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Abstract. In wind turbines, rotating components serve as critical parts and are also prone to
failures. The fault signals of wind turbines represent typical non-stationary and nonlinear signals
susceptible to noise interference. Existing time-frequency analysis methods exhibit insufficient
energy concentration when extracting time-varying non-stationary fault features, making feature
extraction from signals more challenging. The primary drawbacks of single-data fault diagnosis
methods lie in their limited information scope, poor robustness, lack of redundancy and fault
tolerance, and difficulty in handling complex or multi-dimensional fault patterns. To address these
issues, this paper proposed a model based on Improved TFMST and DSC-CNN-GRU. Firstly, the
original Time-Frequency-Multisqueezing Transform (TFMST) technique was enhanced by
optimizing its window function, introducing multi-scale adaptive thresholding to improve
robustness, and relaxing the curvature criterion to enhance feature sensitivity. Furthermore, eps
protection was incorporated throughout the algorithm to ensure numerical stability. Secondly, two
datasets were constructed: one comprising two-dimensional data derived from the improved
TFMST and the other containing one-dimensional raw data. Subsequently, a dual-input
DSC-CNN-GRU model was developed, and both datasets were fed into it. Notably, the proposed
model adopts a lightweight design. Finally, information from both data branches is fused and
delivered to the classifier for the fault diagnosis task. To demonstrate the effectiveness of the
proposed method, comparisons with other relevant methods were conducted on various datasets,
indicating that the proposed method achieved desirable fault diagnosis accuracy.

Keywords: fault diagnosis, wind turbine, information fusion, deep learning.
1. Introduction

Wind power is considered a green and sustainable energy option, playing a crucial role in the
future transition of the energy structure [1, 2]. With the growing global focus on climate change,
wind power will continue to play a vital role in contributing to the sustainable development of
global energy [3, 4]. When wind drives the wind turbine blades to convert energy, due to the
instability of wind speed, the strength and direction of the wind frequently change, resulting in
intermittent and fluctuating characteristics. Components such as bearings, gears, and hubs, which
are key power conversion elements of the turbine, often bear heavy loads and unloads.
Additionally, due to prolonged exposure to complex natural environments during operation, these
components are prone to various faults. These faults not only affect the normal operation of the
wind turbine but can also lead to downtime, damage, energy waste, and even impact the
surrounding environment and grid system [5, 6]. Therefore, fault diagnosis of wind turbines has
become crucial, as it is an essential means to ensure the efficient, stable, and safe operation of
wind farms. It helps improve the operational reliability of turbines, extend their service life,
enhance power generation efficiency, reduce maintenance costs, ensure safe operation, and
support the sustainable development of the entire wind energy industry [7].
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Vibration signals are one of the most commonly used data sources in wind turbine fault
diagnosis. The operation of wind turbines involves multiple complex systems and components,
and any abnormality in a part can lead to performance degradation or failure. Through signal
acquisition, real-time operational data can be collected, allowing for the analysis of parameter
changes and timely identification of potential issues, thereby supporting fault diagnosis and
prevention [8]. Traditional signal processing methods, such as Fourier Transform (FT) [9], Power
Spectral Density (PSD) [10], and Autocorrelation Analysis [11], are effective for stationary
signals. However, for non-stationary signals, these methods are unable to preserve their original
characteristics. To address this issue, some time-frequency analysis (TFA) methods for non-
stationary signals have gradually emerged, such as Short-Time Fourier Transform (STFT) [12],
Wavelet Transform (WT) [13], Empirical Mode Decomposition (EMD) [14], and others.
Although these methods can handle non-stationary signals, they also have a range of limitations.
For example, the choice of window length in STFT is a key issue. A window that is too long will
lose time-domain information, while a window that is too short will lose frequency-domain
information. Additionally, the trade-off between frequency resolution and time resolution is a
problem with STFT, as it cannot simultaneously describe both time and frequency characteristics
of a signal accurately in time-frequency analysis. As the data scale continues to increase, it also
leads to higher computational costs. Most time-frequency analysis methods typically face a trade-
off between temporal resolution and frequency resolution. For complex dynamic signals from
wind turbines, such as vibration signals and noise, this trade-off can result in fault features that
are unclear or cannot be accurately extracted. Synchrosqueezing Transform (SST), proposed by
Daubechies et al. in 2011 [15], is an effective time-frequency (TF) post-processing method. This
approach significantly improves time-frequency resolution and can suppress low-level noise.
However, it is primarily suitable for processing weak, time-varying signals. Building on this, Li
et al. [16]. proposed the second-order adaptive synchrosqueezing transform (FSST) for non-
stationary signals with rapid frequency variations, to enhance the time-frequency concentration
and resolution of a multicomponent signal, and to separate its components more accurately. Wang
et al. [17]. proposed a time-frequency analysis (TFA) method called the matching
synchrosqueezing transform (MSST), which achieves a highly concentrated TF representation
comparable to the standard TF reassignment methods (STFRM). Experimental results validated
the effectiveness of MSST in mechanical fault diagnosis. Yi et al. [18]. addressed issues such as
insufficient time-frequency energy concentration and frequent noise interference by combining
multiple groups of wavelets with increased bandwidth into a super wavelet set and then proposed
the Superlets Transform (SLT). By applying SLT to higher-order instantaneous frequency (IF)
estimation and time-frequency energy rearrangement, they introduced the High-order
Synchrosqueezing Superlets Transform (HSSLT) to achieve clearer and more concentrated time-
frequency representations (TFR). This method was successfully applied to the bearing fault
diagnosis of offshore wind turbines.

In recent years, fault diagnosis technologies for wind turbines based on deep learning methods
have received widespread attention. For example, Deep Belief Networks (DBN) [19], Recurrent
Neural Networks (RNN) [20], and Convolutional Neural Networks (CNN) [21] have been
extensively used in fault diagnosis and have achieved promising diagnostic results. Li et al. [22].
proposed a method combining Deep Belief Networks (DBN) and 1D Convolutional Neural
Networks (1D-CNN) for the one-dimensional raw fault signals of rotating machinery. This
approach achieved dimensionality reduction, feature extraction, and classification of the fault data.
Experimental results demonstrated the effectiveness of the method. Cao et al. [23]. proposed an
intelligent fault diagnosis method based on Long Short-Term Memory (LSTM) networks for wind
turbine gearbox faults. By comparing it with the Support Vector Machine (SVM) method, they
verified the superiority of the proposed approach. Liu et al. [24]. proposed a novel method
combining a one-dimensional (1-D) denoising convolutional autoencoder (DCAE) and a 1-D
convolutional neural network (CNN) to address the issue of noise interference. Experimental
results demonstrated that the method could achieve high-accuracy diagnosis even in noisy

2 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635



A NOVEL WIND TURBINE FAULT DIAGNOSIS METHOD BASED ON IMPROVED TFMST AND DSC-CNN-GRU MODEL.
'WENYI L1U, TONGMING JIAN, LEI MENG, DI SONG, JIANBIN CAO

environments. Although fault diagnosis based on raw fault signals has shown some effectiveness,
solely using one-dimensional signal analysis may overlook important time-frequency features,
failing to capture the nonlinear and time-varying characteristics of the signal. To address these
issues, methods that transform one-dimensional raw signals into two-dimensional time-frequency
maps for wind turbine fault diagnosis have been continuously developed. These methods
effectively overcome the limitations of traditional one-dimensional signal analysis, providing
richer time-frequency feature information [25-27]. Zhang et al. [28]. transformed the one-
dimensional raw signal into a two-dimensional time-frequency map using Short-Time Fourier
Transform (STFT). By introducing the Scaled Exponential Linear Unit (SELU) function and
combining it with a Convolutional Neural Network (CNN), they achieved classification of bearing
faults. Jun et al. [29]. applied Variational Mode Decomposition (VMD) to decompose the raw
signal and selected specific components. These selected components were then transformed into
time-frequency maps using Continuous Wavelet Transform (CWT). By combining this approach
with a Convolutional Neural Network (CNN), they successfully implemented fault diagnosis for
rotating machinery. Shi et al. [30]. addressed the limitations of fault sample quantity and quality
by transforming the one-dimensional raw signal into time-frequency maps using Short-Time
Fourier Transform (STFT) and Synchronous Compressed Wavelet Transform (SWT). They
combined these time-frequency maps with a Dual-Stream Convolutional Neural Network
(DSCNN) and Support Vector Machine (SVM) to achieve mechanical fault diagnosis. This
approach effectively leveraged the strengths of both CNN for feature extraction and SVM for
classification, enhancing the diagnostic performance despite challenges with limited or noisy fault
data. Che et al [31]. extracted time-domain features from vibration signals and transformed these
features into multimodal samples consisting of grayscale images and time-series data. By
combining CNN with models such as DBN, they implemented decision-level multimodal fusion
to achieve comprehensive fault prediction results. The proposed method was validated through
experiments, demonstrating its effectiveness in improving fault diagnosis performance by
integrating different data representations and models. This approach highlights the advantage of
combining time-domain features with deep learning models for more accurate and robust fault
prediction. Yang et al. [32]. transformed the one-dimensional signals into two types of time-
frequency maps using Gramian Angular Field (GAF) and Continuous Wavelet Transform (CWT)
techniques to highlight fault features. They proposed a practical and effective Self-Attention
Parallel Fusion Network (SAPFN) to achieve fault diagnosis for gearboxes. This approach
effectively leveraged self-attention mechanisms to focus on key features in the data, improving
diagnosis accuracy and robustness. Although transforming signals into time-frequency
representations can enhance fault diagnosis accuracy, this approach demands substantial
computational resources and time. Different fault modes may manifest as distinct frequency
components, yet time-frequency representations often require compromises between frequency
and temporal resolution, potentially leading to insufficient precision in capturing subtle fault
signatures. The Time-frequency-multisqueezing Transform (TFMST) [33] method addresses
these challenges while eliminating the energy diffusion issue at cross-components inherent to
conventional methods, generating more focused time-frequency representations. This provides a
novel approach to time-frequency data conversion. However, this method suffers from limitations
including fixed threshold settings, inflexible window function parameters, and overly stringent
curvature criteria.

Based on the above analysis and inspiration, this paper proposes a wind turbine unit fault
diagnosis method based on the Improved TFMST and DSC-CNN-GRU model. The contributions
of this paper are summarized as follows:

(1) Improvements were made to the original TEMST algorithm. Firstly, the window function
parameter was optimized from 0.32 to 0.28 to better capture transient fault characteristics. Second,
a breakthrough multi-scale adaptive threshold mechanism was introduced by integrating median
threshold, maximum threshold, and baseline threshold, constructing an adaptive thresholding
framework that addresses the sensitivity of fixed thresholds to outliers. Thirdly, the curvature
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criterion was relaxed to enhance feature detection sensitivity, effectively preserving subtle fault
patterns. Finally, a 1:0.9 weighted energy allocation strategy was adopted to significantly suppress
noise interference while maintaining feature integrity. A numerical stability protection mechanism
was embedded throughout the algorithm to ensure robustness.

(2) This paper proposes a dual-input hybrid neural network DSC-CNN-GRU model that deeply
integrates the advantages of CNN and GRU. The image input branch employs Deep Separable
Convolution to replace traditional convolution, substantially reducing parameters while
preserving feature extraction capabilities. The signal input branch effectively captures temporal
features through a lightweight CNN and GRU. Feature summation enables the fusion of
heterogeneous data information, allowing the model to simultaneously process spatial-visual
information and temporal sequence signals.

The structure of this paper is as follows: Section 2 introduces the relevant theoretical
foundations, primarily including the basic models of CNN and GRU. Section 3 presents the
proposed fault diagnosis method. Section 4 describes the dataset used and the experimental setup.
Section 5 validates and discusses the proposed method, demonstrating its effectiveness. Section 6
concludes the paper.

2. The proposed method

This section provides a detailed description of the proposed fault diagnosis method. First, the
TFMST method is improved to obtain a more feature-rich time-frequency representation. Next, a
Depthwise Separable Convolution-CNN-GRU Fusion Network model is proposed.

2.1. Improved TFMST

The fault signals of wind turbines are typically composed of various components such as
harmonics, pulses, and frequency modulation. Commonly used TFA methods, such as STFT, WT,
and Hilbert-Huang Transform (HHT) [34], are affected by the Heisenberg uncertainty principle,
which requires a trade-off between time and frequency resolution. Attempting to accurately
capture the instantaneous characteristics of the signal at a particular moment (i.e., increasing time
resolution) may lead to a decrease in frequency resolution, and vice versa. The quantification of
TF features requires the Instantaneous Frequency (IF) and Group Delay (GD) parameters.
However, TF features are not completely independent time and frequency components, so a multi-
compression approach is needed to effectively fuse the time and frequency information. TFMST
method effectively integrates temporal and spectral information to generate a more concentrated
TF feature representation. However, this method still exhibits certain limitations, as some fault
features within the time-frequency representation may be lost. For instance, the original TFMST
approach suffers from fixed threshold values, static window function parameters, and overly
stringent curvature criteria. Building upon this foundation, the present study introduces
enhancements to the TFMST algorithm addressing these aspects: thresholding strategy, window
function parameters, curvature criteria, and numerical stability.

First, in the original algorithm, the Gaussian window parameter (¢ = 0.32) resulted in deficient
temporal resolution. For certain signals, this made it difficult to capture rapid transients within
fault signals, adversely impacting feature extraction accuracy. To better capture transient faults
and enhance sensitivity to weak fault signatures, the Gaussian window parameter was adjusted to
0.28. This modification controls the trade-off between temporal and frequency resolution:

2
h,(t) = exp <—TL’ (ai) ) , 0, =0.28, @)

1

where t denotes the time coordinate.
In the original algorithm, the instantaneous frequency is estimated by directly employing
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division. Its instantaneous frequency estimate is given by:

jvaSan(t, w)}

b,(t,w) = w+ Re{ 225, (¢, ©) (2)

where w represents the frequency coordinate, S, denotes the STFT of the signal, Sg,(t, w)
signifies the STFT of the signal convolved with the derivative of the window function, and va is
the scaling factor. Numerical instability can occur when the value Sy, is very small. Consequently,
building upon the original algorithm, we incorporated an epsilon (eps) safeguard to prevent
division-by-zero errors and ensure numerical stability. The modified instantaneous frequency
estimate incorporating epsilon is expressed as:

JvaSy,(t, )
2m max( |S,(t, w),e]) )

aﬁmm%m@=w+m{ 3)

where ¢ denotes the machine epsilon, preventing division by zero.

Furthermore, the original algorithm utilized a fixed threshold, setting points in the time-
frequency matrix with magnitudes below 0.2 times the maximum value to zero. For diverse
signals, this approach fails to adapt to variations in statistical characteristics. Concurrently, a fixed
threshold can excessively suppress weak fault features and exhibits sensitivity to outliers, where
a single large magnitude value could disproportionately influence the entire threshold level. To
enhance the robustness of threshold setting and achieve a better balance between feature
preservation and noise suppression, we implemented an adaptive thresholding scheme combining
the median and maximum values. The threshold function from the original algorithm is defined
as:

T, = M, 4)

where a;= 0.2, M = max|S(t, w)|.

The improved threshold function incorporates multiple scaling thresholds, including the
median threshold, maximum threshold, and base threshold. By leveraging the signal’s global
statistical characteristics, the threshold is determined dynamically to adapt to the energy
distribution of diverse signals.

The median threshold is defined as:

Tmedian = @mmedian(|S(t, w)l), 5

where ,,, = 0.25. The median exhibits inherent robustness to outliers, representing the signal’s
typical magnitude. The coefficient a,, = 0.15 is configured to preserve components exceeding a
specified proportion of this characteristic amplitude.

The maximum threshold:

Tnax = UmaxM, (6)
where @4, = 0.25, this constraint prevents the threshold value from becoming excessively high,
thereby avoiding the suppression of significant signal components while maintaining effective
noise reduction.

The base threshold:
Tpase = apM, 7

where a;, = 0.1, this configuration ensures the threshold does not drop excessively low, thereby
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preventing the retention of extraneous noise components.
Adaptive threshold synthesis:

Tadaptive = min(Tmax' max (Tmedian' Tbase))- (8)

Improved Thresholding scheme:
Stlhresholeed (t,w) = S(¢, w)1{|5(t'w)|27‘adaptive}' ©)

where I denotes the indicator function.

Thus, when signal quality is sufficiently high, Tpeqian = Tpase- Under conditions of
anomalous noise, Ty, provides upper-bound protection.

The curvature criterion serves to distinguish between signal-dominant components and noise-
dominant components. It operates based on derivatives of instantaneous frequency and group
delay. The curvature ratio, which characterizes local geometric properties in the time-frequency
distribution, is defined as:

r(t,w) = ———, (10)

where @, /0t represents the time derivative of instantaneous frequency, and 8¢, /0w denotes the
frequency derivative of group delay.

The original algorithm employs a strict curvature condition, with the feature mask
characterized by:

a

M, = {(t, w):|r(t,w)| <1A
Jw

> 0.2}. (11)

The application of stringent curvature criteria may result in excessive misclassification of
valuable fault features as noise, particularly diminishing sensitivity to faults exhibiting slight
frequency modulation. To enhance fault feature detection sensitivity and preserve discriminative
time-frequency patterns, we implement relaxed curvature conditions with epsilon-based numerical
safeguarding. Adjusting the curvature ratio threshold from 1.0 to 1.2 and reducing the group delay
derivative constraint from 0.2 to 0.15 enables retention of signal components with mild
nonstationarity, thereby improving fault feature detection rates. The relaxed feature mask is
defined as:

ot
M, = {(t, @): [Torotectea(t, @)| < 1.2 A %| > 0.15}, (12)
0 /0t

where Tprotected (t' w) = L@f

max(|a—m ,s)

Improved signal separation:

Sl2 (tw) = Stzhresholeed (¢, (‘))I{(f,w)EMz}’ (13)
522 (t' w) = Stzhresholeed (t' w) - 512 (t, w)- (14)

In the final energy allocation scheme, the original algorithm assigns equal weights to both the
frequency directional synchrosqueezing result and the time directional synchrosqueezing result.
By reducing the weight assigned to the time directional result to 0.9, we effectively diminish noise
introduced through temporal reallocation, yielding enhanced output clarity. The modified weight
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configuration is implemented as follows:
TS? = MSST,(S) + 0.9MSST,(S%), (15)

where component S7 satisfies the curvature condition and exhibits high signal-to-noise ratio.
Component Szpotentially contains elevated noise levels; therefore, its assigned weight is reduced.

2.2. A depthwise separable convolution-CNN-GRU fusion network

CNN have been widely applied in the field of fault diagnosis, particularly for processing
complex signals, images, and time-series data. Owing to their powerful capability for automatic
feature extraction, CNN have demonstrated superior performance in scenarios where traditional
methods encounter difficulties. Within the CNN architecture, convolutional layers, pooling layers,
and fully connected layers constitute the three primary layer types [35, 36]. The Gated Recurrent
Unit (GRU), an advanced variant of the Recurrent Neural Network (RNN), was introduced by
Kyunghyun Cho et al. [37]. in 2014. Leveraging gating mechanisms, the GRU selectively updates
its hidden state to capture essential information while discarding irrelevant details [38]. Compared
to the Long Short-Term Memory (LSTM) [39] network, the GRU possesses a simpler structure
and exhibits lower computational complexity. Depthwise separable convolution (DSConv)] [40]
is an improved convolutional method that decomposes a standard convolution into two separate
operations: depthwise convolution (DWConv) and pointwise convolution (PWConv). The specific
process is illustrated in Fig. 1.

depthwise convolution pointwise convolution

4
A

// . ' : - ¥ :

Input size  Convolution kernel Outputsize  Convolution kernel Output size
64x64x3 Ix3x3 64x64x3 1x1x3 64x64x4
Fig. 1. Depthwise separable convolution process

The distinction between DSConv and standard convolution lies in the fact that depthwise
convolution employs single-channel kernels. It convolves each input channel separately,
producing an output feature map with the same number of channels as the input. Subsequently,
pointwise convolution (PWConv) with a kernel size of 1x1 is applied to increase dimensionality
by aggregating information across all channels.

Assume the DWConv has a kernel size of Dy X Dg X 1, a number of kernels M, and a
parameter count of Dy X Dy X M. Assume the PWConv has a kernel size of 1 X 1 X M, a number
of kernels N, and a parameter count of M X N. Therefore, the total parameter count for the
DSConvis Dy X Dy X M + M X N.

Whereas a standard convolution has a parameter count of Dy X Dy X M X N, the parameter

ratio between DSConv and standard convolution is %+ Diz. DSConv first performs DWConv
K

independently on each input channel, then merges all channels into the output feature map via
PWConv. This design achieves reduced computational cost and improved operational efficiency.

Based on relevant theoretical analysis and experimental validation, we propose a Dual-input
Deep Separable Convolution-CNN-GRU Fusion Network (DSC-CNN-GRU) model. The
proposed model primarily consists of two branches. Branch 1 is composed of standard
convolutions and DSConv. The input data first undergoes preliminary feature extraction through
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a standard convolutional layer, followed by deeper feature extraction via two separable
convolution modules. The function of Branch 1 is to extract features from image sample data.
Branch 2 integrates a CNN model with a GRU model, where the CNN part adopts a lightweight
design. This branch achieves feature extraction from one-dimensional data. Fig. 2 illustrates the
specific structure of the proposed model.

= — =
g - |E| |8 2 2| |3 5
g s | 2| |5 g I g
= =] ©
JErEf e S EHE 8 S 8IE
g I 3 & g 3
o] Z e B =
R ARRE i |2 £ 0
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2% . O g
el ) . g
5 = O . o
g g £ £ [ ]
£ e e o |2 & e . O
=] s = 1 2 ) = s @ H
ol |8 I8 |= sl |8 |& s| (8 |5 |8 S| |8 H
e E e R RE R o N HE
S & %”2 S ETEE E*% S E o B
5 |5 El 5 |2 g |2 E |5 |8 | U
S |5 = gl & |= & & = SE:!
block 1 block 2 block 3 block 4 @

Flatten layer  Addition layer

Fig. 2. The structure of depthwise separable convolution-CNN-GRU fusion network

The proposed model’s Branch 1 primarily extracts features from the TFMST time-frequency
diagrams. In this branch, the input first undergoes a convolution operation with a 5x5 kernel size,
followed by feature extraction through two DSC blocks. Within these DSC blocks, the DWConv
layers use kernel sizes of 3x3 and 5x5 respectively, and the PWConv layers use a kernel size of
1x1. Finally, the features are flattened via a fully connected layer and a flatten layer, with the
purpose of fusing them with the features from Branch 2. Branch 2 primarily extracts features from
the raw signal. This branch mainly consists of four convolutional blocks. The second
convolutional block uses a kernel size of 1x1, while the other three blocks use a kernel size of
1x3. LeakyReLU is used as an activation function throughout Branch 2. Furthermore, max pooling
is employed throughout the proposed model to reduce the dimensionality of the feature maps.

The network parameters and hyperparameter settings of the DSC-CNN-GRU model are shown
in Table 1. In Branch 1, a 5x5 convolution kernel is first employed for initial feature extraction,
with a stride of 2 to achieve downsampling. This rapidly reduces the spatial dimensionality and
extracts fundamental visual features. The two DSC blocks decompose standard convolution into
depthwise convolution and pointwise convolution. DSC Block 1 uses a 3x3 convolution kernel,
significantly reducing computational load while maintaining feature extraction capability. DSC
Block 2 employs a larger receptive field (5%5) to capture more complex feature patterns. In
Branch 2, 1x3 convolution kernels are first used, specifically designed for processing temporal
data. They perform local feature extraction along the temporal dimension while preserving
channel integrity. This is followed by a 1 X1 convolution for dimensionality reduction, then another
1x3 convolution for feature extraction, and finally a step to restore dimensions. This design
significantly reduces the number of parameters and enhances nonlinear expressive power.
Subsequently, 128 GRU units are utilized for temporal modeling to capture long-range
dependencies within the sequential data. Only the output from the final timestep is taken, yielding
a compressed representation of the entire sequence. Following feature extraction in both Branch 1
and Branch 2, the 128-dimensional feature vector from the Light-CNN branch (Branch 1) and the
128-dimensional feature vector from and the 128-dimensional feature vector from the GRU
branch (Branch 2) undergo element-wise summation. This achieves deep integration of the visual
and temporal features.
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The total number of learnable parameters in the final proposed model is 2.5M. Compared to
classical neural network models such as AlexNet [41] (approximately 60M parameters) and
ResNet-18 [42] (approximately 11.7M parameters), the proposed model achieves a substantial
reduction in parameters. This lightweight architecture significantly enhances training efficiency,
paving the way for future applications in fault diagnosis.

Table 1. Network parameters of DSC-CNN-GRU

Branch 1 Activations Learnables Branch 2 Activations Learnables
imageinput 128x128x%3 - datainput 1x1024x1 -
Weights .
conv_1 2562563 | 5536 conv 4 | 1x1024x16 | W eights 1x3x1x6
- . - Bias 1x1x16
Bias 1x1x6
relu_1 126x126%6 - bn_3 1x1024x16 | Qffset IxIx16
- - Scale 1x1x16
maxpool 1 126x126x6 leaky relu 4 | 1x1024x16 -
Weights
conv_2 depthwise | 63x63%x6 3x3x6%6 maxpool 3 1x511x16 -
Bias 1x1x6
Weights
bn 2 32x32x6 | OffsetlxIx6 conv_5 1x511x16 I1e16%16
- scale1x1x6 - .
Bias 1x1x16
Offset 1x1x16
relu_2 32x32x6 - bn 5 1x511x16 Scale 1x1x16
Weights
conv_2_pointwise | 32x32x6 Ix1x6x120 leaky relu 5 | 1x511x16 -
Bias 1x1x120
Weights
maxpool 2 32x32x120 - conv_6 1x511x32 1x3x16x32
Bias 1x1x32
Weights
conv_3 depthwise | 16x16x120 5x5x120%6 bn_6 1x511x32 -
Bias 1x1x6
offset1x1x6 Offset 1x1x32
bn_3 8x8x6 scalel x1%6 leaky relu 6 | 1x511x32 Scale 1x1x32
relu 3 8x8x6 - maxpool 6 1x254x32
Weights Weights
conv_3 pointwise 8x8x6 1x1x6x120 conv_7 1x254x32 1x3x32x32
Bias 1x1x120 Bias 1x1x32
relu_4 8x8x120 - bn 7 1x254x32 22251? ]1:11:3322
Weights
fc 1 8x8x120 128x7680 leaky relu 7 | 1x254x32 -
Bias 128%1
flatten 1 1x1x128 - maxpool 7 1x126x%32 -
flatten 2 4032 -
Input weights
384x4032
gru 128 Recurrent weights
384x128
Bias 384x1
Addition 128
relu 8 128
fc 2 16 Weights 16x128 Bias 16x1
Softmax 16
Classification 16
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2.3. The proposed fault diagnosis method

Building upon the methods and models described above, the enhanced TFMST time-frequency
data and the raw fault data are utilized as two distinct fault datasets. These dual-modal inputs are
simultaneously fed into the DSC-CNN-GRU hybrid neural network model to perform fault
diagnosis. the diagnostic workflow is illustrated in Fig. 3.
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Fig. 3. Fault diagnosis procedure based on the DSC-CNN-GRU model

The specific procedural steps are as follows:

Step 1: Data Processing. Preprocess the raw fault data to facilitate subsequent analysis.

Step 2: Data Transformation. Address limitations in the original TFMST method including
fixed thresholds, fixed window function parameters, and strict curvature criteria by employing the
improved TFMST method. This generates 2D time-frequency diagrams with enhanced energy
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concentration and richer feature representation. Process the raw data through two distinct methods
to obtain two different data types.

Step 3: Sample Division. Includes two data types corresponding to two sample sets. The first
sample set contains improved TFMST 2D time-frequency diagrams. The second sample set
contains raw fault data. Divide both sample sets into training and testing subsets according to a
specified ratio.

Step 4: Model Construction and Hyperparameter Configuration. Construct the DSC-CNN-
GRU model and configure its hyperparameters. This model comprises two pathways to achieve
feature fusion across different data types.

Step 5: Model Training. Input the image dataset into Branch 1 for training. Simultaneously
input the raw dataset into Branch 2 for training. Achieve fault classification through
complementary feature extraction and feature fusion between both branches. Step 6: Model
Testing. Evaluate the trained network using testing subsets. Obtain classification accuracy metrics
for each fault type.

3. Experiment and data

In this section, the specific details of the experimental setup, the data and its processing, as
well as the experimental setup and parameter settings are introduced. The evaluation metrics used
to assess the algorithm model are also discussed.

3.1. Experiment

To validate the effectiveness of the method proposed in this study, we used the Case Western
Reserve University (CWRU) bearing dataset [43]. Experiments were then conducted and verified
on the Jiangsu Normal University-Wind Turbine-1 (JSNU-WT-1) test bench. The specific details
of the two experiments are as follows:

The CRWU datasets test bench is shown in Fig. 4. The test bench mainly consists of four parts:
the motor, torque sensor/encoder, power meter, and an electronic controller. The bearing to be
tested is connected to the motor shaft, with the drive-end bearing model being SKF6205 and the
fan-end bearing model being SKF6203. This study focuses on the drive-end SKF6205 bearing,
with a system sampling frequency of 12 kHz. The fault points on the bearing are created through
electrical discharge machining, with fault damage diameters of 0.1778 mm, 0.3556 mm, and
0.5334 mm. There are three fault locations on the bearing: Inner Race Fault (IR), Rolling Element
Fault (RE), and Outer Race Fault (OR). Therefore, the bearing fault states are categorized into 9
fault states and 1 normal state, making a total of 10 bearing states. The vibration data was collected
using an accelerometer, which was fixed to the housing with a magnetic base. The accelerometer
was placed at the 12 o’clock position on both the motor housing drive-end and the fan end. All
data were collected under different motor load conditions (0, 1, 2, and 3 hp). This study utilizes
drive-end data acquired under Ohp load conditions with sampling frequencies of 12 kHz and
48 kHz as experimental data.

Dynamometer

Drive End Bearing
E——2 fy

%1 and Bearing Torque Transds

Fig. 4. CRWU test bench [43]
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The design of the wind turbine fault simulation test bench is shown in Fig. 5 [1, 3]. The
experimental data are obtained from the JSNU-WT-1 test bench, and the main research object of
this experiment is the rolling bearings at the input end of the wind turbine gearbox. In order to
simulate different types of bearing faults, these bearings are artificially damaged using wire
electrical discharge machining (WEDM) technology to simulate various possible fault conditions.
The entire testing process is precisely controlled by a control cabinet to ensure the stability of the
experimental environment. During the experiment, the motor drives the planetary gearbox via a
coupling, and the planetary gearbox is connected to the wind generator through a synchronous
belt, thereby driving the generator to operate. The system’s rotational speed is regulated by a
frequency converter, allowing for precise control of the speed. The signal acquisition system uses
the INV3062TO signal acquisition device, responsible for collecting various data from the entire
system. for vibration signal acquisition, four INV9822 accelerometers are used, mounted on the
gearbox housing and fixed with magnetic bases. The sampling frequency of the accelerometers is
set to 4 kHz to ensure accurate capture of high-frequency signals. The core hardware configuration
of the test bench includes a 400 W-rated generator, a 750 W-rated three-phase asynchronous
motor, and an XW90 planetary gearbox with a gear ratio of 3. Through the combination of real
wind turbine generators and transmission systems, the test bench simulates the actual operating
environment of the wind turbine, aiming to closely replicate the true operating conditions of the
wind turbine in order to obtain more accurate and meaningful experimental data. This experiment
configures seven distinct bearing fault types, encompassing faults in two different components
(bearings and gears), specifically comprising three gear fault variants, three bearing fault variants,
and one healthy gear condition. The precise fault locations are illustrated in Fig. 6 [1, 3].

Ball fault Inner ring fault Outer ring fault
Fig. 6. Wind turbine bearing failure in different locations
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3.2. Data processing

We perform sliding window sampling on the data collected as described above, which helps
to improve the accuracy of both time-domain and frequency-domain analysis, reduce the boundary
effects caused by signal segmentation, and enhance the ability to capture the details of the signal.
Each signal segment comprises 1024 data points. for the CWRU dataset, the sliding window step
size is 512, with an overlap of 512 between adjacent segments, as illustrated in Fig. 7. for the
JSNU-WT-1 dataset, a reduced step size of 200 is adopted to increase sample quantity, resulting
in an overlap of 824 between signals. CWRU dataset encompasses 16 distinct bearing health
states. Each state contains 200 samples, yielding a total of 3,200 samples. These 16 bearing fault
types have been systematically labeled; detailed specifications are provided in Table 2.
JSNU-WT-1 dataset includes 7 bearing fault conditions. Each condition comprises 200 samples,
resulting in 1,400 total samples. These 7 bearing and gear fault types have undergone labeling
procedures; comprehensive information is documented in Table 3.

Stride=512  Overlap=512

o WW W

Amplitude
=

e |

Fig. 7. Example of raw data split into n samples

Table 2. Composition of the CWRU bearing dataset

Fault type | Fault diameter (Inch)/ Sampling frequency (kHz) | Number of samples | Label
BF007 0.007/12 kHz 200 0
BF014 0.014/12 kHz 200 1
BF021 0.021/12 kHz 200 2
IR007 0.007/12 kHz 200 3
IR014 0.014/12 kHz 200 4
1R021 0.021/12 kHz 200 5
ORO007 0.007/12 kHz 200 6
ORO014 0.014/12 kHz 200 7
ORO021 0.021/12 kHz 200 8
BF007 0.007/48 kHz 200 9
BF021 0.021/48 kHz 200 10
IR007 0.007/48 kHz 200 11
1R021 0.021/48 kHz 200 12
ORO007 0.007/48 kHz 200 13
ORO021 0.021/48 kHz 200 14
Normal 0 200 15

Table 3. Composition of the JSNU-WT-1 fault dataset

Fault type Number of samples | Label
Gear tooth breakage 200 0
Gear crack 200 1
Gear wear 200 2
Ball fault 200 3
Inner ring fault 200 4
Outer ring fault 200 5
Gear Normal 200 6
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3.3. Experimental setup and parameter settings

To enhance the model’s capacity for integrating heterogeneous data, strengthen the network’s
representational capability and diagnostic accuracy, while improving system robustness and
reliability, this study converts raw 1D signals into 2D time-frequency representations using an
improved TSMST method. These transformed images exhibit richer features and concentrated
energy distribution, forming the input for Branch 1 with dimensions of 256x256. The original 1D
data serves as input for Branch 2 with dimensions of 1x1024. The dual-path architecture fuses
these distinct data modalities to deliver comprehensive and precise fault diagnosis capabilities.
The algorithmic parameters are configured as follows: initial learning rate = 0.0005, optimizer =
Adam, batch size = 256, MaxEpochs = 20, L2 regularization parameter = 0.01, with softmax as
the classifier.

In this paper, the parameters of all models are uniform. The algorithm was implemented using
MATLAB. The computer used has an i5-12500H CPU and Windows 11 operating system.
Additionally, the dataset was split, with 80 % used as the training set and 20 % used as the test
set.

3.4. Performance evaluation metrics

In this study, to evaluate the advantages of the proposed algorithm model, we use four metrics:
accuracy, recall, precision, and Fl-score. Accuracy is the proportion of correctly predicted
samples to the total number of samples in a classification model. It reflects the overall performance
of the model across all samples and is suitable for cases with balanced data distribution. Recall
measures the proportion of actual positive samples that the model correctly predicts as positive.
in other words, it indicates how many of the actual positive samples the model is able to identify.
Precision measures the proportion of predicted positive samples that are actually positive. in other
words, it indicates how many of the samples predicted as positive by the model are truly positive.
F1-score is the harmonic mean of precision and recall, considering the balance between the two.
The F1-score is especially useful in cases of class imbalance, as it provides a trade-off between
precision and recall. By combining both precision and recall, the Fl-score offers a more
comprehensive evaluation of model performance, and it provides a more reliable assessment,
especially when the distribution of positive and negative classes is uneven. The definitions of these
four metrics are as follows:

p _ TP+ TN (16)
ceuracy = TP+TN + FP+ FN

R =— 17

ecall TP ¥ I;WI}IJ’ 17

ision = ———— 18

Precision TP T FP (18)

Precision X Recall TP
F1—score=2x% (19)

— =2X ,
Precision + Recall 2TP + FP + FN

where TP (True Positive) represents that a positive sample is correctly predicted to be positive,
TN (True Negative) represents that a negative sample is correctly predicted to be negative, FP
(False Positive) represents a Negative sample being incorrectly predicted as a positive, and FN
(False Negative) represents a positive sample being incorrectly predicted as a negative.

4. Results and discussion

In this section, we conducted two case studies to verify the performance and robustness of the
proposed method in fault diagnosis tasks. Additionally, to eliminate experimental randomness, we
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performed 5 independent experiments for each method and took the average as the final result.
4.1. Case 1: CRWU dataset fault diagnosis
4.1.1. The impact of different learning rates on model performance

Generally, Learning Rate (LR) significantly influence model performance as they directly
control the step size for parameter updates during training. Excessively large LR prevent loss
function convergence and may cause oscillation near optimal values. Conversely, excessively
small rates lead to slow convergence, requiring more training epochs. Thus, selecting an
appropriate LR is critical. This study tested four learning rates (0.0001, 0.0005, 0.001, and 0.005)
for model training and evaluation. Fig. 8 illustrates classification performance metrics across these
learning rates, including mean accuracy, standard deviation (std), and maximum/minimum values
from all trials. Results indicate that the proposed model achieved peak average accuracy (99.78 %)
with LR = 0.0005, accompanied by the lowest std (0.08 %), demonstrating optimal stability.
Although LR = 0.001 yielded perfect classification (100 %) in one trial, its mean accuracy
(99.75 %) and std (0.18 %) were inferior to the LR = 0.0005 configuration.

108 T T T T
Summary:
® Mean values [LR=0.0001: 99.15+0.28% [98.91-99.53%]
106 [~ |——Standard deviation 7
— Max/Min range
‘I.thl,[]{illi: 99,78+0.08% [99.69-99.84%|
104 - =]
Yy LR=0.001: 99.75+0.18% [99.53-100.00%]
=
<
7 i
g 102 LR=0.005: 98.811.35% [96.41-99.53%]
'E
Mean: 98.81%
@ / Mean: 99.75%
. 99.15% Mean: 99.78%
L 100 [ Mean: 99.15% - "4"‘ .”7” Max: 99.84% g Mo 100:00% . g
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LR=0.0001 LR=0.0005 LR=0.001 LR=0.005
Learning Rate(LR)

Fig. 8. Performance comparison of the model under different learning rates
4.1.2. Comparison with different data types

To highlight the advantages of the improved method, we transformed the one-dimensional raw
signal into time-frequency diagrams using both the improved TFMST and the original TFMST
methods, resulting in two fault samples. These samples, along with the raw signal, were used for
training and testing the proposed model. Fig. 9 shows the time-frequency diagram of different
fault categories obtained using the improved TFMST method. Fig. 10 shows the time-frequency
diagram obtained using the original TFMST method. Fig. 9 and 10 represent different
representations of the same signal. From the figures, it can be observed that the time-frequency
diagram obtained using the improved TFMST method contains more features, which will benefit
the diagnostic accuracy of the model.

Fig. 11 shows the average confusion matrix of the time-frequency diagrams obtained using
two different methods tested on the proposed model. From the figure, it can be observed that the
improved TFMST data only has the possibility of misclassification between fault categories 2 and
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3 in the model. in contrast, the original TFMST data shows the possibility of misclassification for
four fault categories, including category 1, category 2, category 3, and category 15. Additionally,
there is confusion between fault categories 2 and 3. This indicates that the time-frequency diagram
obtained using the improved TFMST method contains more features, resulting in better diagnostic
accuracy in the model.

B007(0hp/12khz) BO014(0hp/12khz) B021(0hp/12khz) IR007(0hp/12khz)
TR014(0hp/12khz) IR021(0hp/12khz) ORO007(0hp/12khz) OR014(0hp/12khz)
ORO021(0hp/12khz) B007(0hp/48khz) B021(0hp/48khz) IR007(0Ohp/48khz)
IR021(0hp/48khz) OR007(0hp/48khz) OR021(0hp/48khz) Normal (Ohp/48khz)

Fig. 9. Improved TFMST Time-Frequency diagrams for different fault types
4.1.3. Comparison with different models

The DSC-CNN-GRU model incorporates two distinct branches: Branch 1 constitutes a
lightweight pathway employing DSConv, while Branch 2 integrates CNN and GRU architectures
with a similarly lightweight design approach. Consequently, the proposed model can be
modularized into two sub-models denoted as Light-CNN and CNN-GRU. The LeNet-5 and
AlexNet models represent classical CNN architectural paradigms characterized by differing
computational complexities and historical significance, serving as benchmark references for
foundational deep learning frameworks.
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B007(0hp/12khz) B014(0hp/12khz) B021(0hp/12khz) TR007(0hp/12khz)

TR014(0hp/12khz) TR021(0hp/12khz) ORO007(0hp/12khz) OR014(0hp/12khz)
OR021(0hp/12khz) B007(0hp/48khz) B021(0hp/48khz) IR007(0hp/48khz)
IR021(0hp/48khz) OR007(0hp/48khz) OR021(0hp/48khz) Normal (Ohp/48khz)

Fig. 10. Original TFMST time-frequency diagrams for different fault types
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Fig. 11. Average confusion matrix of test results from different methods on the proposed model
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To demonstrate the superiority of the proposed model, these four architectures were
established as comparative baselines, creating a comprehensive evaluation spectrum spanning
elementary to advanced implementations and lightweight to relatively heavyweight
configurations. This systematic comparison highlights the proposed model’s exceptional
advantages in balancing performance and computational efficiency.

To highlight the advantages of the proposed model, we analyzed the results of multiple tests
on the model using different metrics, including accuracy, precision, recall, and F1-score, as shown
in Table 4. To provide a clearer comparison of the models' performance, we visualized these
results in Fig. 12. The CNN-GRU and AlexNet models exhibited large standard deviation (std)
fluctuations, indicating poorer model stability. Additionally, the average diagnostic accuracy of
these two models was lower than that of the other models. in comparison to the LeNet-5 model,
the Light-CNN model demonstrated higher stability and diagnostic accuracy. Notably, the
proposed model achieved the highest diagnostic accuracy and best overall performance, with an
accuracy of 99.78 %.

Table 4. Performance comparison of different models

Model Accuracy (%) | Precision (%) Recall (%) F1-score (%)
LeNet-5 99.22+0.2923 | 99.25+0.2533 | 99.224+0.2615 | 99.22+0.2533
Light-CNN | 99.384+0.1914 | 99.40+0.1693 | 99.40+0.1693 | 99.38+0.1720
CNN-GRU | 98.25+1.0678 | 98.58+0.7086 | 98.25+0.9550 | 98.27+0.9351
AlexNet 98.78+0.9968 | 98.86+0.7646 | 98.784+0.8916 | 98.77+0.8915
The proposed | 99.78+0.0856 | 99.79+0.0747 | 99.78+0.0765 | 99.78+0.0865

[ B Accuracy [ Precision [ Recall [ F1-Score |

Value(%)

LeNet-5 Light-CNN

CNN-GRU
Models
Fig. 12. Visualization comparison of the performance of different models

AlexNet The proposed

To further illustrate the diagnostic performance of different models on various fault categories,
we plotted the average confusion matrix of the test results for each model, as shown in Fig. 13.
The LeNet-5 model shows a potential for misprediction in five fault categories: categories 1-3,
category 8, and category 15. The Light-CNN model has the possibility of misprediction in
categories 1-4, but its accuracy is higher than that of the LeNet-5 model. The CNN-GRU model
carries a risk of misprediction for categories 2-3, category 5, and category 15. The AlexNet model
has the potential for misprediction across all six fault categories, resulting in the lowest prediction
accuracy. in contrast, the proposed model only has a slight misclassification risk for faults in
categories 2 and 3. Therefore, the proposed model demonstrates better performance, which is
consistent with the results shown in Fig. 12.
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Fig. 13. Average confusion matrix of test results from different models

4.1.4. The effect of additional noise on model performance

Due to the complex operating environment of wind turbines, which is influenced by various
environmental factors, the collected data can be affected by noise. in some harsh conditions, the
impact of noise on the signal can be extremely severe. We added Gaussian noise with different
signal-to-noise ratios (SNR) to the collected raw data to verify the classification performance of
the proposed model under significant noise interference. the SNR can be defined as:

P.;
SNR = 101log, ( ;‘g"“l), (20)

noise

where Pgignq; and Pp,;qe are the original signal power and noise power, respectively. A smaller
SNR value indicates stronger added noise and greater interference with the original signal. This
presents a challenge for fault diagnosis models.

The proposed model, as a dual-input model, increases the input dimension of the network,
allowing the model to learn potential patterns and relationships in the data from different
perspectives. This structure enhances the model's expressive power, especially when dealing with
complex input data, providing stronger generalization ability compared to single-input models.
We added noise with different SNRs to the raw data and generated two image datasets using
TFMST and the improved TFMST methods. Then, we performed comparative experiments on the
proposed model using both datasets. The results are shown in Table 5, and we visualized these
results. Fig. 14 displays the comparison of the two methods on accuracy, precision, recall, and
Fl-score under different SNR conditions. It can be observed that, under all conditions, the
proposed model consistently demonstrated higher performance. Fig. 15 presents the average
confusion matrix of the proposed model’s test results under the conditions of SNR = 0 dB and
15 dB with the original data. From the figure, it is evident that, although the proposed method
predicts more fault categories incorrectly than the original method under different conditions, its
overall prediction accuracy remains higher than that of the original method. Therefore, the
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proposed model demonstrates superior diagnostic performance with the improved TFMST data.
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Fig. 14. Visualization of comparative performance of different data
on the proposed model under varying SNRs
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Fig. 15. Average confusion matrix of the proposed model’s test results under different SNR conditions
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Table 5. Comparison of different signal-to-noise ratio data on the proposed model

SNR (dB) Method Accuracy (%) Recall (%) Precision (%) | F1-score (%)
0 Improved TEMST | 97.41+0.6592 | 97.434+0.5938 | 97.41+0.5896 | 97.40+0.5938
TFMST 97.28+0.4222 | 97.28+0.3748 | 97.2840.3776 | 97.24+0.3818

5 Improved TFMST | 98.814+0.6011 | 98.86+0.5128 | 98.81+0.5376 | 98.80+0.5467
TFMST 98.60+0.9440 | 98.73+0.6579 | 98.60+0.8443 | 98.60+0.8491

10 Improved TFMST | 99.4440.5015 | 99.44+0.4430 | 99.44+0.4485 | 99.44+0.4486
TFMST 98.974+0.2370 | 99.01+£0.2020 | 98.97+0.2119 | 98.97+0.2126

15 Improved TEFMST | 99.50+0.2318 | 99.51+0.1979 | 99.50+0.2073 | 99.50+0.2078
TFMST 99.25+0.3563 | 99.28+0.2849 | 99.25+0.3187 | 99.25+0.3168

4.1.5. Comparison with other relevant methods

To further demonstrate the superiority of the proposed method, we compared it with several
related research methods that used the CWRU dataset. The comparison results of various methods
are shown in Table 6. The number of fault categories used in this study is significantly higher than
that in other methods. in general, the more fault categories there are, the more difficult the
diagnosis becomes. Despite this, the proposed method still achieved the highest diagnostic
accuracy. Specifically, the method [44] in classified the one-dimensional raw signal with an
accuracy of 93.2 %, while the branch 2 (CNN-GRU) of the proposed model also classified the raw
signal with an accuracy of 98.25 %. Therefore, the proposed method has certain advantages.

Table 6. Comparison with related research methods

Methods Fyi:;l; d];::; " dgtisste " Epoch | Accuracy
1D convolutional neE;rZ; network (1D-CNN) 6 409 605 100 932
Markov transition field and residual network o
(MTF+ResNet) [45] 10 660 25 100 98.52 %
Based on symmetrized dot pattern (SDP) images
and convolutional neural networks (SDP + 10 240 60 150 98.88 %
CNN) [46]
Two-stream feature fusion convolutional neural
network (TSFFResNet-Net) 10 400 80 100 99.62 %
(CWT+TSFFResNet-Net) [47]
The Proposed 16 200 40 200 99.78 %

4.2. Case 2: JSNU-WT-1 fault diagnosis
4.2.1. Comparison with different data types

Fig. 16 and Fig. 17 show the time-frequency diagrams of the same signal for seven different
fault types, obtained using the TFMST and the improved TFMST methods, respectively. From the
figures, it can be observed that the time-frequency diagram obtained using the improved TFMST
method contains more fault information. in general, the diagrams with rich information contribute
to the correct predictions of the model. We input the two different datasets into the proposed
model, and the average confusion matrix of the test results from both models is shown in Fig. 18.
It can be seen that the proposed model demonstrated good diagnostic performance on the improved
TFMST data. for the improved TFMST data, the proposed model only showed the possibility of
misclassification for the ball fault and outer ring fault categories. for the original TFMST data, the
model showed the possibility of misclassification for all fault categories. The proposed model
exhibited excellent performance on the improved TFMST data.
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Fig. 16. Improved TFMST Time-Frequency diagrams for different fault types

Gear wear Ball fault
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Fig. 17. Original TFMST time-frequency diagrams for different fault types
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Fig. 18. Average confusion matrix of test results from different methods on the proposed model
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4.2.2. Comparison with different models

To highlight the advantages of the proposed model, we compared it with LeNet-5, Light-CNN,
CNN-GRU, and AlexNet. for the five different models, we compared the four metrics of accuracy,
precision, recall, and F1-score, as shown in Table 7, and visualized the performance comparison
of each model in Fig. 19. It can be seen that the metrics of the LeNet-5, Light-CNN, CNN-GRU,
and AlexNet models are all lower than those of the proposed model, with LeNet-5, Light-CNN,
and AlexNet models showing poor stability. Although the Light-CNN model exhibits good
stability, its diagnostic accuracy remains lower than that of the proposed model.

(I Accuracy I Precision I Recall [0 F1-Score |

102 L L L
100 e

961
94+

i n
YRR | | ;
L[ |
1| |
|

Value(%)

90 -
88

86 -
CNN-GRU AlexNet
Models

Fig. 19. Visualization comparison of the performance of different models
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Fig. 20. Average confusion matrix of test results from different models
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Fig. 20 shows the average confusion matrix of the test results from different models. The LeNet
model correctly classified only the faults of the 2nd, 3rd, and 6th categories, while it had a risk of
incorrect predictions for the remaining four fault categories, with the highest likelihood of error
occurring for the 4th category. Similarly, AlexNet model only correctly predicted the faults of the
3rd and 5th categories, while errors occurred in the predictions of the remaining faults, making its
performance the worst. Although Light-CNN and CNN-GRU demonstrated relatively high
diagnostic performance, the proposed model outperformed them, delivering the best overall results
and performance.

Table 7. Performance comparison of different models

Model Accuracy (%) | Precision (%) Recall (%) Fl-score (%)
LeNet-5 95.79+3.1984 | 96.67+1.9144 | 95.79+2.8607 | 95.63+1.9144
Light-CNN | 97.504+0.4374 | 97.80+0.2896 | 97.50+0.3912 | 97.504+0.3756
CNN-GRU 92+2.3905 94.09£1.6417 | 92+2.1381 91.65+2.2714
AlexNet 94.00+3.5839 | 94.46+2.6605 | 94.00+3.2055 | 93.914+3.2746
The proposed | 99.57+0.4657 | 99.59+0.3990 | 99.57+0.4165 | 99.57+0.4196

4.2.3. The effect of additional noise on model performance

To further validate the superiority of the proposed method, we added noise with different SNR
values to the raw signal and obtained two different datasets using the improved TFMST method
and the original TFMST method. We then conducted comparative experiments with these two
datasets on the proposed model. The results were statistically analyzed using the four metrics:
accuracy, precision, recall, and F1-score, as shown in Table 8. Additionally, to provide a clearer
comparison, we visualized the experimental results, as shown in Fig. 21. From the results, it can
be observed that under all conditions, the improved TFMST data exhibited higher performance on
the proposed model and demonstrated greater stability.

SNR =0dB SNR=5dB
Precision Precision
100 ~®—Improved TFMST 100
920 =@—=TFMST 90
80 80
70
Accuracy Recall 60
F1 Score F1 Score
SNR =10dB SNR=15dB
Precision Precision
100 100
8P
80
70
60 Accuracy

F1 Score

N
80
70
Recall 60 Accuracy

F1 Score

Fig. 21. Visualization of comparative performance of different data
on the proposed model under varying SNRs
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Table 8. Comparison of different signal-to-noise ratio data on the proposed model

SNR (dB) Method Accuracy (%) Recall (%) Precision (%) | Fl-score (%)
0 Improved TFMST | 64.714+4.5904 | 67.94+4.0644 | 64.71+4.0157 | 65.00+4.0644
TFMST 64.43+3.7593 | 65.96+2.9316 | 64.43+3.3625 | 64.53+3.1596

5 Improved TFMST | 88.074+4.8682 | 88.89+3.8397 | 88.074+4.3542 | 88.07+4.3809
TFMST 87.29+43.4032 | 88.92+42.5271 | 87.2943.0439 | 87.434+2.9494

10 Improved TFMST | 97.2941.3505 | 97.35+1.1723 | 97.2941.2080 | 97.28+1.2066
TFMST 92.86+1.4940 | 93.554+1.0898 | 92.86+1.3363 | 92.88+1.3114

Is Improved TFMST | 97.934+0.6870 | 97.9940.6188 | 97.9340.6145 | 97.9240.6269
TFMST 94.5042.3090 | 95.094+1.6802 | 94.504+2.0653 | 94.41+2.2183

5. Conclusions

To address the issues of incomplete feature extraction and low efficiency in wind turbine fault
diagnosis, this paper proposes a fault diagnosis method based on the improved TFMST and DSC-
CNN-GRU model. First, the improved TFMST technique generates time-frequency feature data
with richer characteristics. Then, the DSC-CNN-GRU model is used to integrate time-frequency
features and temporal features, enhancing fault detection capability and overcoming the
limitations of single feature extraction. The main conclusions of this study are as follows:

1) A new dual-input fault diagnosis model is developed that can simultaneously integrate time-
frequency and temporal information. It still demonstrates good fault diagnosis performance under
multiple learning rates.

2) Compared to the original TFMST data, the method combining the improved TFMST data
with the proposed model shows clear advantages in fault identification.

3) The proposed method has been experimentally validated on both the CWRU dataset and the
generator dataset. Compared to four different algorithm models, the proposed method consistently
demonstrated the best fault diagnosis performance.

4) Under different SNR conditions, even with noise interference, the proposed model still
maintains stable fault diagnosis advantages.

This method integrates different data and deeply extracts fault features, thus efficiently
achieving fault diagnosis for wind turbine bearings. in future research, we will further optimize
this method and introduce transfer learning to achieve wind turbine fault diagnosis.
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