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Abstract. In this paper, a novel control approach, namely fuzzy dynamic self-tuning-based linear 
active disturbance rejection control (FDS-LADRC), is proposed for the speed loop system of 
permanent magnet synchronous motors (PMSMs). Specifically, a control framework based on the 
linear active disturbance rejection control (LADRC) is presented. Fuzzy dynamic self-regulators 
are developed to enable simultaneous adaptive adjustments of both the controller and observer 
parameters. Additionally, the stability analysis is provided. A series of numerical simulations 
demonstrates that FDS-LADRC achieves superior adaptivity, transient performance, disturbance 
rejection capability, and anti-noise ability under various operating conditions. For instance, during 
no-load startup, compared with the traditional LADRC, nonlinear active disturbance rejection 
control (ADRC), a variant of FDS-LADRC named IT2FDS which utilizes interval type-2 fuzzy 
systems as fuzzy dynamic self-regulators, a state-of-the-art fractional-order ADRC with fuzzy 
self-tuning (FSFOADRC), and sliding mode control (SMC), FDS-LADRC reduces overshoot by 
10.82 %, 13.55 %, 7.36 %, 5.53 %, and 3.94 %, respectively, and shortens settling time by 
0.0132 s, 0.0076 s, 0.0139 s, 0.0009 s, and 0.0156 s, respectively. Finally, corresponding 
real-world experiments are conducted to validate the effectiveness and superiority of FDS-
LADRC.  
Keywords: permanent magnet synchronous motor; speed control; fuzzy dynamic self-tuning; 
linear active disturbance rejection control. 

1. Introduction 

PMSMs, characterized by high power density, superior energy conversion efficiency, and 
excellent dynamic response performance, have emerged as core drive units in high-end equipment 
fields, including the new energy electric vehicle industry, aerospace servo systems, marine 
propulsion systems, and so on [1]-[8]. Field-oriented control (FOC) is the primary control 
architecture for PMSMs, in which the speed loop directly determines the system’s robustness and 
disturbance rejection capability [9]. In practical engineering, proportional-integral (PI) controllers 
[10] are widely used in the speed loop for their simplicity but still face critical challenges: 
(a) Nonlinear coupling and parameter sensitivity: The PMSM model is strongly nonlinear and 
coupled, with parameters (e.g., resistance, inductance) drifting with temperature, magnetic 
saturation, and aging. PI controllers struggle to cope with these unfavorable factors. 
(b) Robustness bottleneck under compound disturbances: The speed loop must suppress external 
load torque changes, internal parameter perturbations, and inverter-induced harmonics, but fixed-
gain PI controllers lack online adaptability, failing to handle wide-frequency disturbances. 
(c) Trade-off between dynamic response and steady-state accuracy: The speed loop needs to 
balance fast command tracking and overshoot suppression. Although PI controllers can adjust the 
system bandwidth through PI parameter tuning, their linear control structure leads to inevitable 
performance trade-offs – improvements in dynamic response often come at the cost of reduced 
steady-state accuracy or weakened disturbance rejection capability. (d) Control complexity in 
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multi-objective optimization: Advanced drive systems demand coordinated optimization of 
disturbance rejection, parameter robustness, and dynamic response. PI controllers rely on 
empirical tuning, making it difficult to balance these competing objectives (e.g., higher 
proportional gain improves response but increases noise sensitivity). Therefore, based on the 
above analysis, there is an urgent requirement to explore new intelligent control strategies to 
address these challenges. This also constitutes one of the main motivations of this study. 

Recently, a plethora of advanced control algorithms have been proposed, including SMC and 
its variants [11]-[13], fuzzy-related control methods [14]-[19] and neural network control methods 
[20]-[21]. Despite their promising performance in various engineering applications, these 
approaches still have some limitations including the chattering phenomenon of SMC, the curse of 
dimensionality for fuzzy-related control methods, and the high demand for computational 
resources for neural network control methods. In addition, these approaches are not very effective 
when facing external disturbances. Against this backdrop, ADRC, utilizing an extended state 
observer (ESO) to estimate and dynamically compensate for the “total disturbance” of both 
internal and external system perturbations in real time [22], demonstrates strong anti-disturbance 
capabilities. It offers several unique advantages: (a) Model independence and strong anti-
disturbance capability: It does not require an accurate mathematical model. By introducing the 
concept of “total disturbance” and compensating for it, ADRC achieves strong disturbance 
rejection capabilities. (b) Avoidance of empirical and data dependence: It does not rely on 
empirical rules or large-scale training datasets. (c) Intuitive and feasible control structure: It 
combines physical intuitiveness with engineering feasibility. However, in addition to an ESO, the 
classical ADRC architecture incorporates a tracking differentiator (TD) and nonlinear state error 
feedback (NSEF), leading to high complexity in parameter tuning. To address this issue, Gao [23] 
proposed LADRC, which reconstructs the control architecture by adopting a linear ESO (LESO) 
and linear state error feedback (LSEF). While retaining the disturbance estimation and 
compensation mechanism, LADRC reduces the tunable parameters to two physically meaningful 
variables: the observer bandwidth 𝜔௢ and the controller bandwidth 𝜔௖ [24], significantly 
simplifying the complexity of engineering implementation. These improvements have 
significantly promoted the application of ADRC theory in various control scenarios, such as 
exoskeleton medical robots [25]-[26], delta wing aircraft [27], and remotely operated vehicle [28].  

Particularly, for PMSMs, Yan et al. [29] developed an enhanced two-degree-of-freedom 
integrated position tracking control method based on an improved LADRC with the sliding mode 
compensation function, which genuinely implemented the complete decoupling of dynamic 
performance and disturbance rejection performance. Liu et al. [30] proposed a predictive 
functional control method based on a LESO. By utilizing the LESO to observe and estimate the 
system’s total disturbance, this method improved the anti-disturbance capability of the PMSM to 
a certain extent. Shen et al. [31] presented a simulation study of LADRC applied to PMSM 
systems, demonstrating that LADRC provided effective control over load disturbances, viscous 
damping, and other uncertainties. Cui et al. [32] conducted a comprehensive review of 
LADRC-based multi-source disturbance suppression methods. Yang et al. [33] proposed an 
innovative control strategy targeting harmonic disturbances in the PMSM current loop. This 
strategy introduced a novel LADRC controller based on a complex-coefficient LESO, and 
experimental results validated its effectiveness. Tian et al. [34] designed an adaptive LADRC for 
the current loop of the PMSM to suppress uncertain periodic and aperiodic disturbances that cause 
current ripples. Cui et al. [35] proposed a new LADRC control method incorporating lead 
compensation and a cascaded LESO for the PMSM speed loop. This method enhanced the original 
total disturbance estimation mechanism by adding a lead compensation link, significantly 
improving the PMSM’s load disturbance rejection capability. The effectiveness and superiority of 
this approach were demonstrated through simulation studies involving sudden load application 
and removal at the rated speed of the PMSM. Zhao et al. [36] proposed a new control strategy for 
the PMSM system, where the speed loop utilized a second-order modified ADRC, and the current 
loop employed a first-order LADRC. Additionally, an LTD module was integrated to filter the 
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output speed, significantly boosting the robustness of the PMSM system. Qu et al. [37] introduced 
a sensorless FOC control method for PMSM drives based on an enhanced LADRC. By promptly 
estimating and compensating for internal disturbances such as parameter variations and changes 
in current regulation quality in the current control loop, this approach improved the rotor position 
estimation performance of the PMSM system. Through leveraging fuzzy logic to adaptively adjust 
the bandwidth of LESO, Sancio et al. [38] introduced a fuzzy-based adaptive LADRC control 
strategy specifically tailored for the high-speed PMSM system, which achieved a faster transient 
response to external disturbances and model uncertainties. Li et al. [39] developed a novel 
gain-adaptive LESO based on the gain-adaptive regulation law. This new gain-adaptive LESO 
exhibited excellent noise suppression capabilities. Through the aforementioned review and 
investigation, it can be observed that in most existing studies including [29]-[33], [35]-[37], both 
the parameters of the controller and the bandwidth of the observer in LADRC are typically fixed, 
which makes the system lack flexibility and adaptability. In addition, several existing adaptive 
LADRC methods, e.g., [34] and [39], focus solely on adjusting the bandwidth of the LESO while 
overlooking the optimization of controller parameters. This limitation leads to a severe mismatch 
between the disturbance estimation performance of the observer and the control regulation 
capability of the controller, ultimately restricting the overall performance of the PMSM control 
system. Besides, most of the methods still require a cumbersome parameter tuning process to 
achieve optimal performance.  

Inspired and motivated by these limitations, an enhanced LADRC control approach leveraging 
the fuzzy logic technique, namely FDS-LADRC, is proposed for the PMSM speed loop system. 
To be specific, an LADRC control framework for the PMSM speed loop system is established. 
Subsequently, fuzzy dynamic self-regulators are designed using the system error and its derivative 
to adaptively adjust the controller parameters and the observer bandwidth. This leads to the 
development of an adaptive fuzzy controller and an adaptive fuzzy LESO, enhancing the system’s 
adaptability, transient performance, disturbance rejection capability, and anti-noise ability. 
Furthermore, the corresponding stability analysis is discussed. Finally, the effectiveness and 
superiority of the proposed FDS-LADRC method are demonstrated through a series of numerical 
simulations and real-world experiments. Note that compared with some existing fuzzy-based 
control methods including hybrid fuzzy LADRC [38] and fractional-order fuzzy LADRC [19], the 
proposed FDS-LADRC simultaneously tunes the controller parameters and the bandwidth of the 
observer, breaking the performance bottlenecks of one-sided parameter adjustment and achieving 
more comprehensive improvements in the transient response, anti-disturbance ability, and 
engineering adaptability. The main contributions of this paper can be summarized as follows: 

(a) An enhanced LADRC control method leveraging the fuzzy dynamic self-tuning 
mechanism, i.e., FDS-LADRC, is proposed for the PMSM speed loop system, and the 
corresponding stability analysis is presented. 

(b) In FDS-LADRC, an adaptive fuzzy controller and an adaptive fuzzy LESO are 
simultaneously developed, which flexibly adjust both the controller parameters and the observer 
bandwidth in real time, effectively enhancing the adaptability, transient performance, disturbance 
rejection capability, and anti-noise ability of the PMSM speed loop system. 

(c) A number of comparative numerical simulations are conducted. The results demonstrate 
that the proposed FDS-LADRC method possesses certain superiority in many aspects compared 
with some baseline and state-of-the-art control methods. In addition, to verify the feasibility and 
effectiveness of FDS-LADRC, a series of real-world experiments are also carried out. 

The remainder of this paper is organized as follows. Section 2 introduces the mathematical 
model of the PMSM speed loop. Section 3 presents the proposed FDS-LADRC method in detail. 
The stability analysis of FDS-LADRC is discussed in Section 4. A series of numerical simulations 
and real-world experiments in various cases are reported in Section 5 and Section 6, respectively. 
Finally, the conclusion and future work are drawn in Section 7. 
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2. The mathematical model of the PMSM speed loop 

Assuming that the PMSM is in an ideal or balanced state, the following conditions are satisfied: 
(a) Magnetic saturation of the motor core is neglected. (b) Eddy current losses and hysteresis 
losses in the motor rotor are ignored. (c) The currents and flux linkages (flux) in the motor exhibit 
symmetrical three-phase sinusoidal waves. (d) The internal parameters of the motor remain 
constant. Under these assumptions, the mathematical model of the PMSM stator voltage in the  𝑑-𝑞 synchronous rotating coordinate is given by [40]: 

൞𝑈ௗ = 𝑅௦𝐼ௗ + 𝑑Ψௗ𝑑𝑡 − 𝜔௘Ψ௤,𝑈௤ = 𝑅௦𝐼௤ + 𝑑Ψ௤𝑑𝑡 − 𝜔௘Ψௗ, (1)

where 𝑈ௗ and 𝑈௤ are the 𝑑-axis and 𝑞-axis components of the stator voltage, respectively; 𝐼ௗ and 𝐼௤ are the 𝑑-axis and 𝑞-axis components of the stator current, respectively; 𝜔௘ is the electrical 
angular velocity of the rotor; 𝑅௦ is the stator resistance; Ψௗ and Ψ௤ are the 𝑑-axis and 𝑞-axis 
components of the stator flux linkage, respectively. 

The relationship between the stator flux linkage and inductance is given by [40]: ൜Ψௗ = 𝐿ௗ𝐼ௗ + Ψ௥,Ψ௤ = 𝐿௤𝐼௤ ,  (2)

where 𝐿ௗ and 𝐿௤ represent the d-axis and q-axis components of the stator inductance in the 𝑑-𝑞 
synchronous rotating coordinate, respectively, and Ψ௥ denotes the nominal value of the rotor flux 
linkage. 

In addition, the mechanical motion model of the PMSM is [40]: 𝑑𝜔௥𝑑𝑡 = 1𝐽 ቆ𝑇௘ − 𝑇௟ − 𝐵௥𝑛௣ 𝜔௥ቇ, (3)

where 𝜔௥ represents the mechanical angular velocity of the rotor, which is related to the electrical 
angular velocity 𝜔௘ by the equation 𝜔௘ = 𝑛௣𝜔௥, where 𝑛௣ is the number of pole pairs in the stator 
winding. 𝐽 denotes the moment of inertia, 𝑇௘ is the electromagnetic torque, 𝑇௟ is the load torque, 
and 𝐵௥ is the viscous friction damping coefficient. 

However, in the actual operation, the internal mechanical and electromagnetic parameters of 
PMSM cannot remain constant. These parameters may vary due to magnetic saturation and 
temperature fluctuations. Therefore, under such conditions, the electromagnetic torque formula of 
PMSM needs to be redefined to account for these variations [40]: 𝑇௘ = 32𝑛௣Ψ௘௙௙𝐼௤ + ∆𝑇௘ , (4)

where Ψ௘௙௙ = [Ψ௥ + (𝐿ௗ − 𝐿௤)𝐼ௗ] represents the effective flux linkage, and ∆𝑇௘ denotes the 
perturbation in electromagnetic torque resulting from parameter variations. 

Furthermore, when the PMSM is subjected to external load disturbances and variations in the 
moment of inertia and viscous friction damping coefficient, the mechanical motion model of the 
PMSM is described as [40]: 𝑑𝜔௥𝑑𝑡 = 1𝐽 ቆ𝑇௘ − 𝑇௟ + ∆𝑇௟ − 𝐵௥𝑛௣ 𝜔௥ቇ + ∆𝑑௡, (5)
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where ∆𝑑௡ represents the perturbation in the mechanical motion model caused by parameter 
variations. 

By combining Eq. (4) and Eq. (5), the mathematical model of the PMSM speed loop under the 
influence of internal parameter variations and external load disturbances can be derived as [40]: 𝑑𝜔௥𝑑𝑡 = 3𝑛௣2𝐽 𝛹௘௙௙𝐼௤ + 𝑛௣𝐽 ൬∆𝑇௘ − 𝑇௟ + ∆𝑇௟ − 𝐵௥𝑛௥ 𝜔௥൰ + ∆𝑑௡. (6)

3. Detailed design procedures of FDS-LADRC 

3.1. The overall control structure of FDS-LADRC for the PMSM speed loop 

From Eq. (6), it can be seen that the mathematical model of the PMSM speed loop can be 
expressed in the form of a first-order differential equation. Typically, the order of the LADRC 
corresponds to the order of the controlled object. Therefore, for the PMSM speed loop, a first-order 
LADRC can be effectively employed for control. The first-order LADRC mainly consists of three 
linear components: the first-order linear tracking differentiator (FOLTD), the second-order linear 
extended state observer (SOLESO), and the LSEF. By rewriting Eq. (6) in a general form, we 
have: 𝜔ሶ ௥ = 𝑓(𝜔௥ ,∆𝑑௡, 𝑡) + 𝑏𝑈, (7)

where 𝑓(∗) = ௡೛௃ ൬∆𝑇௘ − 𝑇௟ + ∆𝑇௟ − ஻ೝ௡೛ 𝜔௥൰ + ∆𝑑௡ represents the sum of internal parameter 

perturbations and external load disturbances in the PMSM speed loop. This term is referred to as 
the “total disturbance” within the LADRC framework and is estimated and compensated by the 
SOLESO. Additionally, 𝑏 = ଷ௡೛ଶ௃ Ψ௘௙௙ denotes the current gain coefficient, and 𝑈 = 𝐼௤ represents 
the controller output control quantity, which is the q-axis current. 

By defining the state variables for Eq. (7) as 𝑥ଵ = 𝜔௥, 𝑥ଶ = 𝑓(𝜔௥ ,∆𝑑௡, 𝑡), and  𝑜 = 𝑓ሶ(𝜔௥ ,∆𝑑௡, 𝑡), Eq. (7) can be rewritten in the form of a state-space equation: 

൝𝑥ሶଵ = 𝑥ଶ + 𝑏𝑈,𝑥ሶଶ = 𝑜,𝑦 = 𝑥ଵ.  (8)

Designing a SOLESO for the controlled object represented by Eq. (8), we have: ൜𝑧ሶଵ = 𝑧ଶ − 𝛼ଵ(𝑧ଵ − 𝑥ଵ) + 𝑏଴𝑈,𝑧ሶଶ = −𝛼ଶ(𝑧ଵ − 𝑥ଵ),  (9)

where 𝑧ଵ and 𝑧ଶ represent the estimated values of the state variables 𝑥ଵ and 𝑥ଶ, respectively.  𝑏଴ ≈ 𝑏 is the control gain compensation factor, and 𝛼ଵ and 𝛼ଶ are the feedback coefficients of the 
SOLESO. Typically, for any order of LESO, the feedback coefficients can be set at the observer 
bandwidth 𝜔௢ using pole placement methods [10], ensuring that the observer is bounded-input 
bounded-output (BIBO) stable, that is: ൜𝛼ଵ = 2𝜔௢,𝛼ଶ = 𝜔௢ଶ.   (10)

From Eq. (10), it can be seen that, in the SOLESO, the bandwidth 𝜔௢ is the only adjustable 
parameter and has a strong physical significance. Additionally, for the FOLTD, we have: 
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𝑣ሶ = −𝜇(𝑣 − 𝑅𝑒𝑓), (11)

where 𝜇 is the derivative time constant and 𝑅𝑒𝑓 is the reference input signal. 
However, at the current stage, the theoretical development of LADRC is relatively mature. In 

industrial control, the methods for handling system transient processes are also well-established. 
Meanwhile, to avoid high-frequency oscillations in practical industrial control applications, the 
vast majority of LADRC controllers no longer employ the LTD. Instead, the reference input signal 𝑅𝑒𝑓 is directly used as the input to the LSEF. Therefore, the LSEF can be designed as: 𝑈଴ = 𝑘௣(𝑅𝑒𝑓 − 𝑧ଵ), (12)

where 𝑘௣ represents the proportional coefficient. According to the bandwidth-based parameter 
tuning rule [18], 𝑘௣ can be set at the controller bandwidth 𝜔௖, i.e., 𝑘௣ = 𝜔௖. Consequently, the 
control law of the system can be derived as: 𝑈 = 𝑈଴ − 𝑧ଶ𝑏଴ . (13)

 
Fig. 1. The overall control structure of FDS-LADRC 

As indicated by Eq. (10) and Eq. (12), once the observer bandwidth 𝜔௢ and the controller 
bandwidth 𝜔௖ are set, their values remain fixed throughout the control process, making it difficult 
to simultaneously balance the trade-offs between system dynamic performance, steady-state 
characteristics, and disturbance rejection capabilities. Moreover, as discussed in Section 2, the 
PMSM systems are subject to various external disturbances in practical control applications. And 
the presence of internal parameter variations further complicates the control problem by 
introducing internal parameter uncertainties. This results in a lack of adaptability in both the 
controller and the SOLESO. To address these challenges, this paper proposes an enhanced 
LADRC method based on the fuzzy dynamic self-tuning mechanism, i.e., FDS-LADRC. To be 
specific, the fuzzy dynamic self-regulators are designed to adaptively optimize the parameters of 
the controller and the bandwidth of the SOLESO, respectively, thereby obtaining the adaptive 
fuzzy controller and the adaptive LESO, which can enhance the system’s adaptability and 
flexibility throughout the control process. This approach aims to achieve optimal coordination 
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between the controller, SOLESO, and the controlled plant, resulting in improved control 
performance while avoiding the cumbersome and repetitive manual parameter tuning process. The 
overall control structure of FDS-LADRC is illustrated in Fig. 1. In the next subsection, the detailed 
design processes of fuzzy dynamic self-regulators are elaborated. 

3.2. The design of fuzzy dynamic self-regulators 

Fuzzy system, also known as fuzzy logic system, was proposed by Zadeh in 1965 [41]. It is an 
intelligent computing system based on fuzzy linguistic variables, fuzzy logic reasoning, and fuzzy 
set theory. The most significant feature of fuzzy systems is their ability to represent human prior 
experience in the form of IF-THEN linguistic rules, mimicking the human thought process, 
reasoning, and decision-making behaviors. Moreover, fuzzy logic can be employed to handle 
uncertainties within the system [42]. The basic components of a fuzzy system include the fuzzifier, 
knowledge base, rule base, fuzzy inference engine, and defuzzifier. The schematic diagram of a 
generic fuzzy system is shown in Fig. 2. 

Above all, the specific configurations of fuzzy dynamic self-regulators are elaborated, with a 
Mamdani-type fuzzy structure adopted. On one hand, for the adaptive fuzzy controller’s fuzzy 
dynamic self-regulator, the error 𝑒 = 𝑅𝑒𝑓 − 𝑦 and its derivative 𝑒ሶ of the closed-loop system serve 
as input variables, while the controller parameter variation ∆𝑘௣ is the output. Note that the 
universes of discourse for the input and output variables depend on practical control scenarios. 
Three fuzzy subsets {𝑁,𝑍,𝑃} are selected with respective semantic information, namely, negative, 
zero, and positive. Correspondingly, their membership functions are Z-shaped, triangular, and S-
shaped functions, respectively. Moreover, the singleton fuzzifier, product inference engine, and 
center-of-sets defuzzification method are employed. An example of the membership functions for ∆𝑘௣ is illustrated in Fig. 3. 

 
Fig. 2. The schematic diagram of a classic fuzzy system 

 
Fig. 3. The membership function of ∆𝑘௣ 

 
Fig. 4. The membership function of ∆𝜔௢ 

On the other hand, for the adaptive fuzzy LESO’s fuzzy dynamic self-regulator, the error 𝑒 of 
the closed-loop system is also chosen as the input variable and the variation of the bandwidth 𝜔௢ 
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serves as the output. The fuzzy subsets and corresponding membership functions for 𝑒 and ∆𝜔௢ 
are the same as those used for tuning ∆𝑘௣, i.e., {𝑁,𝑍,𝑃}. The singleton fuzzifier, product inference 
engine, and center-of-sets defuzzification method are employed as well. An example of the 
membership function for ∆𝜔௢ is illustrated in Fig. 4.  

Since the controller is the most dominant component that affects the system performance, its 
parameters need to be precisely adjusted. Therefore, the tuning principle for ∆𝑘௣ is as follows: 
When the system response is in the rising phase (𝑒 is 𝑃), ∆𝑘௣ should be 𝑃, meaning that 𝑘௣ should 
be increased. If the system response is in an overshoot state (𝑒 is 𝑁), in this case, ∆𝑘௣ should be 𝑁, meaning that 𝑘௣ should be decreased. When the system response is in the steady-state (𝑒 is 𝑍), 
three scenarios are considered: (a) If 𝑒ሶ is 𝑁, indicating a decreasing trend in the overshoot, ∆𝑘௣ 
should be 𝑁; (b) If 𝑒ሶ is 𝑍, indicating that the system response is already stable, ∆𝑘௣ should be 𝑍; 
(c) If 𝑒ሶ is 𝑃, indicating that the error is increasing, ∆𝑘௣ should be 𝑃. In summary, the fuzzy rule 
table for the tuning of ∆𝑘௣ is shown in Table 1. 

Table 1. The fuzzy rule table for tuning of ∆𝑘௣ 𝑒 𝑒ሶ 
N Z P 

N N N N 
Z N P P 
P P P P 

In addition to the controller, the bandwidth 𝜔௢ of the SOLESO also affects the system 
performance to a large extent. Specifically, when 𝜔௢ is sufficiently large, the observer can respond 
more quickly to changes in system states, thereby accelerating the convergence rate of state 
estimation and enhancing the system’s response speed. However, an excessively high 𝜔௢ may lead 
to a high overshoot in the system response, causing the observer’s state estimates to significantly 
exceed the actual state values. Moreover, it will amplify measurement noise, reduce the accuracy 
of state estimation and consequently degrade the control performance of the system. In severe 
cases, it may even lead to observer instability. Therefore, the tuning principle for ∆𝜔௢ is as 
follows: When the system response is in the rising phase (𝑒 is 𝑃), ∆𝜔௢ should be 𝑃 to enable the 
system to track the reference input more rapidly. When the system response is in an overshoot 
state (𝑒 is 𝑁), ∆𝜔௢ should be 𝑁 to ensure that 𝜔௢ does not become excessively large. When the 
system response is in a steady state (𝑒 is 𝑍), ∆𝜔௢ should also take a value tending towards zero to 
maintain system stability. The fuzzy rule table for the tuning of ∆𝜔௢ is shown in Table 2. 

To sum up, the pseudocode of FDS-LADRC is shown in Table 3. 

Table 2. The fuzzy rule table for tuning of ∆𝜔௢ 𝑒 N Z P ∆𝜔௢ N Z P 

4. The stability analysis of the FDS-LADRC 

In this section, the stability analysis of FDS-LADRC is presented. First, the stability of the 
SOLESO is analyzed. Subsequently, the stability of the closed-loop system is discussed. 

4.1. The stability analysis of the SOLESO 

Let the state error of the system be defined as 𝑒௜ = 𝑥௜ − 𝑧௜ (𝑖 = 1, 2). By combining Eq. (8) 
and Eq. (9), the state-space equation for the state error can be derived as: ൤𝑒ሶଵ𝑒ሶଶ൨ = ൤−𝛼ଵ 1−𝛼ଶ 0൨ ቂ𝑒ଵ𝑒ଶቃ + ቂ01ቃ 𝑜. (14)
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Thus, the characteristic equation of Eq. (14) is: 𝑁(𝑠) = 𝑠ଶ + 𝛼ଵ𝑠 + 𝛼ଶ = (𝑠 + 𝜔୭)ଶ. (15)

Given that the bandwidth 𝜔୭ of the SOLESO is always greater than zero, it can be inferred 
from Eq. (15) that all poles are located at −𝜔୭. Consequently, the SOLESO is BIBO stable. 

Table 3. The pseudocode of FDS-LADRC 
Algorithm: FDS-LADRC 
1 Initialization:  
Setting initial parameters for the baseline controller, SOLESO, fuzzy dynamic self-regulators for both 
the controller and SOLESO, sampling time, and operational time. 
2 Main Control Loop:  
The continuous process running at the fixed sampling time. 
While t ≤ operational time: 
2.1 Performing forward control and obtaining the current output y based on the current control quantity U; 
2.2 Through SOLESO estimating system’s states and conducting compensation based on the current 
control quantity U and the current output y; 
2.3 Obtaining the current error e and its derivative eሶ ; 
2.4 Calculating the adaptive adjustments ∆k୮ and ∆ω୭ based on the current error and its derivative by 
fuzzy dynamic regulators; 
2.5 Performing the real-time update of the controller gain k୮ and the observer bandwidth ω୭. 
2.6 t += sampling time 
end while 

4.2. The stability analysis of closed-loop system 

According to Eq. (14) and Eq. (15), the control law can be rewritten as: 

𝑈 = 𝑘௣(𝑅𝑒𝑓 − 𝑧ଵ) − 𝑧ଶ𝑏଴ . (16)

Substituting 𝑧ଵ = 𝑥ଵ + 𝑒ଵ and 𝑧ଶ = 𝑥ଶ + 𝑒ଶ into Eq. (16) and then into Eq. (8), the dynamics 
of 𝑥ଵ becomes: 𝑥ሶଵ = −𝑘௣𝑥ଵ − 𝑘௣𝑒ଵ − 𝑒ଶ + 𝑘௣𝑅𝑒𝑓. (17)

Defining the tracking error as 𝑥෤ଵ = 𝑥ଵ − 𝑅𝑒𝑓, Eq. (17) can be rewritten as: 𝑥෤ሶଵ = −𝑘௣𝑥෤ଵ − 𝑘௣𝑒ଵ − 𝑒ଶ. (18)

Consider the following positive definite Lyapunov function candidate: 𝑉 = 12 𝑥෤ଵଶ + 12 𝑒ଵଶ + 12 𝑒ଶଶ. (19)

Differentiating 𝑉 with respect to time yields: 𝑉ሶ = 𝑥෤ଵ𝑥෤ሶଵ + 𝑒ଵ𝑒ሶଵ + 𝑒ଶ𝑒ሶଶ. (20)

According to Eq. (14), the error dynamics is: 
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൜𝑒ሶଵ = 𝑒ଶ − 𝛼ଵ𝑒ଵ,𝑒ሶଶ = −𝛼ଶ𝑒ଵ − 𝑜. (21)

Substituting Eq. (18) and Eq. (21) into Eq. (20) gives: 𝑉ሶ = −𝑘௣𝑥෤ଵଶ − 𝑘௣𝑥෤ଵ𝑒ଵ − 𝑥෤ଵ𝑒ଶ + 𝑒ଵ𝑒ଶ − 𝛼ଵ𝑒ଵଶ − 𝛼ଶ𝑒ଵ𝑒ଶ − 𝑒ଶ𝑜. (22)

Applying Young’s inequality [43] to bound the cross terms in Eq. (22): 

ห−𝑘௣𝑥෤ଵ𝑒ଵห ≤ 𝑘௣2 (𝑥෤ଵଶ + 𝑒ଵଶ), (23)|−𝑥෤ଵ𝑒ଶ| ≤ 12 (𝑥෤ଵଶ + 𝑒ଶଶ), (24)|𝑒ଵ𝑒ଶ| ≤ 12 (𝑒ଵଶ + 𝑒ଶଶ), (25)|−𝛼ଶ𝑒ଵ𝑒ଶ| ≤ 𝛼ଶ2 (𝑒ଵଶ + 𝑒ଶଶ), (26)|−𝑒ଶ𝑜| ≤ 12 (𝑒ଶଶ + 𝑜ଶ). (27)

Substituting Eq. (23-27) into Eq. (22), we obtain: 

𝑉ሶ ≤ ൬1 − 𝑘௣2 ൰ 𝑥෤ଵଶ + ൤൬1 + 𝑘௣2 ൰ − 𝛼ଵ + 𝛼ଶ2 ൨ 𝑒ଵଶ + ൬3 + 𝛼ଶ2 ൰ 𝑒ଶଶ + 12 𝑜ଶ. (28)

Define the following constants: 𝑐ଵ = ௞೛ିଵଶ , 𝑐ଶ = 𝛼ଵ − ቀଵା௞೛ଶ ቁ − ఈమଶ , and 𝑐ଷ = ఈమାଷଶ . If 𝑘௣ > 1, 𝛼ଵ > ଵା௞೛ାఈమଶ , and 𝛼ଶ > 0, then 𝑐ଵ > 0, 𝑐ଶ > 0, and 𝑐ଷ > 0. Thus, Eq. (28) can be rewritten as: 

𝑉ሶ ≤ −𝑐ଵ𝑥෤ଵଶ − 𝑐ଶ𝑒ଵଶ − 𝑐ଷ𝑒ଶଶ + 12 𝑜ଶ. (29)

Assuming the rate of change of the disturbance 𝑜 is bounded, i.e., |𝑜| ≤ 𝐻, it follows that: 

𝑉ሶ ≤ −𝑐଴𝑉 + 12𝐻ଶ, (30)

where 𝑐଴ = min {𝑐ଵ, 𝑐ଶ, 𝑐ଷ}. 
By the comparison lemma [44], the solution of Eq. (30) satisfies: 

𝑉ሶ (𝑡) ≤ 𝑉(0)𝑒ି௖బ௧ + 𝐻ଶ2𝑐଴ (1 − 𝑒ି௖బ௧). (31)

This indicates that the system states are ultimately uniformly bounded (UUB), Furthermore, if 𝐻 = 0 (i.e., in the absence of disturbance variation), the system is asymptotically stable. 

5. Numerical simulations 

In this section, a number of numerical simulations were conducted in MATLAB 2020b. 
Specifically, we utilized the traditional LADRC, nonlinear ADRC, SMC, a variant of  
FDS-LADRC, named IT2FDS, which adopted interval type-2 fuzzy systems to construct the fuzzy 
dynamic self-regulators, and a state-of-the-art control method named FSFOADRC as benchmarks 
for comparison. The simulated model of the PMSM speed loop is shown in Fig. 5. The model 
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parameters are as follows: rated power 𝑃∗ = 3 kW, stator resistance 𝑅௦ = 0.958 Ω, damping 
coefficient 𝐵௥ = 0.008 N∙m∙s, moment of inertia 𝐽 = 0.003 kg∙m2, 𝑞-axis inductance 𝐿௤ = 12 mH, 
rated speed 𝜔∗ = 1200 rpm, number of pole pairs 𝑛௣ = 4, sampling time 𝑇௦ = 10 μs, 𝑑-axis 
inductance 𝐿ௗ = 5.25 mH, and effective flux linkage Ψ௘௙௙ =0.1827 Wb.  

For the fairness of simulations, the parameters for both the traditional LADRC and 
FDS-LADRC method were set to 𝑘௣ = 50 and 𝜔௢ = 200, respectively. For fuzzy dynamic 
self-regulators, the input domains of the error 𝑒 and its derivative 𝑒ሶ were set to [–200, 1200] and  
[–10000, 10000], respectively, and the output domains of the variation of the control parameter ∆𝑘௣ and the variation of the observer bandwidth ∆𝜔௢ were set to [–10, 10] and [–50, 50], 
respectively. Regarding the nonlinear ADRC, 𝜔௢ was also set as 200. The other parameters were 
adjusted through trial and error for optimal performance, with specific values as follows: the 
velocity factor 𝑟 = 200, the nonlinear factors 𝛼଴ = 0.7, 𝛼ଵ = 0.5, and 𝛼ଶ = 0.8, the filtering 
factors 𝛿଴ = 0.05, 𝛿ଵ = 0.05, 𝛿ଶ = 0.05, and 𝑘௣ = 105. For the SMC, the parameters were also 
adjusted through trial and error for optimal performance, with specific values as follows: the 
sliding mode factor 𝑐 = 60 and the factors of exponential approach law 𝜀 = 200 and 𝑘 = 300. For 
IT2FDS, the upper membership functions of the interval type-2 fuzzy system are identical to those 
of FDS-LADRC, while the lower membership functions are slightly smaller than the upper ones. 
For the FSFOADRC, 𝜔௢ was also set as 200. The other parameters were also adjusted through 
trial and error for optimal performance, with specific values as follows: 𝑘௣ = 210, 𝑘ௗ = 8.5, and 𝛼 = 0.75 (the fractional order of fractional-order ESO). 

 
Fig. 5. The simulated model of the PMSM speed loop 

5.1. Speed comparison under no-load startup conditions (simulation) 

In this subsection, the simulations of speed comparison under no-load startup conditions of 
different methods are reported. At the beginning, the reference speed was assumed to be 500 rpm. 
Subsequently, the reference speed was increased to 1000 rpm at 0.2 s. The speed responses and 
the transient performance metrics are shown in Fig. 6 and Table 4, respectively. 

As can be seen from Fig. 6 and Table 4, when compared with alternative control methods, the 
proposed FDS-LADRC demonstrates satisfactory transient performance under no-load startup 
conditions. It is capable of tracking the reference signal swiftly and smoothly. From a quantitative 
point of view, FDS-LADRC exhibits an overshoot of 13.87%, a peak time of 0.0096 s, and a 
settling time of 0.0219 s. These transient performance metrics outperforms those of its 
counterparts. Specifically, compared with nonlinear ADRC and LADRC, both of which employ 
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fixed parameters, the adaptive fuzzy controller and the adaptive fuzzy LESO in FDS-LADRC 
have the ability to dynamically adjust the corresponding parameters in real time. This adaptive 
feature leads to its superior transient performance. In contrast to IT2FDS, although FDS-LADRC 
utilizes Type-1 fuzzy systems for parameter adjustment, it still achieves a more favorable control 
effect. In comparison with FSFOADRC and SMC, FDS-LADRC continues to deliver more 
desirable transient performance. Notably, due to the chattering phenomenon, the response of SMC 
is subject to certain fluctuations, whereas the response of FDS-LADRC exhibits little fluctuations.  

 
Fig. 6. The speed responses under no-load startup conditions (simulation) 

Table 4. The transient performance metrics under no-load startup conditions (simulation) 
Methods Overshoot / % Peak time / s Settling time / s (∆ = 2 %) 

FDS-LADRC 13.87 0.0096 0.0219 
LADRC 24.69 0.0150 0.0351 
ADRC 27.42 0.0141 0.0295 
IT2FDS 21.23 0.0159 0.0358 

FSFOADRC 19.40 0.0098 0.0228 
SMC 17.81 0.0143 0.0375 

In addition, the control quantities of all the methods under consideration are depicted in Fig. 7. 

 
Fig. 7. The control quantities under no-load startup conditions 

As shown in Fig. 7, the control quantity of FSFOADRC is significantly larger than that of its 
counterparts and exhibits noticeable chattering. We speculate that this phenomenon is attributed 
to the application of fractional calculus. On the other hand, compared with other methods, the 
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control quantity of FDS-LADRC is relatively small and demonstrates a relatively smooth profile. 
This observation implies that the control cost associated with FDS-LADRC is comparatively 
lower. Consequently, we consider that FDS-LADRC has certain potential to be deployed in 
scenarios with limited computational resources, such as certain applications running on embedded 
hardware. 

Moreover, the outputs of fuzzy dynamic self-regulators under no-load startup conditions are 
shown in Fig. 8 and Fig. 9, respectively. 

Please note that due to space limitations, the control quantities of different methods and the 
outputs of fuzzy dynamic self-regulators are demonstrated in this case. 

 
Fig. 8. The output values of ∆𝑘୮ under  
no-load startup conditions (simulation) 

 
Fig. 9. The output values of ∆𝜔୭ under  
no-load startup conditions (simulation) 

5.2. Speed comparison under loaded startup conditions (simulation) 

In this subsection, unlike in Section 5.1, the simulations of speed comparison under loaded 
startup conditions of different methods are reported. Specifically, a load torque of 2 N∙m was 
applied to the rotor of the PMSM at the start stage. Meanwhile, the reference speed was assumed 
to be 500 rpm, and then the speed was increased to 1000 rpm at 0.2 s. The speed responses and 
transient performance metrics of different methods under loaded startup conditions are illustrated 
in Fig. 10 and Table 5, respectively. 

 
Fig. 10. The speed responses under loaded startup conditions (simulation) 

As shown in Fig. 10 and presented in Table 5, FDS-LADRC also obtains satisfactory control 
performance under loaded startup conditions. To be specific, the overshoot, peak time, and settling 
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time of FDS-LADRC are 10.54 %, 0.0123 s, and 0.0245 s, respectively. These transient 
performance metrics are, for the most part, more outstanding than those of its competing methods. 
In addition, when comparing the results under loaded startup conditions with those under no-load 
startup conditions, it can be observed that the overshoots of both methods have decreased, while 
the settling time and peak time of the system have increased to a certain degree. We consider that 
that the following factors may account for these results: When the PMSM is started under loaded 
conditions, the inertia and damping effects exerted by the load can potentially elevate the damping 
ratio of the system. As a consequence, this leads to a reduction in the speed overshoot, but 
simultaneously increases the system’s response time. 

Table 5. The transient performance metrics under loaded startup conditions (simulation) 
Methods Overshoot / % Peak time / s Settling time / s (∆= 2 %) 

FDS-LADRC 10.54 0.0123 0.0245 
LADRC 22.18 0.0171 0.0386 
ADRC 23.15 0.0179 0.0391 
IT2FDS 20.13 0.0169 0.0373 

FSFOADRC 15.87 0.0113 0.0248 
SMC 16.29 0.0147 0.0392 

5.3. Speed comparison under sudden loading and unloading conditions (simulation) 

In this subsection, the simulation models the scenario where the PMSM suddenly experiences 
a load disturbance. The simulation procedure is as follows: First, the PMSM was started under no-
load conditions with a given speed of 500 rpm. At 0.2 s, a sudden load disturbance of 2 N∙m was 
applied to the motor. Subsequently, at 0.3 s, this load was suddenly released. The speed responses 
of different methods under this disturbance scenario are shown in Fig. 11. 

 
Fig. 11. Speed responses under sudden loading and unloading conditions (simulation) 

As shown in Fig. 11, FDS-LADRC demonstrates remarkable disturbance rejection 
capabilities. This enables the output to quickly resynchronize with the reference speed after 
experiencing sudden increases or decreases in load disturbances. Specifically, at 0.2 s, when a 
load disturbance is abruptly introduced, the outputs of the traditional LADRC, ADRC, IT2FDS, 
and FSFOADRC drop to approximately 487 rpm, 484 rpm, 487 rpm, 490 rpm, and 478 rpm, 
respectively. Moreover, they require about 0.05 s, 0.05 s, 0.05 s, 0.025 s, and 0.04 s, respectively, 
to recover to the reference speed. In contrast, the output of FDS-LADRC only decreases to about 
494 rpm and takes approximately 0.025 s to readjust back to the reference speed. Similarly, at 
0.3 s, when the load disturbance is removed, FDS-LADRC demonstrates superior anti-disturbance 
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ability compared to its counterparts. Through comparative analysis of these results, it is evident 
that FDS-LADRC exhibits superior performance and adaptability in resisting load disturbances. 

5.4. Speed comparison under no-load startup conditions with measurement noise  

In this subsection, to assess the anti-noise ability, we carried out a simulation under no-load 
conditions. Specifically, the Gaussian white noise with a noise power of 0.005 and a sample time 
of 0.001 s was introduced into the system output. The speed responses under this noisy condition 
are presented in Fig. 12. 

 
Fig. 12. Speed comparison under no-load startup conditions with measurement noise 

As shown in Fig. 12, when the measurement noise is introduced, the response of FDS-LADRC 
remains confined within approximately [480 rpm, 520 rpm]. In contrast, other control methods 
exhibit wider fluctuation ranges. For instance, the traditional LADRC fluctuates between about 
[450 rpm, 550 rpm], while FSFOADRC varies within about [470 rpm, 530 rpm]. These results 
demonstrate that despite the detrimental effects of measurement noise, the fuzzy dynamic self-
regulators in FDS-LADRC can autonomously and collaboratively adjust parameters under 
uncertainty, enabling superior noise rejection performance. 

6. Real-world experiments 

In this section, with the aim of further demonstrating the effectiveness and superiority of 
FDS-LADRC, we conducted a series of experiments on a real-world experimental platform. Here, 
the traditional LADRC was chosen as the benchmark for comparison. The experimental setup is 
shown in Fig. 13. Additionally, the parameters of the PMSM model employed in the experiment 
are listed as follows: rated power 𝑃∗ = 0.1 kW, rated voltage 𝑈∗ = 24 V, rated current  𝐼∗ = 5.5 A, rated torque 𝑇∗ = 0.32 N∙m, rated speed 𝜔∗ = 1200 rpm, stator resistance  𝑅௦ = 0.3 Ω, moment of inertia 𝐽 = 0.003 kg∙m2, number of pole pairs 𝑛௣ = 4, and line inductance 𝐿 = 0.43 mH. 

Since the real-world experimental platform has different model parameters compared to those 
in the simulation, the controller parameters need to be reset. For both the traditional LADRC and 
FDS-LADRC, the controller parameters are set as 𝑘௣ = 0.3, and the bandwidths of the observer 
are set as 𝜔௢ = 10. For fuzzy dynamic self-regulators, the input domains of the error 𝑒 and its 
derivative 𝑒ሶ are set to [–50, 150] and [–500, 500], respectively, and the output domains of the 
variation of the control parameter ∆𝑘௣ and the variation of the observer bandwidth ∆𝜔௢ are set to 
[–0.05, 0.05] and [–3, 3], respectively. 
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Fig. 13. The real-world experimental setup 

6.1. Speed comparison under no-load startup conditions (experiment) 

Similar to the process of Section 5.1, in this subsection, the PMSM was started under no-load 
conditions, with a reference speed set as 50 rpm at 20 s. Subsequently, the reference speed was 
raised to 100 rpm at 30 s. The speed responses of the two methods are shown in Fig. 14 and 
Fig. 15, respectively. 

 
Fig. 14. The speed response of the traditional LADRC under no-load startup conditions (experiment) 

As shown in Fig. 14 and Fig. 15, under no-load startup conditions, the traditional LADRC 
takes approximately 0.1325 s to reach a steady state at 50 rpm. In contrast, FDS-LADRC achieves 
steady state in just about 0.0485 s. This indicates that FDS-LADRC has a response time 
approximately 0.084 s faster than traditional LADRC, significantly enhancing the system’s 
dynamic response capability. Furthermore, the traditional LADRC method exhibits an overshoot 
of approximately 83.27 %, whereas FDS-LADRC shows an overshoot of only about 32.44 %, 
which is approximately 50.83 % less than that of traditional LADRC. This demonstrates that 
FDS-LADRC achieves higher stability during the control process, effectively reducing the risk of 
system oscillations and instability caused by excessive adjustments, and enabling more precise 
control of motor speed. 

6.2. Speed comparison under loaded startup conditions (experiment) 

Similar to the process of Section 5.2, in this subsection, the PMSM was started under loaded 
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conditions, with a reference speed set as 50 rpm at 20 s. Subsequently, the reference speed was 
raised to 100 rpm at 30 s. The load imposed on the motor is equivalent to 10 % of its rated load, 
i.e., 0.032 N∙m. The speed responses of the two methods are shown in Fig. 16 and Fig. 17, 
respectively. 

 
Fig. 15. The speed response of FDS-LADRC under no-load startup conditions (experiment) 

 
Fig. 16. The speed response of the traditional LADRC under loaded startup conditions (experiment) 

As shown in Fig. 16 and Fig. 17, under loaded startup conditions, the traditional LADRC 
method exhibits an overshoot of about 64.90 % and takes around 0.1425 s to reach steady state. 
In contrast, FDS-LADRC exhibits an overshoot of approximately 24.04 % and reaches steady 
state in just about 0.0545 s. Compared to the no-load startup conditions, both methods show a 
decrease in overshoot when starting under loaded conditions. Specifically, the overshoot of the 
traditional LADRC method decreases by about 18.37 %, while that of FDS-LADRC decreases by 
approximately 8.40 %. Additionally, the time taken to reach steady state increases by about 0.01 s 
for traditional LADRC and 0.006 s for FDS-LADRC. These results align with the phenomena 
observed in the simulations. Overall, FDS-LADRC outperforms traditional LADRC in terms of 
both overshoot and time to reach steady state, demonstrating superior transient performance. 

6.3. Speed comparison under sudden loading and unloading conditions (experiment) 

Similar to the process of Section 5.3, in this subsection, the PMSM was started under no-load 



FUZZY DYNAMIC SELF-TUNING BASED LINEAR ACTIVE DISTURBANCE REJECTION CONTROL FOR PMSM SPEED CONTROL.  
CHUN WANG, WEI ZHENG, SHAODA XIE, JIANJIAN ZHAO 

18 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

conditions, with a reference speed set as 100 rpm. Subsequently, a load torque equivalent to 25 % 
of its rated load, i.e., 0.064 N∙m, was suddenly applied at 20 s. This load torque was then abruptly 
removed at 30 s. The speed responses of the two methods under this load disturbance condition 
are shown in Fig. 18 and Fig. 19, respectively. 

 
Fig. 17. The speed response of FDS-LADRC under loaded startup conditions (experiment) 

 
Fig. 18. The speed response of the traditional LADRC under sudden loading  

and unloading conditions (experiment) 

As shown in Fig. 18 and Fig. 19, there is a significant difference in recovery time to the steady 
state between the traditional LADRC method and FDS-LADRC when subjected to load 
disturbances. Specifically, when a sudden load disturbance is added, the traditional LADRC 
method takes about 4.5 s to return to the steady state, while FDS-LADRC only requires 
approximately 4 s, demonstrating faster recovery. Similarly, when this load disturbance is 
suddenly removed, the traditional LADRC method takes about 6 s to recover, whereas 
FDS-LADRC again only needs around 4 s to return to the steady state. It is noted that although 
FDS-LADRC exhibits slightly larger speed variations during both the addition and removal of the 
load disturbance, we believe this is primarily due to inherent limitations in the hardware (such as 
sensors and mechanical components) during the experiments, which are normal phenomena in a 
real-world experimental environment. Therefore, according to these experimental results, 
FDS-LADRC shows superior disturbance rejection performance when dealing with load 
disturbances. 
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Fig. 19. The speed response of FDS-LADRC under sudden loading  

and unloading conditions (experiment) 

7. Conclusions 

In this paper, a novel control approach, namely FDS-LADRC, is proposed. To be specific, a 
LADRC-based control framework is designed for the PMSM speed loop model. On this basis, two 
fuzzy dynamic self-regulators are designed to adaptively and simultaneously adjust the controller 
parameters and the observer bandwidth. Additionally, the stability of the closed-loop system is 
analyzed. Moreover, the numerical simulation results show that: (1) Under no-load startup 
conditions, compared with the traditional LADRC, nonlinear ADRC, IT2FDS, FSFOADRC, and 
SMC, FDS-LADRC achieves a reduction in overshoot by 10.82 %, 13.55 %, 7.36 %, 5.53 %, and 
3.94 %, respectively, and shortens the settling time by 0.0132 s, 0.0076 s, 0.0139 s, 0.0009 s, and 
0.0156 s, respectively. (2) Under loaded startup conditions, relative to the same set of comparative 
methods, FDS-LADRC reduces the overshoot by 11.64 %, 12.61 %, 9.59 %, 5.33 %, and 5.75 %, 
respectively, while the settling time is decreased by 0.0141 s, 0.0146 s, 0.0128 s, 0.0003 s, and 
0.0147 s, respectively. (3) In the presence of load disturbances, FDS-LADRC exhibits a smoother 
and faster recovery to the steady state compared with the aforementioned control strategies. 
(4) When subject to measurement noise, the response of FDS-LADRC is constrained within a 
narrower fluctuation range. These results collectively indicate that FDS-LADRC enables adaptive 
adjustment of controller parameters and observer bandwidth, which increases the degrees of 
freedom and enhances system flexibility. This not only eliminates the cumbersome manual tuning 
process but also effectively improves the system’s adaptivity, transient performance, disturbance 
rejection capability, and anti-noise ability. Furthermore, real-world experiments yielded results 
similar to those of numerical simulations, which further validate the effectiveness and superiority 
of FDS-LADRC in practical engineering scenarios. 

In the future, we will move from manual fuzzy module design to data-driven autonomy: 
integrating deep neural networks with genetic algorithms for automatic fuzzy rule generation 
(including data-driven rule mapping and redundancy pruning) and introducing reinforcement 
learning with multi-objective rewards to dynamically adjust membership functions, adapting to 
extreme operating conditions. Additionally, we plan to explore hybrid control schemes by 
integrating FDS-LADRC with advanced strategies for coordinated operation. Furthermore, a key 
direction will be to tailor and validate the FDS-LADRC framework for various practical 
engineering applications, such as brake-by-wire systems in electric vehicles, aerospace actuators, 
and so on. 
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