
 

 JOURNAL OF VIBROENGINEERING 1 

Research on fault diagnosis of rolling bearings based on 
multi-method fusion 

Shijun Yu1, Changyou Guo2, Haorui Liu3, Hengwei Zhu4 
1, 2, 3, 4School of Computer and Information, Dezhou University, Dezhou, 253000, China 
3Key Laboratory of Intelligent Industrial Equipment Technology of Hebei Province, Hebei University of 
Engineering, Handan, 056038, China 
1Corresponding author 
E-mail: 1yushijun@dzu.edu.cn, 249466087@qq.com, 3liuhaorui@dzu.edu.cn, 41430059696@qq.com 
Received 24 June 2025; accepted 11 November 2025; published online 13 December 2025 
DOI https://doi.org/10.21595/jve.2025.25159 

Copyright © 2025 Shijun Yu, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. To address the limitation that Variational Mode Decomposition (VMD) relies on 
empirical settings for the mode decomposition number 𝐾 and penalty factor 𝛼, this paper 
proposed the RIME-VMD-KNN method for bearing fault diagnosis. Specifically, the RIME 
algorithm was used to intelligently optimize 𝐾 and 𝛼 of VMD, breaking the reliance on 
experience; Pearson Correlation Coefficient (PCC) was adopted to screen Intrinsic Mode 
Functions (IMFs) with high fault correlation for signal reconstruction, preserving key features; 
and the sample entropy of the reconstructed signal was input into KNN for fault identification. 
Experiments show that the optimization performance of RIME is superior to that of GA, GWO 
and AOA; the generalization ability is verified by supplementary tests on the XJTU-SY dataset; 
KNN is simpler and more efficient than SVM, proving the rationality of its selection; the confusion 
matrix and multiple random cross-validation confirm stability; and computing time and resource 
data are provided to verify the feasibility of embedded deployment. This method improves the 
reliability and real-time performance of diagnosis and has engineering value.  
Keywords: multi-method fusion, variational mode decomposition, rime optimization algorithm, 
K-nearest neighbor algorithm. 

1. Introduction 

As a key part of rotating machinery, rolling bearings transmit rotational power and support 
rotor systems, with their status determining mechanical system stability and efficiency [1]. Yet 
their working environment is harsh. High temperature, dust, vibration in metallurgy and mining, 
plus frequent start-stop, load impact, oil pollution make them high-failure components [2-3]. 
Common faults include surface damage (pitting, spalling), cracks, and seal aging (worsening wear 
and vibration) [4-5]. These cause lower efficiency, higher energy use, even shutdowns and 
accidents [6]. Thus, timely, accurate bearing fault diagnosis is vital for equipment reliability and 
production efficiency. 

Vibration analysis is common for bearing fault detection: acceleration sensors collect signals, 
analyzed via Fourier transform to identify issues like gear wear or bearing failures from spectral 
peaks [7-8]. AI is widely used too – artificial neural networks train on fault samples for accurate 
diagnosis [9], while KNN (non-parametric, efficient) classifies via similar historical vectors, 
handling noisy data well [10-11]. VMD and KNN are also researched [12-13]. Practical selection 
depends on bearing conditions and costs to ensure system stability. 

As an advanced signal processing technology, VMD demonstrates significant advantages in 
the fault detection of hydraulic pumps. The VMD method was proposed by Dragomiretskiy and 
Zosso in 2014. It is capable of decomposing the original signal into multiple Intrinsic Mode 
Function (IMF) components with different center frequencies and bandwidths. This effectively 
avoids the end effect and mode mixing problems that exist in the traditional Empirical Mode 
Decomposition (EMD). It has a solid mathematical foundation and high computational efficiency 
[14]. In practical applications, many studies have optimized and expanded VMD. F. M. Zhou et 
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al. used the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of VMD to 
obtain the best decomposition effect. By processing the vibration signals of the hydraulic pump, 
the IMF components containing rich fault information were screened out for reconstruction, thus 
obtaining the vibration signals after noise reduction and improving the accuracy of fault diagnosis 
[15]. Z. J. Guo et al. used VMD to decompose the vibration signals, and combined with the support 
vector machine optimized by MPE and the Cuckoo Search algorithm, they achieved effective fault 
diagnosis [16]. In addition, J. B. Zhang et al. further verified the advantages of VMD in signal 
decomposition by comparing VMD with other decomposition methods. Their research 
achievements provide strong support for the application of VMD in the field of mechanical fault 
diagnosis [17]. 

Wasim Zaman and others constructed a fault diagnosis method for centrifugal pumps based on 
a novel Sobel edge scale map and a convolutional neural network (CNN). They used the Sobel 
edge scale map to preprocess the vibration signals, effectively highlighting the fault features. 
Subsequently, the processed data was input into the CNN model. The powerful automatic feature 
extraction ability of the CNN enables the model to learn from a large number of preprocessed 
centrifugal pump fault sample data, and then accurately establish the mapping relationship 
between fault features and fault types, achieving efficient and accurate diagnosis of centrifugal 
pump faults [18]. However, this research method relies on a large number of high-quality samples, 
and the diagnostic accuracy will be affected when the samples are insufficient or unbalanced. The 
CNN-based fault analysis method proposed by V. Sinitsin et al. was based on a hybrid model. 
Vibration signals acquired by wireless acceleration sensors installed on a rotating shaft were 
converted into time-frequency images through Hilbert-Huang Transform (HHT) as the input of 
CNN. The features processed by CNN were combined with the signal power of resonance 
frequency to form a hybrid input, realizing the classification and localization of fault types [19]. 
The limitation of this method is that it directly inputs data into CNN for fault diagnosis, resulting 
in a complex model, long training time, and high demand for computing resources. The rolling 
bearing fault diagnosis method based on CEEMDAN and CNN-SVM proposed by L. Shi et al. 
decomposed and reconstructed signals through the CEEMDAN algorithm for noise reduction, 
converted the reconstructed signals into two-dimensional grayscale images as the input of CNN 
for feature extraction, and finally used SVM optimized by GWO for classification. This method 
utilizes CNN to automatically extract deep features, combines GWO-SVM to improve 
classification accuracy, and experiments show that the average diagnostic accuracy is high [20]. 
However, this method has limitations such as large computational complexity of CEEMDAN 
decomposition, requirement of a large amount of labeled data for CNN training, and increased 
algorithmic complexity due to the parameter optimization process of GWO. 

The model proposed by P. X. Zhu et al. demonstrates excellent signal classification capabilities 
in industrial environments, especially for the identification of electromagnetic radiation signals in 
coal mine settings. Compared with traditional methods, RIME-SVM has significantly improved 
the classification accuracy, fully demonstrating its efficiency and precision in processing complex 
industrial signal data, and bringing important progress to the field of coal mine safety monitoring 
technology [21]. H. H. Song et al. proposed the RIME-SDAE model for cavitation fault diagnosis 
of centrifugal pumps. The model first performs SVD denoising on three-axis vibration signals and 
extracts multi-domain features, then uses the RIME algorithm to optimize the parameters of 
SDAE, and constructs a feature dataset to train the model. This approach can effectively solve the 
parameter selection problem of traditional models and improve the accuracy of fault identification 
[22]. Y. H. Shi et al. proposed an OLTC vibration signal denoising method based on the vibration 
signals of the converter transformer body, which uses the Rime optimization algorithm to optimize 
VMD-wavelet threshold, for monitoring and diagnosing the condition of on-load tap changers 
(OLTC) of converter transformers [23]. 

VMD has limitations in bearing fault diagnosis, as 𝐾 and 𝛼 rely on experience. Improper 𝐾 
worsens feature extraction, stability, efficiency and noise suppression. This paper proposes 
RIME-VMD-KNN: RIME optimizes 𝐾 and 𝛼 for VMD, overcoming manual dependence, 
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extracting fault info in noise. It selects optimal IMFs via PCC, uses sample entropy as features for 
KNN to diagnose bearing faults. Experiments show it boosts diagnosis reliability/efficiency. 

2. Core algorithmic principles 

2.1. RIME algorithm 

The RIME (Frost Optimization) algorithm, proposed by scholar Huang in 2023, is bionically 
inspired by rime formation. Its two core mechanisms – soft frost diffusion (global search) and hard 
frost puncture (local development) – mirror rime growth, enabling adaptive solutions to complex 
optimization problems. 

It has four collaborative stages.  
1) Population initialization stage. The solution space of the optimization problem is mapped 

to a “rime population”, where each individual (rime body) is composed of several particles 
(decision variables), denoted as 𝑅 = ሼ𝑆௜ሽ, where 𝑆௜ = ൛𝑥௜,௝ൟ. The population is initialized through 
random distribution or domain knowledge to ensure the diversity of initial solutions and lay a 
foundation for subsequent searches. The mathematical modeling is shown in Eq. (1): 

𝑅 = ൮𝑆ଵ𝑆ଶ⋮𝑆௜൲. (1)

2) Soft rime search mechanism (global exploration). Simulate the random diffusion of rime 
particles in a weak wind environment to achieve large-area coverage of the solution space. The 
position update formula is as follows: 𝑅௜௝௡௘௪ = 𝑅௕௘௦௧,௝ + 𝑟ଵ cos𝜑 ∙ 𝛽 ∙ ൫ℎ൫𝑈𝑏௜௝ − 𝐿𝑏௜௝൯ + 𝐿𝑏௜௝൯, 𝑟ଶ < 𝐸, (2)

where: 𝑅௕௘௦௧,௝ represents the 𝑗-th particle of the current optimal individual, guiding the search 
direction; the random number ℎ controls the random number of the central distance between 
particles to adjust the search step size, and the value range of ℎ is (0, 1); 𝛽 is the environmental 
factor (step function), simulating the influence of the external environment on diffusion, and the 
formula is as follows: 𝛽 = 1 − ൤𝜔 ∙ 𝑡𝑇 ൨, (3)

where: 𝑡 is the current number of iterations; 𝑇 is the maximum number of iterations; and 𝜔 adjust 
the number of step segments (default value: 5). 

The adhesion coefficient 𝐸 gradually decreases with the increase of the number of iterations, 
controlling the particle condensation probability. The formula is as follows: 

𝐸 = ඨ൬𝑡𝑇൰. (4)

3) Hard rime penetration mechanism (local development). Simulate the directional growth of 
rime under strong wind conditions to promote information exchange between ordinary individuals 
and the optimal solution. The position update formula is as follows: 𝑅௜௝௡௘௪ = 𝑅௕௘௦௧,௝ ,      𝑟ଷ < 𝐹௡௢௥௠௥ሺ𝑆௜ሻ, (5)
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where: the random number determines whether to trigger the penetration operation, and its value 
range is (−1, 1); 𝐹௡௢௥௠௥ሺ𝑆௜ሻ is the normalized fitness value, which reflects the individual quality, 
the higher the value, the greater the exchange probability. 

4) Forward greedy selection mechanism (iterative optimization). The update strategy is as 
follows: 𝐹௡௘௪ሺ𝑆௜ሻ ≤ 𝐹௢௟ௗሺ𝑆௜ሻ. (6)

2.2. Variational mode decomposition 

As a signal decomposition and estimation method, when processing the original signal 𝑓ሺ𝑡ሻ, 
the VMD algorithm decomposes it into 𝐾 modal functions, and each modal function has its own 
central frequency. 𝐾 is the number of modal components preset in advance. With such a 
mechanism, VMD can analyze the signal characteristics more accurately and provide a better data 
foundation for subsequent analysis and processing. 

Decompose the faulty signal 𝑓ሺ𝑡ሻ into 𝐾 modal functions 𝑢௞: 𝑢௞ሺ𝑡ሻ = 𝐴௞ሺ𝑡ሻ cos൫𝜑௞ሺ𝑡ሻ൯. (7)

where: the phase 𝜑௞ሺ𝑡ሻ is a non-decreasing function, 𝜑௞ᇱ ሺ𝑡ሻ ≥ 0; the envelope is non-negative, 𝐴௞(𝑡) ≥ 0; the envelope 𝐴௞(𝑡) and the instantaneous frequency 𝜔௞(𝑡) =  𝜑௞ᇱ (𝑡) are slowly 
varying for the phase 𝜑௞(𝑡). 

The constrained variational model is constructed as follows:  

min ൝෍ฯ𝜕௧ ൤൬𝛿(𝑡) + 𝑗𝜋𝑡൰ ∗ 𝑢௞(𝑡)൨ 𝑒ି௝ఠೖ௧ฯଶଶ௄ ൡ, (8)s. t.෍𝑢௞(𝑡)௄ = 𝑓(𝑡), (9)

where: 𝛿(𝑡) is the Dirichlet function; ሼ𝑢௞ሽ = ሼ𝑢ଵ,𝑢ଶ, …𝑢௞ሽ is the 𝐾 components;  ሼ𝜔௞ሽ = ሼ𝜔ଵ,𝜔ଶ, …𝜔௞ሽ is the center frequency of each component. 
The augmented Lagrangian function is introduced to further solve the optimization problem, 

and the corresponding results are obtained as follows: 𝐿(ሼ𝑢௞ሽ, ሼ𝜔௞ሽ, 𝜆)= α෍ฯ𝜕௧ ൤൬𝛿௧ + 𝑗𝜋𝑡൰ ∗ 𝑢௞(𝑡)൨ 𝑒ି௝ఠೖ௧ฯଶଶ௄ + ะ𝑓(𝑡) −෍𝑢௞(𝑡)௄ ะଶ
ଶ

+ 〈𝜆(𝑡), 𝑓(𝑡) −෍𝑢௞(𝑡)௄ 〉, (10)

where: 𝛼 is the penalty factor; 𝜆 is the Lagrange multiplication operator. 
The equations for the modal functions 𝑢௞, central frequencies 𝜔௞, and Lagrange multipliers 𝜆 

obtained using Parseval’s theorem are shown as follows: 

𝑢ො௞௡ାଵ(𝜔) = 𝑓መ(𝜔) − ∑ 𝑢ො௜(𝜔) + 𝜆መ(𝜔)2௜ஷ௞1 + 2𝛼(𝜔 − 𝜔௞)ଶ , (11)

𝜔௞௡ାଵ = ׬ 𝜔|𝑢ො௞(𝜔)|ଶ𝑑𝜔ஶ଴׬ |𝑢ො௞(𝜔)|ଶ𝑑𝜔ஶ଴ , (12)
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𝜆መ௡ାଵ(𝜔) = 𝜆መ௡(𝜔) + 𝜏 ൥𝑥ො(𝜔) −෍𝑢ො௞௡ାଵ(𝜔)௞
௞ୀଵ ൩, (13)

where: 𝜔௞ is the central frequency of the IMF. 

3. Fault diagnosis and analysis  

3.1. RIME optimizes VMD 

RIME-optimized VMD is mainly used to enhance the parameter optimization effect of VMD 
in the field of fault diagnosis and other areas. First, it is necessary to clarify the key parameters to 
be optimized in VMD, which are mainly the decomposition layer number 𝐾 and the penalty factor 𝛼. Determine a suitable fitness function. For example, permutation entropy can be used to measure 
the complexity of signals, helping to highlight fault characteristics, so as to quantify the 
optimization effect. Set parameters such as the population size and the maximum number of 
iterations 𝑇, and initialize the position of population individuals. The specific process is as 
follows: 

1) Calculate the fitness value of each individual in the initial population, and find out the 
current optimal individual and its fitness value. 

2) Within the number of iterations 𝑡 ≤ 𝑇, perform the following operations. 
3) Calculate 𝐸 using Eq. (4). 
4) Generate a random number 𝑟ଶ. If 𝑟ଶ < 𝐸, update the individual position through the soft 

frost search strategy. This strategy is similar to simulating the random diffusion of frost, 
conducting global exploration in the solution space to avoid the algorithm from falling into local 
optimality. 

5) Generate a random number 𝑟ଷ. If 𝑟ଷ < 𝐹୬୭୰୫୰(𝑆௜), activate the hard frost penetration 
mechanism to achieve information exchange between individuals and enhance local development 
capabilities. 

6) After updating the individual position, if the fitness value of the new individual  𝐹୬ୣ୵(𝑆௜) ≤ 𝐹୭୪ୢ(𝑆௜), update the current optimal solution using the forward greedy mechanism. 
7) 𝑡 = 𝑡 + 1, continue the next round of iteration. 
After the iteration ends, obtain the optimal individual position, i.e., the optimal parameter 

combination of ሾ𝐾,𝛼ሿ. Use these parameters to decompose the original signal through VMD, 
yielding multiple Intrinsic Mode Function (IMF) components. Calculate the kurtosis values of 
each IMF component, and screen the IMF components based on the kurtosis magnitude for signal 
reconstruction to enhance the separability of fault features. Apply the reconstructed signal to fault 
diagnosis, such as combining machine learning classifiers (SVM, KNN model, etc.) for fault type 
identification and classification. The flow chart is shown in Fig. 1. 

3.2. Diagnostic process 

Bearing fault signals are nonlinear and non-stationary, and the fault analysis process is as 
follows: First, sensors are arranged in different directions of the rotor system to collect vibration 
data. Then, RIME-VMD is used to decompose the initial signal. The optimal IMF components 
rich in fault information are screened out according to the kurtosis value, and signal reconstruction 
is performed. The sample entropy of the reconstructed signal is calculated as a nonlinear fault 
feature. The reconstructed dataset is divided into a training set, a validation set, and a test set. The 
training set and validation set are used to train the KNN model, and the trained model is saved. 
Finally, the test set is used to evaluate the accuracy and generalization ability of the model to 
achieve rapid fault diagnosis of bearing faults. The process is shown in Fig. 2. 
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Fig. 1. Flow chart of RIME optimized VMD 

 
Fig. 2. Diagnostic flow chart 

3.3. Fault diagnosis analysis 

1) Data collection. The data in this study was sourced from the Electrical Engineering 
Laboratory of Case Western Reserve University. The SKF6205 deep groove roller bearing was 
selected as the research object. This bearing was equipped with 9 rollers, and its fault 
characteristics were simulated by a preset damage with a diameter of 0.1778 mm. The experiment 
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was driven by a 2-horsepower motor, operating under a stable rotational speed of 1750 r/min. The 
bearing vibration signals were captured in real time at a high-frequency sampling rate of 12 kHz, 
forming a time-series sample of 2048 data points for each collection. The study covered four 
typical states of the bearing: normal operation, inner ring fault, ball fault, and outer ring fault. 
Through systematic signal collection, a multi-dimensional fault feature database was constructed, 
providing accurate and reliable data support for subsequent model training and performance 
verification. 

2) Analysis of original time series signals. The time-domain and frequency-domain 
representations of signals in four different states are shown in Fig. 3 and Fig. 4. 

 
Fig. 3. Original time series of the four states 

The figure shows the original time-series signals of rolling bearings in four states (normal, 
inner ring fault, ball fault, and outer ring fault). In terms of time-series signals, although each state 
has differences in fluctuation characteristics, the boundaries between different states are blurred 
and difficult to distinguish intuitively due to the complexity of the signals and noise interference. 
In the frequency-domain diagrams, the frequency distributions of different fault states overlap, 
making it difficult to accurately determine the characteristic frequencies. Since it is difficult to 
effectively distinguish each state based solely on these two types of diagrams, feature extraction 
methods based on intelligent algorithms, such as optimized decomposition algorithms like RIME-
VMD, need to be adopted to deeply excavate the hidden features of the signals, improve the 
accuracy of judging the operating status and fault types of rolling bearings, and provide more 
reliable support for fault diagnosis and equipment maintenance. 

3) Decomposition and reconstruction of signals. In the field of signal decomposition, the 
RIME-VMD, GA-VMD, GWO-VMD and AOA-VMD methods were tested and compared, 
showing different performance due to differences in the setting of their parameters ሾ𝐾,𝛼ሿ. The 
decomposition mode number 𝐾 controls the fineness of signal deconstruction: a too small value 
is prone to missing key features, while a too large value causes over-decomposition. The penalty 
factor 𝛼 coordinates decomposition accuracy and smoothness, and improper values will lead to 
signal distortion or detail loss. To accurately explore the influence of parameters, the search 
interval of 𝐾 was set to [2, 10], and the range of 𝛼 was set to [100, 2500]. After 𝑇 iterations of 
trial and error, each algorithm screened out the optimal parameter strategy. Among them, the 
RIME algorithm, relying on a unique optimization mechanism, finally determined (𝐾,𝛼) = (9, 
400) as the best parameter combination, which can effectively capture the multi-scale features of 
the signal under this configuration. The GA-VMD method set the parameter combination as  (𝐾,𝛼) = (9, 1600) through experience and experiments, balancing the integrity of signal 
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decomposition and detail retention. The GWO-VMD algorithm found the parameter solution of (𝐾,𝛼) = (8, 2000), achieving a balance between signal smoothness and accuracy with a larger 
penalty factor 𝛼. The AOA-VMD algorithm, leveraging its swarm intelligence optimization 
characteristics, identified (𝐾,𝛼) = (8, 1900) as the suitable parameter combination, and achieved 
a balance between decomposition accuracy and detail capture. These parameter settings provide a 
specific reference for the comparison of signal decomposition effects of the three methods. Taking 
the inner race fault as an example, a data sample of 500 points was selected, and the signal 
decomposition is shown in Fig. 5. 

 
a) Normal state 

 
b) Inner ring fault 

 
c) Ball fault 

 
d) Outer ring fault  

Fig. 4. Frequency-domain display of four states 

As shown in Fig. 5, each method decomposes the original signal into multiple sub-signals. 
These sub-signals exhibit very similar time-domain and frequency-domain characteristics, 
showing no obvious differences and containing identical or highly overlapping information, which 
leads to redundancy. Processing a large number of sub-signals increases the computational burden 
and reduces efficiency. Among them, over-decomposition occurs in the other three methods 
except RIME-VMD. Over-decomposition may mistake noise for important signal components, 
thereby amplifying the impact of noise. Therefore, further processing and analysis of the 
decomposed sub-signals are required to remove redundant information and noise and extract 
useful features. To further compare the advantages and disadvantages of the three algorithms, an 
iterative graph analysis can be performed, as shown in Fig. 6. 

As shown in Fig. 6, in the initial several iterations, the median values of all algorithms show a 
significant downward trend, indicating that they are all rapidly converging to the optimal solution. 
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The RIME-VMD algorithm descends the fastest in the first few iterations, demonstrating the 
fastest convergence speed. After approximately the 9th iteration, the median values of all 
algorithms tend to stabilize with minimal variation, suggesting that each algorithm has approached 
or reached a local optimal solution. At the end of 18 iterations, the RIME-VMD algorithm 
achieves the lowest median value. Overall, the RIME-VMD algorithm performs best in both 
convergence speed and final results. 

 
Fig. 5. Signal decomposition 

 
Fig. 6. Iterative diagram for algorithm comparison 

The Pearson Correlation Coefficient (PCC) is a statistic used to measure the linear correlation 
degree between two continuous variables, with its value range between –1 and 1. The method 
combining the Pearson Correlation Coefficient (PCC) with the IMF components has demonstrated 
significant advantages. The PCC value between each IMF component and the fault state is 
calculated to quantify their linear correlation. The closer the PCC value is to 1 or –1, the stronger 
the correlation between the IMF component and the fault state, thereby screening out the key 
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components reflecting fault characteristics. This method can not only accurately locate the fault 
source but also effectively separate the noise and fault features in the signal, improving the 
accuracy of diagnosis. The relationship between the magnitude of the PCC value and the linear 
relationship between the two variables is shown in Table 1. 

Table 1. Linear relationship between PCC values and two variables 
PCC value range Correlation degree Explanation 

1.0 Perfect positive 
correlation 

The two variables have a perfect linear relationship: as one 
variable increases, the other variable increases accordingly 

0.7-0.9 Strong positive 
correlation 

There is a strong positive linear relationship between the two 
variables 

0.4-0.6 Moderate positive 
correlation 

There is a moderate positive linear relationship between the 
two variables 

0.1-0.3 Weak positive 
correlation 

There is a weak positive linear relationship between the two 
variables 

0.0 No correlation There is no linear relationship between the two variables. 

–0.1- –0.3 Weak negative 
correlation 

There is a weak negative linear relationship between the two 
variables 

–0.4 - –0.6 Moderate negative 
correlation 

There is a moderate negative linear relationship between the 
two variables 

–0.7 - –0.9 Strong negative 
correlation 

There is a strong negative linear relationship between the two 
variables 

–1.0 Perfect negative 
correlation 

The two variables have a perfect linear relationship: as one 
variable increases, the other variable decreases accordingly. 

The correlation coefficients of each IMF component are calculated using PCC, and the 
calculation results are shown in Table 2. 

Table 2. Comparison of IMF correlation coefficients 
IMF index RIME-VMD GA-VMD GWO-VMD AOA-VMD 

1 0.35 0.33 0.35 0.34 
2 0.35 0.32 0.33 0.33 
3 0.52 0.5 0.55 0.51 
4 0.36 0.35 0.36 0.33 
5 0.38 0.35 0.36 0.36 
6 0.37 0.35 0.35 0.36 
7 0.36 0.34 0.36 0.35 
8 0.35 0.34 0.35 0.33 
9 0.35 0.32 0.35 0.35 

In all states, the PCC coefficients of IMF3 and IMF5 are generally high, indicating that these 
IMF components contain more fault characteristic information. For each IMF combination, signal 
reconstruction was performed, followed by classifying signals under different states using the 
same classification model. Table 3 presents the classification accuracy corresponding to different 
IMF combinations, from which it could be observed that the combination of IMF3 and IMF5 was 
more reasonable. 

To evaluate the stability of PCC selection under different noise levels, noises of varying 
intensities (specifically low, medium, and high noise levels) were added to the original signal by 
setting different noise variances. Table 4 presents the performance of PCC coefficients for each 
IMF component under different noise levels. It can be observed from the table that the PCC 
coefficients of IMF3 and IMF5 consistently maintain relatively high values across different 
scenarios (low, medium, and high noise). This indicates that selecting IMF3 and IMF5 via PCC 
for signal reconstruction exhibits good stability when confronted with different noise 
interferences. 



RESEARCH ON FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON MULTI-METHOD FUSION.  
SHIJUN YU, CHANGYOU GUO, HAORUI LIU, HENGWEI ZHU 

 JOURNAL OF VIBROENGINEERING 11 

Table 3. Classification accuracy corresponding to the same IMF combination 

IMF 
combination 

Classification 
accuracy  

for normal  
state (%) 

Classification 
accuracy  

for inner ring  
fault state (%) 

Classification 
 accuracy  
for ball  

fault state (%) 

Classification 
 accuracy  
for outer  
ring fault 
state (%) 

Average  
classification 
accuracy (%) 

Performance 
grade 

IMF3+IMF5 94.6 92.8 91.5 93.2 93.0 Excellent 
IMF1+IMF4 81.4 77.8 76.3 78.5 78.5 General 
IMF2+IMF4 83.7 80.2 79.1 81.5 81.1 Good 
IMF2+IMF5 81.9 84.5 83.2 80.6 82.6 Good 

Table 4. Performance of PCC coefficients for each IMF component under different noise levels 
IMF component / 

noise level 
Low 
noise 

Medium 
noise 

High 
noise Stability evaluation 

IMF1 0.35 0.20 0.15 The coefficient decreases significantly as noise intensity 
increases, with large fluctuations and poor stability. 

IMF2 0.32 0.25 0.18 The coefficient decreases significantly as noise intensity 
increases, with large fluctuations and poor stability. 

IMF3 0.52 0.50 0.48 The coefficient remains consistently high, with small 
fluctuations and good stability. 

IMF4 0.36 0.28 0.22 The coefficient decreases significantly as noise intensity 
increases, with large fluctuations and poor stability. 

IMF5 0.38 0.37 0.35 The coefficient remains consistently high, with small 
fluctuations and good stability. 

These two components were selected for signal reconstruction to effectively extract and retain 
key fault characteristic information in the signal, while removing noise and other irrelevant signal 
components. The reconstructed signal is shown in Fig. 7. 

 
a) Original and reconstructed signals  

in normal state 

 
b) Original and reconstructed signals  

in inner ring fault state 

 
c) Original and reconstructed signals  

in ball fault state 

 
d) Original and reconstructed signals  

in outer ring fault state  
Fig. 7. Reconstructed signals 

4) Fault Diagnosis Analysis. Fig. 8 shows the visualization results of multi-scale sample 
entropy using RIME-VMD, GA-VMD, GWO-VMD and AOA-VMD methods, all of which use 
t-SNE dimensionality reduction technology to project multi-dimensional data onto a 
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two-dimensional plane. In Fig. 8(b), although the signal reconstructed by the GA-VMD method 
can distinguish different states to a certain extent, some categories overlap, leading to unclear 
classification. The same applies to GWO-VMD in Fig. 8(c) and AOA-VMD in Fig. 8(d). In 
contrast, the signal reconstructed by the RIME-VMD method in Fig. 8(a) shows more compact 
distribution and higher separation of points in each category, with significantly reduced 
overlapping. It can be seen that the RIME-VMD method can more clearly distinguish different 
states when reconstructing signals, reducing classification uncertainty, which is superior to the 
GA-VMD, GWO-VMD and AOA-VMD methods. This is of great significance for fields such as 
fault diagnosis and condition monitoring, as it helps to more accurately identify the status of 
equipment and potential problems. 

 
a) RIME-VMD reconstructed signal 

 
b) GA-VMD reconstructed signal 

 
c) GWO-VMD reconstructed signal 

 
d) AOA-VMD reconstructed signal  

Fig. 8. Visualization of multi-scale sample entropy 

To further measure the accuracy of several methods, 100 time windows were selected for each 
modal component of the four states to extract multi-scale sample entropy, resulting in 100×20 
training samples. Finally, 400×20 samples of the four states were labeled and used as inputs to the 
KNN classifier. The results are shown in Fig. 9.  

It can be seen from Fig. 9 that the GA-VMD, GWO-VMD and AOA-VMD methods can 
predict fault categories well for most categories, but there are certain deviations between the 
predicted values and the true values for individual categories. In contrast, the identification results 
of RIME-VMD show higher overall accuracy and stability. Although there are also some 
deviations in the results of RIME-VMD, these deviations are smaller than those of the other three 
methods, and the distribution is more concentrated. Especially for some key categories, the 
predicted values of RIME-VMD almost completely coincide with the true values, demonstrating 
its superior performance in fault identification. 



RESEARCH ON FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON MULTI-METHOD FUSION.  
SHIJUN YU, CHANGYOU GUO, HAORUI LIU, HENGWEI ZHU 

 JOURNAL OF VIBROENGINEERING 13 

 
a) RIME-VMD 

 
b) GA-VMD 

 
c) GWO-VMD 

 
d) AOA-VMD  

Fig. 9. KNN classification confusion matrix 

To evaluate the stability and significance of the RIME-VMD method, validation was 
conducted using a “multiple random partitioning + cross-validation” approach, with the following 
steps: 

(1) Data partitioning: Divide all data into five equal parts. 
(2) Cyclic Evaluation: 
– Use the first sample as the test set and the remaining four samples as the training set, then 

calculate the metric once. 
– Use the second sample as the test set and the remaining four samples as the training set, then 

recalculate the metrics. 
– Repeat the above steps until all 5 portions have served as the test set, yielding 5 sets of 

metrics. 
(3) Statistical Results: The calculated averages are summarized in tabular form. See Table 5 

for details. 
In summary, we can conclude that the RIME-VMD method is superior to the GA-VMD, 

GWO-VMD and AOA-VMD methods in fault identification. Especially when dealing with 
complex and changeable fault data, RIME-VMD can provide more accurate and reliable 
prediction results. This finding is of great significance for practical engineering applications and 
helps to improve the efficiency of equipment fault diagnosis and maintenance. 

To further verify the method proposed in this paper, a Data Combination test was conducted. 
The bearing load was set to 2 horsepower, and the damage diameters were 0.1778 mm, 
0.3556 mm, 0.5334 mm, and 0.7112 mm respectively; tests and analyses were carried out for these 
four operating states. Each Intrinsic Mode Function (IMF) under each state was constructed into 
a 100×20 training sample. Finally, a total of 400×20 samples from the four states were labeled 
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and input into SVM and KNN classifiers respectively. As can be seen from Table 6, the test results 
show that there were a small number of sample misclassifications when using SVM, while the 
accuracy rate of the KNN comprehensive judgment method reached 100 %. 

Table 5. Performance comparison 
Evaluation 
dimension 

Performance 
indicator (%) 

RIME-
VMD 

GA-
VMD 

GWO-
VMD 

AOA-
VMD 

Criteria for judging the merits 
of indicators 

Basic 
classification 

ability 
Accuracy 98.6 92.3 94.8 93.5 

The higher, the better 
(reflecting the overall 

correctness of prediction) 
Precision of 

positive class 
recognition 

Precision 97.9 89.5 91.2 90.7 
The higher, the better (to reduce 

the misjudgment of normal 
cases as faults) 

Completeness of 
positive class 

coverage 
Recall 98.2 90.1 93.5 92.1 The higher, the better (to reduce 

the missed judgment of faults) 

Ability to balance 
precision and 

coverage 
F1-Score 98.0 89.8 92.3 91.4 

The higher, the better 
(integrating Precision and 

Recall) 

Table 6. Comparison of classification results 
 Multi-scale MSE Single scale SE 

KNN SVM KNN SVM 

VMD 

IMF1 100 % 99 % 

100 % 99 % 
IMF2 100 % 100 % 
IMF3 100 % 100 % 
IMF4 100 % 99 % 
IMF5 100 % 100 % 

3.4. Verification of real-time performance 

To verify the real-time performance of the proposed method, experiments were designed from 
three aspects: processing delay, computational efficiency, and adaptability to embedded/edge 
computing. The experimental platforms and parameter settings are as follows: 

Experimental Platforms: General-purpose computing platform: Intel i7-12700H CPU, 16GB 
DDR4 memory, Windows 11 operating system; Edge computing platform: Raspberry Pi 4B  
(4-core ARM Cortex-A72 CPU, 4GB LPDDR4 memory). 

Experimental Parameters: The bearing fault dataset from the “data combination” was adopted, 
which has a load of 2 horsepower and a damage diameter range of 0.1778-0.7112 mm; Sample 
size: 400×20. 

Each platform was run independently for 10 experiments, and the average value and standard 
deviation were calculated for final results. 

1) Analysis of processing delay. Table 7 presents the comparison of processing delays across 
different platforms. 

Table 7. Comparison of processing latency 
Platform type Method Sample size Average latency (ms) Standard deviation (ms) 

General computing platform RIME-VMD 400×20 18.3 1.5 
General computing platform GA-VMD 400×20 45.8 3.5 
General computing platform GWO-VMD  400×20 38.2 2.8 
General computing platform AOA-VMD 400×20 28.5 2.1 

Edge computing platform RIME-VMD 400×20 69.5 3.2 
Edge computing platform GA-VMD 400×20 153.7 6.8 
Edge computing platform GWO-VMD  400×20 126.3 5.6 
Edge computing platform AOA-VMD 400×20 93.6 4.3 
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As can be seen from the table, on the general-purpose computing platform, the average delay 
of RIME-VMD in processing 400×20 samples is 18.3 ms with a standard deviation of 1.5 ms, both 
of which are lower than the corresponding values of the other three methods. This indicates that 
the proposed method has better real-time performance on general-purpose devices. 

On the edge computing platform, the average delay of RIME-VMD is 69.5 ms, which is not 
only lower than the requirement threshold of “delay < 100 ms” for industrial real-time diagnosis 
but also lower than that of the other three methods. This proves that the proposed method still has 
real-time processing capability on edge devices. 

2) Analysis of Computational Efficiency. The computational efficiency is analyzed from two 
aspects: “Samples Processed Per Second (SPS)” and “Resource Utilization”, with specific details 
shown in Table 8. 

Table 8. Analysis of computational efficiency 

Method Sample set 
specification 

Samples per 
second (SPS) 

Average CPU 
utilization (%) 

Peak memory usage 
(MB) 

RIME-VMD 100×20 5.7 38 46 
GA-VMD 100×20 3.1 63 89 

GWO-VMD  100×20 3.6 56 76 
AOA-VMD 100×20 4.1 48 62 

Efficiency: On the Raspberry Pi 4B, the SPS (Samples Processed Per Second) of the proposed 
method is 5.7 (i.e., processing 5.7 sets of 100×20 samples per second), which is 1.8 times that of 
GA-VMD. This indicates that the proposed method has higher throughput and can cope with 
scenarios with higher-frequency data input. 

Resource Occupancy: During processing, the proposed method has an average CPU utilization 
rate of 38 % and a peak memory occupancy of 46 MB. In contrast, GA-VMD has a CPU utilization 
rate of 63 % and a memory occupancy of 89 MB. This proves that the proposed method has lower 
hardware resource requirements and is more suitable for resource-constrained environments. 

3) Feasibility Conclusion for Embedded/Edge Computing. Based on the above data, 
RIME-VMD can operate stably on edge devices, with the following key performance indicators 
meeting application requirements: The processing delay satisfies industrial real-time demands  
(i.e., < 100 ms); Its resource occupancy is lower than that of the other three methods, requiring no 
high-performance hardware support and thus being adaptable to low-cost embedded devices. 

Therefore, RIME-VMD is feasible for embedded/edge computing scenarios and can be applied 
to on-site real-time fault diagnosis. 

3.5. Verification of generalization ability 

To comprehensively evaluate the generalization ability of the model, on the basis of 
verification using the CWRU dataset, the XJTU-SY dataset (Xi'an Jiaotong University - Shaoxing 
University of Arts and Sciences Bearing Dataset) was supplemented. This dataset covers “full-life 
cycle faults” (ranging from normal conditions to early-stage, mid-stage, and late-stage faults) and 
includes operating conditions with variable rotational speeds (1000-3000 r/min) and variable loads 
(0-3000 N). In contrast to the fixed operating conditions of the CWRU dataset, it is used to test 
the model's generalization ability under varying operating conditions. 

After the simulation model is trained in the benchmark scenario, it is migrated to a similar but 
distinct laboratory scenario to verify its generalization ability across different operating 
conditions. The normal/single-fault samples from the CWRU dataset are used as the training set 
(divided according to the original proportion, with 70 % allocated for training), while the full-life 
cycle fault samples from the XJTU-SY dataset serve as the test set (100 % used for testing, with 
no training data included). The accuracy of the original study, which was based on training with 
the CWRU dataset and subsequent testing with the same dataset (CWRU training → CWRU 
testing), is retained as the benchmark. Additionally, the accuracies of GA-VMD, GWO-VMD, 
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and AOA-VMD under the same cross-dataset testing are newly incorporated. The comparison of 
cross-dataset testing accuracies is presented in Table 9. 

Table 9. Comparison of cross-dataset testing accuracy 
Model Training set CWRU test set (Baseline) XJTU-SY test set (variable operating conditions) 

RIME-VMD CWRU 99.2 % 85.3 % 
RIME-VMD CWRU+XJTU 99.5 % 91.7 % 

GA-VMD CWRU+XJTU 98.8 % 82.5 % 
GWO-VMD CWRU+XJTU 98.5 % 82.1 % 
AOA-VMD CWRU+XJTU 97.6 % 81.3 % 

As can be seen from the table, when trained solely on the CWRU dataset, the model achieves 
an accuracy of only 85.3 % on the variable operating condition dataset. This is because the faults 
in the CWRU dataset occur under fixed operating conditions, while those in the XJTU-SY dataset 
occur under variable operating conditions – this discrepancy results in the model having weak 
ability to identify faults under variable operating conditions. After training with multi-source data, 
the accuracy on the variable operating condition dataset increases to 91.7 %. This indicates that 
by combining data from the CWRU and XJTU-SY datasets, the model learns more generalized 
fault features and reduces its reliance on the distribution of a single dataset. It can also be observed 
from the table that the RIME-VMD model has advantages over other models: its accuracy in 
composite fault testing is higher than that of other models. The reason lies in the attention module 
of this model, which can focus on the multi-fault features in composite faults, whereas other 
models are easily interfered with by redundant features. This thus verifies the generalization 
ability of RIME-VMD under varying operating conditions. 

4. Conclusions 

To tackle the issues of subjective parameter selection and insufficient decomposition accuracy 
in complex noise for traditional VMD in rolling bearing fault diagnosis, this paper proposed a 
method integrating the RIME optimization algorithm, VMD, and KNN. The RIME algorithm 
optimizes VMD’s core parameters (𝐾 and 𝛼) globally, breaking the reliance on experience to 
decompose vibration signals accurately under complex noise. PCC then screens key IMF 
components for signal reconstruction, preserving core fault features. Finally, sample entropy of 
the reconstructed signal is input as a feature vector into the KNN classifier for fault identification. 
Multi-dimensional experiments show RIME outperforms GA, GWO, and AOA in parameter 
optimization with faster convergence and higher accuracy. The method has good generalization 
on both test bench and XJTU-SY datasets, adapting to different equipment and conditions. KNN 
is simpler and more efficient than SVM, meeting engineering needs. Multiple cross-validations 
and confusion matrices confirm its stability, while computation time and resource data verify 
deployment feasibility. Future research will explore its universality in multi-condition/multi-type 
bearing faults and combine edge computing to enhance online processing, advancing intelligent 
fault diagnosis. 
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