosis of wind turbines has 
become crucial, as it is an essential means to ensure the efficient, stable, and safe operation of 
wind farms. It helps improve the operational reliability of turbines, extend their service life, 
enhance power generation efficiency, reduce maintenance costs, ensure safe operation, and 
support the sustainable development of the entire wind energy industry [7]. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jme.2025.25113&domain=pdf&date_stamp=2026-02-06
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Vibration signals are one of the most commonly used data sources in wind turbine fault 
diagnosis. The operation of wind turbines involves multiple complex systems and components, 
and any abnormality in a part can lead to performance degradation or failure. Through signal 
acquisition, real-time operational data can be collected, allowing for the analysis of parameter 
changes and timely identification of potential issues, thereby supporting fault diagnosis and 
prevention [8]. Traditional signal processing methods, such as Fourier Transform (FT) [9], Power 
Spectral Density (PSD) [10], and Autocorrelation Analysis [11], are effective for stationary 
signals. However, for non-stationary signals, these methods are unable to preserve their original 
characteristics. To address this issue, some time-frequency analysis (TFA) methods for non-
stationary signals have gradually emerged, such as Short-Time Fourier Transform (STFT) [12], 
Wavelet Transform (WT) [13], Empirical Mode Decomposition (EMD) [14], and others. 
Although these methods can handle non-stationary signals, they also have a range of limitations. 
For example, the choice of window length in STFT is a key issue. A window that is too long will 
lose time-domain information, while a window that is too short will lose frequency-domain 
information. Additionally, the trade-off between frequency resolution and time resolution is a 
problem with STFT, as it cannot simultaneously describe both time and frequency characteristics 
of a signal accurately in time-frequency analysis. As the data scale continues to increase, it also 
leads to higher computational costs. Most time-frequency analysis methods typically face a trade-
off between temporal resolution and frequency resolution. For complex dynamic signals from 
wind turbines, such as vibration signals and noise, this trade-off can result in fault features that 
are unclear or cannot be accurately extracted. Synchrosqueezing Transform (SST), proposed by 
Daubechies et al. in 2011 [15], is an effective time-frequency (TF) post-processing method. This 
approach significantly improves time-frequency resolution and can suppress low-level noise. 
However, it is primarily suitable for processing weak, time-varying signals. Building on this, Li 
et al. [16]. proposed the second-order adaptive synchrosqueezing transform (FSST) for non-
stationary signals with rapid frequency variations, to enhance the time-frequency concentration 
and resolution of a multicomponent signal, and to separate its components more accurately. Wang 
et al. [17]. proposed a time-frequency analysis (TFA) method called the matching 
synchrosqueezing transform (MSST), which achieves a highly concentrated TF representation 
comparable to the standard TF reassignment methods (STFRM). Experimental results validated 
the effectiveness of MSST in mechanical fault diagnosis. Yi et al. [18]. addressed issues such as 
insufficient time-frequency energy concentration and frequent noise interference by combining 
multiple groups of wavelets with increased bandwidth into a super wavelet set and then proposed 
the Superlets Transform (SLT). By applying SLT to higher-order instantaneous frequency (IF) 
estimation and time-frequency energy rearrangement, they introduced the High-order 
Synchrosqueezing Superlets Transform (HSSLT) to achieve clearer and more concentrated time-
frequency representations (TFR). This method was successfully applied to the bearing fault 
diagnosis of offshore wind turbines. 

In recent years, fault diagnosis technologies for wind turbines based on deep learning methods 
have received widespread attention. For example, Deep Belief Networks (DBN) [19], Recurrent 
Neural Networks (RNN) [20], and Convolutional Neural Networks (CNN) [21] have been 
extensively used in fault diagnosis and have achieved promising diagnostic results. Li et al. [22]. 
proposed a method combining Deep Belief Networks (DBN) and 1D Convolutional Neural 
Networks (1D-CNN) for the one-dimensional raw fault signals of rotating machinery. This 
approach achieved dimensionality reduction, feature extraction, and classification of the fault data. 
Experimental results demonstrated the effectiveness of the method. Cao et al. [23]. proposed an 
intelligent fault diagnosis method based on Long Short-Term Memory (LSTM) networks for wind 
turbine gearbox faults. By comparing it with the Support Vector Machine (SVM) method, they 
verified the superiority of the proposed approach. Liu et al. [24]. proposed a novel method 
combining a one-dimensional (1-D) denoising convolutional autoencoder (DCAE) and a 1-D 
convolutional neural network (CNN) to address the issue of noise interference. Experimental 
results demonstrated that the method could achieve high-accuracy diagnosis even in noisy 
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environments. Although fault diagnosis based on raw fault signals has shown some effectiveness, 
solely using one-dimensional signal analysis may overlook important time-frequency features, 
failing to capture the nonlinear and time-varying characteristics of the signal. To address these 
issues, methods that transform one-dimensional raw signals into two-dimensional time-frequency 
maps for wind turbine fault diagnosis have been continuously developed. These methods 
effectively overcome the limitations of traditional one-dimensional signal analysis, providing 
richer time-frequency feature information [25-27]. Zhang et al. [28]. transformed the one-
dimensional raw signal into a two-dimensional time-frequency map using Short-Time Fourier 
Transform (STFT). By introducing the Scaled Exponential Linear Unit (SELU) function and 
combining it with a Convolutional Neural Network (CNN), they achieved classification of bearing 
faults. Jun et al. [29]. applied Variational Mode Decomposition (VMD) to decompose the raw 
signal and selected specific components. These selected components were then transformed into 
time-frequency maps using Continuous Wavelet Transform (CWT). By combining this approach 
with a Convolutional Neural Network (CNN), they successfully implemented fault diagnosis for 
rotating machinery. Shi et al. [30]. addressed the limitations of fault sample quantity and quality 
by transforming the one-dimensional raw signal into time-frequency maps using Short-Time 
Fourier Transform (STFT) and Synchronous Compressed Wavelet Transform (SWT). They 
combined these time-frequency maps with a Dual-Stream Convolutional Neural Network 
(DSCNN) and Support Vector Machine (SVM) to achieve mechanical fault diagnosis. This 
approach effectively leveraged the strengths of both CNN for feature extraction and SVM for 
classification, enhancing the diagnostic performance despite challenges with limited or noisy fault 
data. Che et al [31]. extracted time-domain features from vibration signals and transformed these 
features into multimodal samples consisting of grayscale images and time-series data. By 
combining CNN with models such as DBN, they implemented decision-level multimodal fusion 
to achieve comprehensive fault prediction results. The proposed method was validated through 
experiments, demonstrating its effectiveness in improving fault diagnosis performance by 
integrating different data representations and models. This approach highlights the advantage of 
combining time-domain features with deep learning models for more accurate and robust fault 
prediction. Yang et al. [32]. transformed the one-dimensional signals into two types of time-
frequency maps using Gramian Angular Field (GAF) and Continuous Wavelet Transform (CWT) 
techniques to highlight fault features. They proposed a practical and effective Self-Attention 
Parallel Fusion Network (SAPFN) to achieve fault diagnosis for gearboxes. This approach 
effectively leveraged self-attention mechanisms to focus on key features in the data, improving 
diagnosis accuracy and robustness. Although transforming signals into time-frequency 
representations can enhance fault diagnosis accuracy, this approach demands substantial 
computational resources and time. Different fault modes may manifest as distinct frequency 
components, yet time-frequency representations often require compromises between frequency 
and temporal resolution, potentially leading to insufficient precision in capturing subtle fault 
signatures. The Time-frequency-multisqueezing Transform (TFMST) [33] method addresses 
these challenges while eliminating the energy diffusion issue at cross-components inherent to 
conventional methods, generating more focused time-frequency representations. This provides a 
novel approach to time-frequency data conversion. However, this method suffers from limitations 
including fixed threshold settings, inflexible window function parameters, and overly stringent 
curvature criteria. 

Based on the above analysis and inspiration, this paper proposes a wind turbine unit fault 
diagnosis method based on the Improved TFMST and DSC-CNN-GRU model. The contributions 
of this paper are summarized as follows:  

(1) Improvements were made to the original TFMST algorithm. Firstly, the window function 
parameter was optimized from 0.32 to 0.28 to better capture transient fault characteristics. Second, 
a breakthrough multi-scale adaptive threshold mechanism was introduced by integrating median 
threshold, maximum threshold, and baseline threshold, constructing an adaptive thresholding 
framework that addresses the sensitivity of fixed thresholds to outliers. Thirdly, the curvature 
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criterion was relaxed to enhance feature detection sensitivity, effectively preserving subtle fault 
patterns. Finally, a 1:0.9 weighted energy allocation strategy was adopted to significantly suppress 
noise interference while maintaining feature integrity. A numerical stability protection mechanism 
was embedded throughout the algorithm to ensure robustness. 

(2) This paper proposes a dual-input hybrid neural network DSC-CNN-GRU model that deeply 
integrates the advantages of CNN and GRU. The image input branch employs Deep Separable 
Convolution to replace traditional convolution, substantially reducing parameters while 
preserving feature extraction capabilities. The signal input branch effectively captures temporal 
features through a lightweight CNN and GRU. Feature summation enables the fusion of 
heterogeneous data information, allowing the model to simultaneously process spatial-visual 
information and temporal sequence signals. 

The structure of this paper is as follows: Section 2 introduces the relevant theoretical 
foundations, primarily including the basic models of CNN and GRU. Section 3 presents the 
proposed fault diagnosis method. Section 4 describes the dataset used and the experimental setup. 
Section 5 validates and discusses the proposed method, demonstrating its effectiveness. Section 6 
concludes the paper. 

2. The proposed method 

This section provides a detailed description of the proposed fault diagnosis method. First, the 
TFMST method is improved to obtain a more feature-rich time-frequency representation. Next, a 
Depthwise Separable Convolution-CNN-GRU Fusion Network model is proposed. 

2.1. Improved TFMST 

The fault signals of wind turbines are typically composed of various components such as 
harmonics, pulses, and frequency modulation. Commonly used TFA methods, such as STFT, WT, 
and Hilbert-Huang Transform (HHT) [34], are affected by the Heisenberg uncertainty principle, 
which requires a trade-off between time and frequency resolution. Attempting to accurately 
capture the instantaneous characteristics of the signal at a particular moment (i.e., increasing time 
resolution) may lead to a decrease in frequency resolution, and vice versa. The quantification of 
TF features requires the Instantaneous Frequency (IF) and Group Delay (GD) parameters. 
However, TF features are not completely independent time and frequency components, so a multi-
compression approach is needed to effectively fuse the time and frequency information. TFMST 
method effectively integrates temporal and spectral information to generate a more concentrated 
TF feature representation. However, this method still exhibits certain limitations, as some fault 
features within the time-frequency representation may be lost. For instance, the original TFMST 
approach suffers from fixed threshold values, static window function parameters, and overly 
stringent curvature criteria. Building upon this foundation, the present study introduces 
enhancements to the TFMST algorithm addressing these aspects: thresholding strategy, window 
function parameters, curvature criteria, and numerical stability. 

First, in the original algorithm, the Gaussian window parameter (𝜎 = 0.32) resulted in deficient 
temporal resolution. For certain signals, this made it difficult to capture rapid transients within 
fault signals, adversely impacting feature extraction accuracy. To better capture transient faults 
and enhance sensitivity to weak fault signatures, the Gaussian window parameter was adjusted to 
0.28. This modification controls the trade-off between temporal and frequency resolution: 

ℎଵሺ𝑡ሻ = expቆ−𝜋 ൬ 𝑡𝜎ଵ൰ଶቇ  ,    𝜎ଶ = 0.28, (1)

where 𝑡 denotes the time coordinate. 
In the original algorithm, the instantaneous frequency is estimated by directly employing 
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division. Its instantaneous frequency estimate is given by: 

𝜔ෝଵሺ𝑡,𝜔ሻ = 𝜔 + Re ቊ𝑗𝑣𝑎𝑆ௗ௛ሺ𝑡,𝜔ሻ2𝜋𝑆௛ሺ𝑡,𝜔ሻ ቋ, (2)

where 𝜔 represents the frequency coordinate, 𝑆௛ denotes the STFT of the signal, 𝑆ௗ௛(𝑡,𝜔) 
signifies the STFT of the signal convolved with the derivative of the window function, and 𝑣𝑎 is 
the scaling factor. Numerical instability can occur when the value 𝑆௛ is very small. Consequently, 
building upon the original algorithm, we incorporated an epsilon (eps) safeguard to prevent 
division-by-zero errors and ensure numerical stability. The modified instantaneous frequency 
estimate incorporating epsilon is expressed as: 

𝜔ෝଵ௜௠௣௥௢௩௘ௗ(𝑡,𝜔) = 𝜔 + Re ቊ 𝑗𝑣𝑎𝑆ௗ௛(𝑡,𝜔)2𝜋max( |𝑆௛(𝑡,𝜔), 𝜀|)ቋ, (3)

where 𝜀 denotes the machine epsilon, preventing division by zero. 
Furthermore, the original algorithm utilized a fixed threshold, setting points in the time-

frequency matrix with magnitudes below 0.2 times the maximum value to zero. For diverse 
signals, this approach fails to adapt to variations in statistical characteristics. Concurrently, a fixed 
threshold can excessively suppress weak fault features and exhibits sensitivity to outliers, where 
a single large magnitude value could disproportionately influence the entire threshold level. To 
enhance the robustness of threshold setting and achieve a better balance between feature 
preservation and noise suppression, we implemented an adaptive thresholding scheme combining 
the median and maximum values. The threshold function from the original algorithm is defined 
as: 𝑇ଵ = 𝛼ଵ𝑀, (4)

where 𝛼ଵ= 0.2, 𝑀 = max|𝑆(𝑡,𝜔)|. 
The improved threshold function incorporates multiple scaling thresholds, including the 

median threshold, maximum threshold, and base threshold. By leveraging the signal’s global 
statistical characteristics, the threshold is determined dynamically to adapt to the energy 
distribution of diverse signals.  

The median threshold is defined as: 𝑇௠௘ௗ௜௔௡ = 𝛼௠median(|𝑆(𝑡,𝜔)|), (5)

where 𝛼௠௔௫ = 0.25. The median exhibits inherent robustness to outliers, representing the signal’s 
typical magnitude. The coefficient 𝛼௠ = 0.15 is configured to preserve components exceeding a 
specified proportion of this characteristic amplitude. 

The maximum threshold: 𝑇௠௔௫ = 𝛼௠௔௫𝑀, (6)

where 𝛼௠௔௫ = 0.25, this constraint prevents the threshold value from becoming excessively high, 
thereby avoiding the suppression of significant signal components while maintaining effective 
noise reduction. 

The base threshold: 𝑇௕௔௦௘ = 𝛼௕𝑀, (7)

where 𝛼௕ = 0.1, this configuration ensures the threshold does not drop excessively low, thereby 
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preventing the retention of extraneous noise components. 
Adaptive threshold synthesis: 𝑇௔ௗ௔௣௧௜௩௘ = 𝑚𝑖𝑛൫𝑇௠௔௫,𝑚𝑎𝑥(𝑇௠௘ௗ௜௔௡,𝑇௕௔௦௘)൯. (8)

Improved Thresholding scheme: 𝑆௧௛௥௘௦௛௢௟௘௘ௗଵ (𝑡,𝜔) = 𝑆(𝑡,𝜔)𝐼൛|ௌ(௧,ఠ)|ஹ்ೌ೏ೌ೛೟೔ೡ೐ൟ, (9)

where 𝐼 denotes the indicator function. 
Thus, when signal quality is sufficiently high, 𝑇௠௘ௗ௜௔௡ ≈ 𝑇௕௔௦௘. Under conditions of 

anomalous noise, 𝑇௠௔௫ provides upper-bound protection. 
The curvature criterion serves to distinguish between signal-dominant components and noise-

dominant components. It operates based on derivatives of instantaneous frequency and group 
delay. The curvature ratio, which characterizes local geometric properties in the time-frequency 
distribution, is defined as: 

𝑟(𝑡,𝜔) = 𝜕𝜔ෝଵ/𝜕𝑡𝜕𝑡̂ଵ/𝜕𝜔, (10)

where 𝜕𝜔ෝଵ/𝜕𝑡 represents the time derivative of instantaneous frequency, and 𝜕𝑡̂ଵ/𝜕𝜔 denotes the 
frequency derivative of group delay. 

The original algorithm employs a strict curvature condition, with the feature mask 
characterized by: 

𝛭ଵ = ቊ(𝑡,𝜔): |𝑟(𝑡,𝜔)| < 1 ∧ ቤ𝜕𝑡̂𝜕𝜔ቤ > 0.2ቋ. (11)

The application of stringent curvature criteria may result in excessive misclassification of 
valuable fault features as noise, particularly diminishing sensitivity to faults exhibiting slight 
frequency modulation. To enhance fault feature detection sensitivity and preserve discriminative 
time-frequency patterns, we implement relaxed curvature conditions with epsilon-based numerical 
safeguarding. Adjusting the curvature ratio threshold from 1.0 to 1.2 and reducing the group delay 
derivative constraint from 0.2 to 0.15 enables retention of signal components with mild 
nonstationarity, thereby improving fault feature detection rates. The relaxed feature mask is 
defined as: 

𝛭ଶ = ቊ(𝑡,𝜔): ห𝑟௣௥௢௧௘௖௧௘ௗ(𝑡,𝜔)ห < 1.2 ∧ ቤ𝜕𝑡̂𝜕𝜔ቤ > 0.15ቋ, (12)

where 𝑟௣௥௢௧௘௖௧௘ௗ(𝑡,𝜔) = డఠෝభ/డ௧௠௔௫൬ฬ ങ೟෠ങഘฬ,ఌ൰. 
Improved signal separation: 𝑆ଵଶ(𝑡,𝜔) = 𝑆௧௛௥௘௦௛௢௟௘௘ௗଶ (𝑡,𝜔)𝐼ሼ(௧,ఠ)∈௹మሽ, (13)𝑆ଶଶ(𝑡,𝜔) = 𝑆௧௛௥௘௦௛௢௟௘௘ௗଶ (𝑡,𝜔) − 𝑆ଵଶ(𝑡,𝜔). (14)

In the final energy allocation scheme, the original algorithm assigns equal weights to both the 
frequency directional synchrosqueezing result and the time directional synchrosqueezing result. 
By reducing the weight assigned to the time directional result to 0.9, we effectively diminish noise 
introduced through temporal reallocation, yielding enhanced output clarity. The modified weight 
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configuration is implemented as follows: 𝑇𝑆ଶ = 𝑀𝑆𝑆𝑇ଵ(𝑆ଵଶ) + 0.9𝑀𝑆𝑆𝑇ଶ(𝑆ଶଶ), (15)

where component 𝑆ଵଶ satisfies the curvature condition and exhibits high signal-to-noise ratio. 
Component 𝑆ଶଶpotentially contains elevated noise levels; therefore, its assigned weight is reduced. 

2.2. A depthwise separable convolution-CNN-GRU fusion network 

CNN have been widely applied in the field of fault diagnosis, particularly for processing 
complex signals, images, and time-series data. Owing to their powerful capability for automatic 
feature extraction, CNN have demonstrated superior performance in scenarios where traditional 
methods encounter difficulties. Within the CNN architecture, convolutional layers, pooling layers, 
and fully connected layers constitute the three primary layer types [35, 36]. The Gated Recurrent 
Unit (GRU), an advanced variant of the Recurrent Neural Network (RNN), was introduced by 
Kyunghyun Cho et al. [37]. in 2014. Leveraging gating mechanisms, the GRU selectively updates 
its hidden state to capture essential information while discarding irrelevant details [38]. Compared 
to the Long Short-Term Memory (LSTM) [39] network, the GRU possesses a simpler structure 
and exhibits lower computational complexity. Depthwise separable convolution (DSConv)] [40] 
is an improved convolutional method that decomposes a standard convolution into two separate 
operations: depthwise convolution (DWConv) and pointwise convolution (PWConv). The specific 
process is illustrated in Fig. 1. 

 
Fig. 1. Depthwise separable convolution process 

The distinction between DSConv and standard convolution lies in the fact that depthwise 
convolution employs single-channel kernels. It convolves each input channel separately, 
producing an output feature map with the same number of channels as the input. Subsequently, 
pointwise convolution (PWConv) with a kernel size of 1×1 is applied to increase dimensionality 
by aggregating information across all channels. 

Assume the DWConv has a kernel size of 𝐷௄ × 𝐷௄ × 1, a number of kernels 𝑀, and a 
parameter count of 𝐷௄ × 𝐷௄ × 𝑀. Assume the PWConv has a kernel size of 1 × 1 × 𝑀, a number 
of kernels 𝑁, and a parameter count of 𝑀 × 𝑁. Therefore, the total parameter count for the 
DSConv is 𝐷௄ × 𝐷௄ × 𝑀 + 𝑀 × 𝑁. 

Whereas a standard convolution has a parameter count of 𝐷௄ × 𝐷௄ × 𝑀 × 𝑁, the parameter 
ratio between DSConv and standard convolution is ଵே + ଵ஽మ಼ . DSConv first performs DWConv 
independently on each input channel, then merges all channels into the output feature map via 
PWConv. This design achieves reduced computational cost and improved operational efficiency. 

Based on relevant theoretical analysis and experimental validation, we propose a Dual-input 
Deep Separable Convolution-CNN-GRU Fusion Network (DSC-CNN-GRU) model. The 
proposed model primarily consists of two branches. Branch 1 is composed of standard 
convolutions and DSConv. The input data first undergoes preliminary feature extraction through 



A NOVEL WIND TURBINE FAULT DIAGNOSIS METHOD BASED ON IMPROVED TFMST AND DSC-CNN-GRU MODEL.  
WENYI LIU, TONGMING JIAN, LEI MENG, DI SONG, JIANBIN CAO 

8 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

a standard convolutional layer, followed by deeper feature extraction via two separable 
convolution modules. The function of Branch 1 is to extract features from image sample data. 
Branch 2 integrates a CNN model with a GRU model, where the CNN part adopts a lightweight 
design. This branch achieves feature extraction from one-dimensional data. Fig. 2 illustrates the 
specific structure of the proposed model. 

 
Fig. 2. The structure of depthwise separable convolution-CNN-GRU fusion network 

The proposed model’s Branch 1 primarily extracts features from the TFMST time-frequency 
diagrams. In this branch, the input first undergoes a convolution operation with a 5×5 kernel size, 
followed by feature extraction through two DSC blocks. Within these DSC blocks, the DWConv 
layers use kernel sizes of 3×3 and 5×5 respectively, and the PWConv layers use a kernel size of 
1×1. Finally, the features are flattened via a fully connected layer and a flatten layer, with the 
purpose of fusing them with the features from Branch 2. Branch 2 primarily extracts features from 
the raw signal. This branch mainly consists of four convolutional blocks. The second 
convolutional block uses a kernel size of 1×1, while the other three blocks use a kernel size of 
1×3. LeakyReLU is used as an activation function throughout Branch 2. Furthermore, max pooling 
is employed throughout the proposed model to reduce the dimensionality of the feature maps. 

The network parameters and hyperparameter settings of the DSC-CNN-GRU model are shown 
in Table 1. In Branch 1, a 5×5 convolution kernel is first employed for initial feature extraction, 
with a stride of 2 to achieve downsampling. This rapidly reduces the spatial dimensionality and 
extracts fundamental visual features. The two DSC blocks decompose standard convolution into 
depthwise convolution and pointwise convolution. DSC Block 1 uses a 3×3 convolution kernel, 
significantly reducing computational load while maintaining feature extraction capability. DSC 
Block 2 employs a larger receptive field (5×5) to capture more complex feature patterns. In 
Branch 2, 1×3 convolution kernels are first used, specifically designed for processing temporal 
data. They perform local feature extraction along the temporal dimension while preserving 
channel integrity. This is followed by a 1×1 convolution for dimensionality reduction, then another 
1×3 convolution for feature extraction, and finally a step to restore dimensions. This design 
significantly reduces the number of parameters and enhances nonlinear expressive power. 
Subsequently, 128 GRU units are utilized for temporal modeling to capture long-range 
dependencies within the sequential data. Only the output from the final timestep is taken, yielding 
a compressed representation of the entire sequence. Following feature extraction in both Branch 1 
and Branch 2, the 128-dimensional feature vector from the Light-CNN branch (Branch 1) and the 
128-dimensional feature vector from and the 128-dimensional feature vector from the GRU 
branch (Branch 2) undergo element-wise summation. This achieves deep integration of the visual 
and temporal features. 
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The total number of learnable parameters in the final proposed model is 2.5M. Compared to 
classical neural network models such as AlexNet [41] (approximately 60M parameters) and 
ResNet-18 [42] (approximately 11.7M parameters), the proposed model achieves a substantial 
reduction in parameters. This lightweight architecture significantly enhances training efficiency, 
paving the way for future applications in fault diagnosis. 

Table 1. Network parameters of DSC-CNN-GRU 
Branch 1 Activations Learnables Branch 2 Activations Learnables 

imageinput 128×128×3 – datainput 1×1024×1 – 

conv_1 256×256×3 
Weights 
5×5×3×6 

Bias 1×1×6 
conv_4 1×1024×16 Weights 1×3×1×6 

Bias 1×1×16 

relu_1 126×126×6 – bn_3 1×1024×16 Offset 1×1×16 
Scale 1×1×16 

maxpool_1 126×126×6  leaky_relu_4 1×1024×16 – 

conv_2_depthwise 63×63×6 
Weights 
3×3×6×6 

Bias 1×1×6 
maxpool_3 1×511×16 – 

bn_2 32×32×6 offset1×1×6 
scale1×1×6 conv_5 1×511×16 

Weights 
1×1×16×16 
Bias 1×1×16 

relu_2 32×32×6 – bn_5 1×511×16 Offset 1×1×16 
Scale 1×1×16 

conv_2_pointwise 32×32×6 
Weights 

1×1×6×120 
Bias 1×1×120 

leaky_relu_5 1×511×16 – 

maxpool_2 32×32×120 – conv_6 1×511×32 
Weights 

1×3×16×32 
Bias 1×1×32 

conv_3_depthwise 16×16×120 
Weights 

5×5×120×6 
Bias 1×1×6 

bn_6 1×511×32 – 

bn_3 8×8×6 offset1×1×6 
scale1×1×6 leaky_relu_6 1×511×32 Offset 1×1×32 

Scale 1×1×32 
relu_3 8×8×6 - maxpool_6 1×254×32  

conv_3_pointwise 8×8×6 
Weights 

1×1×6×120 
Bias 1×1×120 

conv_7 1×254×32 
Weights 

1×3×32×32 
Bias 1×1×32 

relu_4 8×8×120 – bn_7 1×254×32 Offset 1×1×32 
Scale 1×1×32 

fc_1 8×8×120 
Weights 

128×7680 
Bias 128×1 

leaky_relu_7 1×254×32 – 

flatten_1 1×1×128 - maxpool_7 1×126×32 – 
   flatten_2 4032 – 

   gru 128 

Input weights 
384×4032 

Recurrent weights 
384×128 

Bias 384×1 
Addition 128 
relu_8 128 
fc_2 16    Weights 16×128   Bias 16×1 

Softmax 16 
Classification 16 
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2.3. The proposed fault diagnosis method 

Building upon the methods and models described above, the enhanced TFMST time-frequency 
data and the raw fault data are utilized as two distinct fault datasets. These dual-modal inputs are 
simultaneously fed into the DSC-CNN-GRU hybrid neural network model to perform fault 
diagnosis. the diagnostic workflow is illustrated in Fig. 3.  

 
Fig. 3. Fault diagnosis procedure based on the DSC-CNN-GRU model 

The specific procedural steps are as follows: 
Step 1: Data Processing. Preprocess the raw fault data to facilitate subsequent analysis.  
Step 2: Data Transformation. Address limitations in the original TFMST method including 

fixed thresholds, fixed window function parameters, and strict curvature criteria by employing the 
improved TFMST method. This generates 2D time-frequency diagrams with enhanced energy 
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concentration and richer feature representation. Process the raw data through two distinct methods 
to obtain two different data types.  

Step 3: Sample Division. Includes two data types corresponding to two sample sets. The first 
sample set contains improved TFMST 2D time-frequency diagrams. The second sample set 
contains raw fault data. Divide both sample sets into training and testing subsets according to a 
specified ratio.  

Step 4: Model Construction and Hyperparameter Configuration. Construct the DSC-CNN-
GRU model and configure its hyperparameters. This model comprises two pathways to achieve 
feature fusion across different data types.  

Step 5: Model Training. Input the image dataset into Branch 1 for training. Simultaneously 
input the raw dataset into Branch 2 for training. Achieve fault classification through 
complementary feature extraction and feature fusion between both branches. Step 6: Model 
Testing. Evaluate the trained network using testing subsets. Obtain classification accuracy metrics 
for each fault type. 

3. Experiment and data 

In this section, the specific details of the experimental setup, the data and its processing, as 
well as the experimental setup and parameter settings are introduced. The evaluation metrics used 
to assess the algorithm model are also discussed. 

3.1. Experiment 

To validate the effectiveness of the method proposed in this study, we used the Case Western 
Reserve University (CWRU) bearing dataset [43]. Experiments were then conducted and verified 
on the Jiangsu Normal University-Wind Turbine-1 (JSNU-WT-1) test bench. The specific details 
of the two experiments are as follows: 

The CRWU datasets test bench is shown in Fig. 4. The test bench mainly consists of four parts: 
the motor, torque sensor/encoder, power meter, and an electronic controller. The bearing to be 
tested is connected to the motor shaft, with the drive-end bearing model being SKF6205 and the 
fan-end bearing model being SKF6203. This study focuses on the drive-end SKF6205 bearing, 
with a system sampling frequency of 12 kHz. The fault points on the bearing are created through 
electrical discharge machining, with fault damage diameters of 0.1778 mm, 0.3556 mm, and 
0.5334 mm. There are three fault locations on the bearing: Inner Race Fault (IR), Rolling Element 
Fault (RE), and Outer Race Fault (OR). Therefore, the bearing fault states are categorized into 9 
fault states and 1 normal state, making a total of 10 bearing states. The vibration data was collected 
using an accelerometer, which was fixed to the housing with a magnetic base. The accelerometer 
was placed at the 12 o’clock position on both the motor housing drive-end and the fan end. All 
data were collected under different motor load conditions (0, 1, 2, and 3 hp). This study utilizes 
drive-end data acquired under 0hp load conditions with sampling frequencies of 12 kHz and 
48 kHz as experimental data. 

 
Fig. 4. CRWU test bench [43] 
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The design of the wind turbine fault simulation test bench is shown in Fig. 5 [1, 3]. The 
experimental data are obtained from the JSNU-WT-1 test bench, and the main research object of 
this experiment is the rolling bearings at the input end of the wind turbine gearbox. In order to 
simulate different types of bearing faults, these bearings are artificially damaged using wire 
electrical discharge machining (WEDM) technology to simulate various possible fault conditions. 
The entire testing process is precisely controlled by a control cabinet to ensure the stability of the 
experimental environment. During the experiment, the motor drives the planetary gearbox via a 
coupling, and the planetary gearbox is connected to the wind generator through a synchronous 
belt, thereby driving the generator to operate. The system’s rotational speed is regulated by a 
frequency converter, allowing for precise control of the speed. The signal acquisition system uses 
the INV3062T0 signal acquisition device, responsible for collecting various data from the entire 
system. for vibration signal acquisition, four INV9822 accelerometers are used, mounted on the 
gearbox housing and fixed with magnetic bases. The sampling frequency of the accelerometers is 
set to 4 kHz to ensure accurate capture of high-frequency signals. The core hardware configuration 
of the test bench includes a 400 W-rated generator, a 750 W-rated three-phase asynchronous 
motor, and an XW90 planetary gearbox with a gear ratio of 3. Through the combination of real 
wind turbine generators and transmission systems, the test bench simulates the actual operating 
environment of the wind turbine, aiming to closely replicate the true operating conditions of the 
wind turbine in order to obtain more accurate and meaningful experimental data. This experiment 
configures seven distinct bearing fault types, encompassing faults in two different components 
(bearings and gears), specifically comprising three gear fault variants, three bearing fault variants, 
and one healthy gear condition. The precise fault locations are illustrated in Fig. 6 [1, 3]. 

 
Fig. 5. JSNU-WT-1 test bench 

 
Fig. 6. Wind turbine bearing failure in different locations 
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3.2. Data processing 

We perform sliding window sampling on the data collected as described above, which helps 
to improve the accuracy of both time-domain and frequency-domain analysis, reduce the boundary 
effects caused by signal segmentation, and enhance the ability to capture the details of the signal. 
Each signal segment comprises 1024 data points. for the CWRU dataset, the sliding window step 
size is 512, with an overlap of 512 between adjacent segments, as illustrated in Fig. 7. for the 
JSNU-WT-1 dataset, a reduced step size of 200 is adopted to increase sample quantity, resulting 
in an overlap of 824 between signals. CWRU dataset encompasses 16 distinct bearing health 
states. Each state contains 200 samples, yielding a total of 3,200 samples. These 16 bearing fault 
types have been systematically labeled; detailed specifications are provided in Table 2. 
JSNU-WT-1 dataset includes 7 bearing fault conditions. Each condition comprises 200 samples, 
resulting in 1,400 total samples. These 7 bearing and gear fault types have undergone labeling 
procedures; comprehensive information is documented in Table 3. 

 
Fig. 7. Example of raw data split into n samples 

Table 2. Composition of the CWRU bearing dataset 
Fault type Fault diameter (Inch)/ Sampling frequency (kHz) Number of samples Label 

BF007 0.007/12 kHz 200 0 
BF014 0.014/12 kHz 200 1 
BF021 0.021/12 kHz 200 2 
IR007 0.007/12 kHz 200 3 
IR014 0.014/12 kHz 200 4 
IR021 0.021/12 kHz 200 5 
OR007 0.007/12 kHz 200 6 
OR014 0.014/12 kHz 200 7 
OR021 0.021/12 kHz 200 8 
BF007 0.007/48 kHz 200 9 
BF021 0.021/48 kHz 200 10 
IR007 0.007/48 kHz 200 11 
IR021 0.021/48 kHz 200 12 
OR007 0.007/48 kHz 200 13 
OR021 0.021/48 kHz 200 14 
Normal 0 200 15 

Table 3. Composition of the JSNU-WT-1 fault dataset 
Fault type Number of samples Label 

Gear tooth breakage 200 0 
Gear crack 200 1 
Gear wear 200 2 
Ball fault 200 3 

Inner ring fault 200 4 
Outer ring fault 200 5 
Gear Normal 200 6 
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3.3. Experimental setup and parameter settings 

To enhance the model’s capacity for integrating heterogeneous data, strengthen the network’s 
representational capability and diagnostic accuracy, while improving system robustness and 
reliability, this study converts raw 1D signals into 2D time-frequency representations using an 
improved TSMST method. These transformed images exhibit richer features and concentrated 
energy distribution, forming the input for Branch 1 with dimensions of 256×256. The original 1D 
data serves as input for Branch 2 with dimensions of 1×1024. The dual-path architecture fuses 
these distinct data modalities to deliver comprehensive and precise fault diagnosis capabilities. 
The algorithmic parameters are configured as follows: initial learning rate = 0.0005, optimizer = 
Adam, batch size = 256, MaxEpochs = 20, L2 regularization parameter = 0.01, with softmax as 
the classifier. 

In this paper, the parameters of all models are uniform. The algorithm was implemented using 
MATLAB. The computer used has an i5-12500H CPU and Windows 11 operating system. 
Additionally, the dataset was split, with 80 % used as the training set and 20 % used as the test 
set. 

3.4. Performance evaluation metrics 

In this study, to evaluate the advantages of the proposed algorithm model, we use four metrics: 
accuracy, recall, precision, and F1-score. Accuracy is the proportion of correctly predicted 
samples to the total number of samples in a classification model. It reflects the overall performance 
of the model across all samples and is suitable for cases with balanced data distribution. Recall 
measures the proportion of actual positive samples that the model correctly predicts as positive. 
in other words, it indicates how many of the actual positive samples the model is able to identify. 
Precision measures the proportion of predicted positive samples that are actually positive. in other 
words, it indicates how many of the samples predicted as positive by the model are truly positive. 
F1-score is the harmonic mean of precision and recall, considering the balance between the two. 
The F1-score is especially useful in cases of class imbalance, as it provides a trade-off between 
precision and recall. By combining both precision and recall, the F1-score offers a more 
comprehensive evaluation of model performance, and it provides a more reliable assessment, 
especially when the distribution of positive and negative classes is uneven. The definitions of these 
four metrics are as follows: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁, (16)𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁, (17)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃, (18)𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 = 2 × 𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁, (19)

where 𝑇𝑃 (True Positive) represents that a positive sample is correctly predicted to be positive, 𝑇𝑁 (True Negative) represents that a negative sample is correctly predicted to be negative, 𝐹𝑃 
(False Positive) represents a Negative sample being incorrectly predicted as a positive, and 𝐹𝑁 
(False Negative) represents a positive sample being incorrectly predicted as a negative. 

4. Results and discussion 

In this section, we conducted two case studies to verify the performance and robustness of the 
proposed method in fault diagnosis tasks. Additionally, to eliminate experimental randomness, we 



A NOVEL WIND TURBINE FAULT DIAGNOSIS METHOD BASED ON IMPROVED TFMST AND DSC-CNN-GRU MODEL.  
WENYI LIU, TONGMING JIAN, LEI MENG, DI SONG, JIANBIN CAO 

 JOURNAL OF MEASUREMENTS IN ENGINEERING 15 

performed 5 independent experiments for each method and took the average as the final result. 

4.1. Case 1: CRWU dataset fault diagnosis 

4.1.1. The impact of different learning rates on model performance 

Generally, Learning Rate (LR) significantly influence model performance as they directly 
control the step size for parameter updates during training. Excessively large LR prevent loss 
function convergence and may cause oscillation near optimal values. Conversely, excessively 
small rates lead to slow convergence, requiring more training epochs. Thus, selecting an 
appropriate LR is critical. This study tested four learning rates (0.0001, 0.0005, 0.001, and 0.005) 
for model training and evaluation. Fig. 8 illustrates classification performance metrics across these 
learning rates, including mean accuracy, standard deviation (std), and maximum/minimum values 
from all trials. Results indicate that the proposed model achieved peak average accuracy (99.78 %) 
with LR = 0.0005, accompanied by the lowest std (0.08 %), demonstrating optimal stability. 
Although LR = 0.001 yielded perfect classification (100 %) in one trial, its mean accuracy 
(99.75 %) and std (0.18 %) were inferior to the LR = 0.0005 configuration. 

 
Fig. 8. Performance comparison of the model under different learning rates 

4.1.2. Comparison with different data types 

To highlight the advantages of the improved method, we transformed the one-dimensional raw 
signal into time-frequency diagrams using both the improved TFMST and the original TFMST 
methods, resulting in two fault samples. These samples, along with the raw signal, were used for 
training and testing the proposed model. Fig. 9 shows the time-frequency diagram of different 
fault categories obtained using the improved TFMST method. Fig. 10 shows the time-frequency 
diagram obtained using the original TFMST method. Fig. 9 and 10 represent different 
representations of the same signal. From the figures, it can be observed that the time-frequency 
diagram obtained using the improved TFMST method contains more features, which will benefit 
the diagnostic accuracy of the model. 

Fig. 11 shows the average confusion matrix of the time-frequency diagrams obtained using 
two different methods tested on the proposed model. From the figure, it can be observed that the 
improved TFMST data only has the possibility of misclassification between fault categories 2 and 
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3 in the model. in contrast, the original TFMST data shows the possibility of misclassification for 
four fault categories, including category 1, category 2, category 3, and category 15. Additionally, 
there is confusion between fault categories 2 and 3. This indicates that the time-frequency diagram 
obtained using the improved TFMST method contains more features, resulting in better diagnostic 
accuracy in the model. 

 
Fig. 9. Improved TFMST Time-Frequency diagrams for different fault types 

4.1.3. Comparison with different models 

The DSC-CNN-GRU model incorporates two distinct branches: Branch 1 constitutes a 
lightweight pathway employing DSConv, while Branch 2 integrates CNN and GRU architectures 
with a similarly lightweight design approach. Consequently, the proposed model can be 
modularized into two sub-models denoted as Light-CNN and CNN-GRU. The LeNet-5 and 
AlexNet models represent classical CNN architectural paradigms characterized by differing 
computational complexities and historical significance, serving as benchmark references for 
foundational deep learning frameworks. 
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Fig. 10. Original TFMST time-frequency diagrams for different fault types 

 
a) Average confusion matrix results  

of the improved TFMST method 

 
b) Average confusion matrix results  

of the original TFMST method 
Fig. 11. Average confusion matrix of test results from different methods on the proposed model 
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To demonstrate the superiority of the proposed model, these four architectures were 
established as comparative baselines, creating a comprehensive evaluation spectrum spanning 
elementary to advanced implementations and lightweight to relatively heavyweight 
configurations. This systematic comparison highlights the proposed model’s exceptional 
advantages in balancing performance and computational efficiency. 

To highlight the advantages of the proposed model, we analyzed the results of multiple tests 
on the model using different metrics, including accuracy, precision, recall, and F1-score, as shown 
in Table 4. To provide a clearer comparison of the models' performance, we visualized these 
results in Fig. 12. The CNN-GRU and AlexNet models exhibited large standard deviation (std) 
fluctuations, indicating poorer model stability. Additionally, the average diagnostic accuracy of 
these two models was lower than that of the other models. in comparison to the LeNet-5 model, 
the Light-CNN model demonstrated higher stability and diagnostic accuracy. Notably, the 
proposed model achieved the highest diagnostic accuracy and best overall performance, with an 
accuracy of 99.78 %.  

Table 4. Performance comparison of different models 
Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

LeNet-5 99.22±0.2923 99.25±0.2533 99.22±0.2615 99.22±0.2533 
Light-CNN 99.38±0.1914 99.40±0.1693 99.40±0.1693 99.38±0.1720 
CNN-GRU 98.25±1.0678 98.58±0.7086 98.25±0.9550 98.27±0.9351 

AlexNet 98.78±0.9968 98.86±0.7646 98.78±0.8916 98.77±0.8915 
The proposed 99.78±0.0856 99.79±0.0747 99.78±0.0765 99.78±0.0865 

 
Fig. 12. Visualization comparison of the performance of different models 

To further illustrate the diagnostic performance of different models on various fault categories, 
we plotted the average confusion matrix of the test results for each model, as shown in Fig. 13. 
The LeNet-5 model shows a potential for misprediction in five fault categories: categories 1-3, 
category 8, and category 15. The Light-CNN model has the possibility of misprediction in 
categories 1-4, but its accuracy is higher than that of the LeNet-5 model. The CNN-GRU model 
carries a risk of misprediction for categories 2-3, category 5, and category 15. The AlexNet model 
has the potential for misprediction across all six fault categories, resulting in the lowest prediction 
accuracy. in contrast, the proposed model only has a slight misclassification risk for faults in 
categories 2 and 3. Therefore, the proposed model demonstrates better performance, which is 
consistent with the results shown in Fig. 12. 
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a) Lenet-5 

 
b) Light-CNN 

 
c) CNN-GRU 

 
d) AlexNet 

 
e) The proposed method 

Fig. 13. Average confusion matrix of test results from different models 

4.1.4. The effect of additional noise on model performance 

Due to the complex operating environment of wind turbines, which is influenced by various 
environmental factors, the collected data can be affected by noise. in some harsh conditions, the 
impact of noise on the signal can be extremely severe. We added Gaussian noise with different 
signal-to-noise ratios (SNR) to the collected raw data to verify the classification performance of 
the proposed model under significant noise interference. the SNR can be defined as: 

𝑆𝑁𝑅 = 10 logଵ଴ ൬𝑃௦௜௚௡௔௟𝑃௡௢௜௦௘ ൰, (20)

where 𝑃௦௜௚௡௔௟ and 𝑃௡௢௜௦௘ are the original signal power and noise power, respectively. A smaller 
SNR value indicates stronger added noise and greater interference with the original signal. This 
presents a challenge for fault diagnosis models. 

The proposed model, as a dual-input model, increases the input dimension of the network, 
allowing the model to learn potential patterns and relationships in the data from different 
perspectives. This structure enhances the model's expressive power, especially when dealing with 
complex input data, providing stronger generalization ability compared to single-input models. 
We added noise with different SNRs to the raw data and generated two image datasets using 
TFMST and the improved TFMST methods. Then, we performed comparative experiments on the 
proposed model using both datasets. The results are shown in Table 5, and we visualized these 
results. Fig. 14 displays the comparison of the two methods on accuracy, precision, recall, and 
F1-score under different SNR conditions. It can be observed that, under all conditions, the 
proposed model consistently demonstrated higher performance. Fig. 15 presents the average 
confusion matrix of the proposed model’s test results under the conditions of SNR = 0 dB and 
15 dB with the original data. From the figure, it is evident that, although the proposed method 
predicts more fault categories incorrectly than the original method under different conditions, its 
overall prediction accuracy remains higher than that of the original method. Therefore, the 
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proposed model demonstrates superior diagnostic performance with the improved TFMST data. 

 
Fig. 14. Visualization of comparative performance of different data  

on the proposed model under varying SNRs 

 
a) TFMST SNR = 0 db 

 
b) Improved TFMST SNR = 0 db 

 
c) TFMST SNR = 15 db 

 
d) Improved TFMST SNR = 15 db 

Fig. 15. Average confusion matrix of the proposed model’s test results under different SNR conditions 
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Table 5. Comparison of different signal-to-noise ratio data on the proposed model 
SNR (dB) Method Accuracy (%) Recall (%) Precision (%) F1-score (%) 

0 Improved TFMST 97.41±0.6592 97.43±0.5938 97.41±0.5896 97.40±0.5938 
TFMST 97.28±0.4222 97.28±0.3748 97.28±0.3776 97.24±0.3818 

5 Improved TFMST 98.81±0.6011 98.86±0.5128 98.81±0.5376 98.80±0.5467 
TFMST 98.60±0.9440 98.73±0.6579 98.60±0.8443 98.60±0.8491 

10 Improved TFMST 99.44±0.5015 99.44±0.4430 99.44±0.4485 99.44±0.4486 
TFMST 98.97±0.2370 99.01±0.2020 98.97±0.2119 98.97±0.2126 

15 Improved TFMST 99.50±0.2318 99.51±0.1979 99.50±0.2073 99.50±0.2078 
TFMST 99.25±0.3563 99.28±0.2849 99.25±0.3187 99.25±0.3168 

4.1.5. Comparison with other relevant methods 

To further demonstrate the superiority of the proposed method, we compared it with several 
related research methods that used the CWRU dataset. The comparison results of various methods 
are shown in Table 6. The number of fault categories used in this study is significantly higher than 
that in other methods. in general, the more fault categories there are, the more difficult the 
diagnosis becomes. Despite this, the proposed method still achieved the highest diagnostic 
accuracy. Specifically, the method [44] in classified the one-dimensional raw signal with an 
accuracy of 93.2 %, while the branch 2 (CNN-GRU) of the proposed model also classified the raw 
signal with an accuracy of 98.25 %. Therefore, the proposed method has certain advantages. 

Table 6. Comparison with related research methods 

Methods Fault 
types 

Train 
dataset 

Test 
dataset Epoch Accuracy 

1D convolutional neural network (1D-CNN) 
[44] 6 409 605 100 93.2 

Markov transition field and residual network 
(MTF+ResNet) [45] 10 660 25 100 98.52 % 

Based on symmetrized dot pattern (SDP) images 
and convolutional neural networks (SDP + 

CNN) [46] 
10 240 60 150 98.88 % 

Two-stream feature fusion convolutional neural 
network (TSFFResNet-Net) 

(CWT+TSFFResNet-Net) [47] 
10 400 80 100 99.62 % 

The Proposed 16 200 40 200 99.78 % 

4.2. Case 2: JSNU-WT-1 fault diagnosis 

4.2.1. Comparison with different data types 

Fig. 16 and Fig. 17 show the time-frequency diagrams of the same signal for seven different 
fault types, obtained using the TFMST and the improved TFMST methods, respectively. From the 
figures, it can be observed that the time-frequency diagram obtained using the improved TFMST 
method contains more fault information. in general, the diagrams with rich information contribute 
to the correct predictions of the model. We input the two different datasets into the proposed 
model, and the average confusion matrix of the test results from both models is shown in Fig. 18. 
It can be seen that the proposed model demonstrated good diagnostic performance on the improved 
TFMST data. for the improved TFMST data, the proposed model only showed the possibility of 
misclassification for the ball fault and outer ring fault categories. for the original TFMST data, the 
model showed the possibility of misclassification for all fault categories. The proposed model 
exhibited excellent performance on the improved TFMST data. 
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Fig. 16. Improved TFMST Time-Frequency diagrams for different fault types 

 
Fig. 17. Original TFMST time-frequency diagrams for different fault types 

 
a) Average confusion matrix results  

of the improved TFMST method 

 
b) Average confusion matrix results  

of the original TFMST method 
Fig. 18. Average confusion matrix of test results from different methods on the proposed model 
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4.2.2. Comparison with different models 

To highlight the advantages of the proposed model, we compared it with LeNet-5, Light-CNN, 
CNN-GRU, and AlexNet. for the five different models, we compared the four metrics of accuracy, 
precision, recall, and F1-score, as shown in Table 7, and visualized the performance comparison 
of each model in Fig. 19. It can be seen that the metrics of the LeNet-5, Light-CNN, CNN-GRU, 
and AlexNet models are all lower than those of the proposed model, with LeNet-5, Light-CNN, 
and AlexNet models showing poor stability. Although the Light-CNN model exhibits good 
stability, its diagnostic accuracy remains lower than that of the proposed model. 

 
Fig. 19. Visualization comparison of the performance of different models 

 
a) Lenet-5 

 
b) Light-CNN 

 
c) CNN-GRU 

 
d) AlexNet 

 
e) The proposed method 

Fig. 20. Average confusion matrix of test results from different models 
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Fig. 20 shows the average confusion matrix of the test results from different models. The LeNet 
model correctly classified only the faults of the 2nd, 3rd, and 6th categories, while it had a risk of 
incorrect predictions for the remaining four fault categories, with the highest likelihood of error 
occurring for the 4th category. Similarly, AlexNet model only correctly predicted the faults of the 
3rd and 5th categories, while errors occurred in the predictions of the remaining faults, making its 
performance the worst. Although Light-CNN and CNN-GRU demonstrated relatively high 
diagnostic performance, the proposed model outperformed them, delivering the best overall results 
and performance. 

Table 7. Performance comparison of different models 
Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

LeNet-5 95.79±3.1984 96.67±1.9144 95.79±2.8607 95.63±1.9144 
Light-CNN 97.50±0.4374 97.80±0.2896 97.50±0.3912 97.50±0.3756 
CNN-GRU 92±2.3905 94.09±1.6417 92±2.1381 91.65±2.2714 

AlexNet 94.00±3.5839 94.46±2.6605 94.00±3.2055 93.91±3.2746 
The proposed 99.57±0.4657 99.59±0.3990 99.57±0.4165 99.57±0.4196 

4.2.3. The effect of additional noise on model performance 

To further validate the superiority of the proposed method, we added noise with different SNR 
values to the raw signal and obtained two different datasets using the improved TFMST method 
and the original TFMST method. We then conducted comparative experiments with these two 
datasets on the proposed model. The results were statistically analyzed using the four metrics: 
accuracy, precision, recall, and F1-score, as shown in Table 8. Additionally, to provide a clearer 
comparison, we visualized the experimental results, as shown in Fig. 21. From the results, it can 
be observed that under all conditions, the improved TFMST data exhibited higher performance on 
the proposed model and demonstrated greater stability. 

 
Fig. 21. Visualization of comparative performance of different data  

on the proposed model under varying SNRs 
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Table 8. Comparison of different signal-to-noise ratio data on the proposed model 
SNR (dB) Method Accuracy (%) Recall (%) Precision (%) F1-score (%) 

0 Improved TFMST 64.71±4.5904 67.94±4.0644 64.71±4.0157 65.00±4.0644 
TFMST 64.43±3.7593 65.96±2.9316 64.43±3.3625 64.53±3.1596 

5 Improved TFMST 88.07±4.8682 88.89±3.8397 88.07±4.3542 88.07±4.3809 
TFMST 87.29±3.4032 88.92±2.5271 87.29±3.0439 87.43±2.9494 

10 Improved TFMST 97.29±1.3505 97.35±1.1723 97.29±1.2080 97.28±1.2066 
TFMST 92.86±1.4940 93.55±1.0898 92.86±1.3363 92.88±1.3114 

15 Improved TFMST 97.93±0.6870 97.99±0.6188 97.93±0.6145 97.92±0.6269 
TFMST 94.50±2.3090 95.09±1.6802 94.50±2.0653 94.41±2.2183 

5. Conclusions 

To address the issues of incomplete feature extraction and low efficiency in wind turbine fault 
diagnosis, this paper proposes a fault diagnosis method based on the improved TFMST and DSC-
CNN-GRU model. First, the improved TFMST technique generates time-frequency feature data 
with richer characteristics. Then, the DSC-CNN-GRU model is used to integrate time-frequency 
features and temporal features, enhancing fault detection capability and overcoming the 
limitations of single feature extraction. The main conclusions of this study are as follows: 

1) A new dual-input fault diagnosis model is developed that can simultaneously integrate time-
frequency and temporal information. It still demonstrates good fault diagnosis performance under 
multiple learning rates. 

2) Compared to the original TFMST data, the method combining the improved TFMST data 
with the proposed model shows clear advantages in fault identification. 

3) The proposed method has been experimentally validated on both the CWRU dataset and the 
generator dataset. Compared to four different algorithm models, the proposed method consistently 
demonstrated the best fault diagnosis performance. 

4) Under different SNR conditions, even with noise interference, the proposed model still 
maintains stable fault diagnosis advantages. 

This method integrates different data and deeply extracts fault features, thus efficiently 
achieving fault diagnosis for wind turbine bearings. in future research, we will further optimize 
this method and introduce transfer learning to achieve wind turbine fault diagnosis. 
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