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Abstract. To address the limitation that Variational Mode Decomposition (VMD) relies on
empirical settings for the mode decomposition number K and penalty factor «, this paper
proposed the RIME-VMD-KNN method for bearing fault diagnosis. Specifically, the RIME
algorithm was used to intelligently optimize K and a of VMD, breaking the reliance on
experience; Pearson Correlation Coefficient (PCC) was adopted to screen Intrinsic Mode
Functions (IMFs) with high fault correlation for signal reconstruction, preserving key features;
and the sample entropy of the reconstructed signal was input into KNN for fault identification.
Experiments show that the optimization performance of RIME is superior to that of GA, GWO
and AOA,; the generalization ability is verified by supplementary tests on the XJTU-SY dataset;
KNN is simpler and more efficient than SVM, proving the rationality of its selection; the confusion
matrix and multiple random cross-validation confirm stability; and computing time and resource
data are provided to verify the feasibility of embedded deployment. This method improves the
reliability and real-time performance of diagnosis and has engineering value.

Keywords: multi-method fusion, variational mode decomposition, rime optimization algorithm,
K-nearest neighbor algorithm.

1. Introduction

As a key part of rotating machinery, rolling bearings transmit rotational power and support
rotor systems, with their status determining mechanical system stability and efficiency [1]. Yet
their working environment is harsh. High temperature, dust, vibration in metallurgy and mining,
plus frequent start-stop, load impact, oil pollution make them high-failure components [2-3].
Common faults include surface damage (pitting, spalling), cracks, and seal aging (worsening wear
and vibration) [4-5]. These cause lower efficiency, higher energy use, even shutdowns and
accidents [6]. Thus, timely, accurate bearing fault diagnosis is vital for equipment reliability and
production efficiency.

Vibration analysis is common for bearing fault detection: acceleration sensors collect signals,
analyzed via Fourier transform to identify issues like gear wear or bearing failures from spectral
peaks [7-8]. Al is widely used too — artificial neural networks train on fault samples for accurate
diagnosis [9], while KNN (non-parametric, efficient) classifies via similar historical vectors,
handling noisy data well [10-11]. VMD and KNN are also researched [12-13]. Practical selection
depends on bearing conditions and costs to ensure system stability.

As an advanced signal processing technology, VMD demonstrates significant advantages in
the fault detection of hydraulic pumps. The VMD method was proposed by Dragomiretskiy and
Zosso in 2014. It is capable of decomposing the original signal into multiple Intrinsic Mode
Function (IMF) components with different center frequencies and bandwidths. This effectively
avoids the end effect and mode mixing problems that exist in the traditional Empirical Mode
Decomposition (EMD). It has a solid mathematical foundation and high computational efficiency
[14]. In practical applications, many studies have optimized and expanded VMD. F. M. Zhou et
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al. used the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of VMD to
obtain the best decomposition effect. By processing the vibration signals of the hydraulic pump,
the IMF components containing rich fault information were screened out for reconstruction, thus
obtaining the vibration signals after noise reduction and improving the accuracy of fault diagnosis
[15].Z.]. Guo et al. used VMD to decompose the vibration signals, and combined with the support
vector machine optimized by MPE and the Cuckoo Search algorithm, they achieved effective fault
diagnosis [16]. In addition, J. B. Zhang et al. further verified the advantages of VMD in signal
decomposition by comparing VMD with other decomposition methods. Their research
achievements provide strong support for the application of VMD in the field of mechanical fault
diagnosis [17].

Wasim Zaman and others constructed a fault diagnosis method for centrifugal pumps based on
a novel Sobel edge scale map and a convolutional neural network (CNN). They used the Sobel
edge scale map to preprocess the vibration signals, effectively highlighting the fault features.
Subsequently, the processed data was input into the CNN model. The powerful automatic feature
extraction ability of the CNN enables the model to learn from a large number of preprocessed
centrifugal pump fault sample data, and then accurately establish the mapping relationship
between fault features and fault types, achieving efficient and accurate diagnosis of centrifugal
pump faults [18]. However, this research method relies on a large number of high-quality samples,
and the diagnostic accuracy will be affected when the samples are insufficient or unbalanced. The
CNN-based fault analysis method proposed by V. Sinitsin et al. was based on a hybrid model.
Vibration signals acquired by wireless acceleration sensors installed on a rotating shaft were
converted into time-frequency images through Hilbert-Huang Transform (HHT) as the input of
CNN. The features processed by CNN were combined with the signal power of resonance
frequency to form a hybrid input, realizing the classification and localization of fault types [19].
The limitation of this method is that it directly inputs data into CNN for fault diagnosis, resulting
in a complex model, long training time, and high demand for computing resources. The rolling
bearing fault diagnosis method based on CEEMDAN and CNN-SVM proposed by L. Shi et al.
decomposed and reconstructed signals through the CEEMDAN algorithm for noise reduction,
converted the reconstructed signals into two-dimensional grayscale images as the input of CNN
for feature extraction, and finally used SVM optimized by GWO for classification. This method
utilizes CNN to automatically extract deep features, combines GWO-SVM to improve
classification accuracy, and experiments show that the average diagnostic accuracy is high [20].
However, this method has limitations such as large computational complexity of CEEMDAN
decomposition, requirement of a large amount of labeled data for CNN training, and increased
algorithmic complexity due to the parameter optimization process of GWO.

The model proposed by P. X. Zhu et al. demonstrates excellent signal classification capabilities
in industrial environments, especially for the identification of electromagnetic radiation signals in
coal mine settings. Compared with traditional methods, RIME-SVM has significantly improved
the classification accuracy, fully demonstrating its efficiency and precision in processing complex
industrial signal data, and bringing important progress to the field of coal mine safety monitoring
technology [21]. H. H. Song et al. proposed the RIME-SDAE model for cavitation fault diagnosis
of centrifugal pumps. The model first performs SVD denoising on three-axis vibration signals and
extracts multi-domain features, then uses the RIME algorithm to optimize the parameters of
SDAE, and constructs a feature dataset to train the model. This approach can effectively solve the
parameter selection problem of traditional models and improve the accuracy of fault identification
[22]. Y. H. Shi et al. proposed an OLTC vibration signal denoising method based on the vibration
signals of the converter transformer body, which uses the Rime optimization algorithm to optimize
VMD-wavelet threshold, for monitoring and diagnosing the condition of on-load tap changers
(OLTC) of converter transformers [23].

VMD has limitations in bearing fault diagnosis, as K and a rely on experience. Improper K
worsens feature extraction, stability, efficiency and noise suppression. This paper proposes
RIME-VMD-KNN: RIME optimizes K and a for VMD, overcoming manual dependence,
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extracting fault info in noise. It selects optimal IMFs via PCC, uses sample entropy as features for
KNN to diagnose bearing faults. Experiments show it boosts diagnosis reliability/efficiency.

2. Core algorithmic principles
2.1. RIME algorithm

The RIME (Frost Optimization) algorithm, proposed by scholar Huang in 2023, is bionically
inspired by rime formation. Its two core mechanisms — soft frost diffusion (global search) and hard
frost puncture (local development) — mirror rime growth, enabling adaptive solutions to complex
optimization problems.

It has four collaborative stages.

1) Population initialization stage. The solution space of the optimization problem is mapped
to a “rime population”, where each individual (rime body) is composed of several particles
(decision variables), denoted as R = {S;}, where S; = {xi, j}. The population is initialized through
random distribution or domain knowledge to ensure the diversity of initial solutions and lay a
foundation for subsequent searches. The mathematical modeling is shown in Eq. (1):

5
R=| (1)
S;

2) Soft rime search mechanism (global exploration). Simulate the random diffusion of rime
particles in a weak wind environment to achieve large-area coverage of the solution space. The
position update formula is as follows:

Rlnjew = Rbest,j + r CosQ - B . (h(UbU - Lb’-]) + Lb’-])’ T < E, (2)

where: R, ; represents the j-th particle of the current optimal individual, guiding the search
direction; the random number h controls the random number of the central distance between
particles to adjust the search step size, and the value range of h is (0, 1); § is the environmental
factor (step function), simulating the influence of the external environment on diffusion, and the
formula is as follows:

go1 [t (3)

w - t]
where: t is the current number of iterations; T is the maximum number of iterations; and w adjust
the number of step segments (default value: 5).

The adhesion coefficient E gradually decreases with the increase of the number of iterations,
controlling the particle condensation probability. The formula is as follows:

E= (%) “4)

3) Hard rime penetration mechanism (local development). Simulate the directional growth of
rime under strong wind conditions to promote information exchange between ordinary individuals
and the optimal solution. The position update formula is as follows:

Rinjew = Rbest,j' r3 < Fnormr(si)’ (5)
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where: the random number determines whether to trigger the penetration operation, and its value
range is (—1, 1); F™"™™7(S;) is the normalized fitness value, which reflects the individual quality,
the higher the value, the greater the exchange probability.

4) Forward greedy selection mechanism (iterative optimization). The update strategy is as
follows:

Fnew(si) < Fold (Si)- (6)
2.2. Variational mode decomposition

As a signal decomposition and estimation method, when processing the original signal f(t),
the VMD algorithm decomposes it into K modal functions, and each modal function has its own
central frequency. K is the number of modal components preset in advance. With such a
mechanism, VMD can analyze the signal characteristics more accurately and provide a better data
foundation for subsequent analysis and processing.

Decompose the faulty signal f(t) into K modal functions u:

u(t) = Ak(t) cos(gak(t)). (7
where: the phase ¢ (t) is a non-decreasing function, ¢, (t) = 0; the envelope is non-negative,
Ay (t) = 0; the envelope Ax(t) and the instantaneous frequency wy(t) = @ (t) are slowly
varying for the phase ¢ (t).
The constrained variational model is constructed as follows:
J ontll’
min {Z 0, [(6(0 + —) * uk(t)] e Jwrt } ®)
4 mt 5

. t.z w(t) = F(©), )

K

where: 6(t) is the Dirichlet function; {u;} = {uy,uy, ...u;} is the K components;
{wi} = {w1, Wy, ... 0y} is the center frequency of each component.

The augmented Lagrangian function is introduced to further solve the optimization problem,
and the corresponding results are obtained as follows:

L ({uk}’ {wk}: /1)

= (xZ 0; [<6t + #) * uk(t)] e~ okt

ZOVIGEDRMO)

2

2
+
2

O =) u®

K

(10)

2

where: « is the penalty factor; 4 is the Lagrange multiplication operator.
The equations for the modal functions u;, central frequencies wy, and Lagrange multipliers 1
obtained using Parseval’s theorem are shown as follows:

@) = () + 22 (i

iy (w) = g
1+ 2a(w — wy)?

fowwlﬁk(w)lzdw

[Pl (@) Pde

w;ﬁl —

(12)
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k
A (w) = M(w) + 7|2(0) - Z ﬁﬁ“(w)l, (13)

k=1

where: wy, is the central frequency of the IMF.
3. Fault diagnosis and analysis
3.1. RIME optimizes VMD

RIME-optimized VMD is mainly used to enhance the parameter optimization effect of VMD
in the field of fault diagnosis and other areas. First, it is necessary to clarify the key parameters to
be optimized in VMD, which are mainly the decomposition layer number K and the penalty factor
a. Determine a suitable fitness function. For example, permutation entropy can be used to measure
the complexity of signals, helping to highlight fault characteristics, so as to quantify the
optimization effect. Set parameters such as the population size and the maximum number of
iterations T, and initialize the position of population individuals. The specific process is as
follows:

1) Calculate the fitness value of each individual in the initial population, and find out the
current optimal individual and its fitness value.

2) Within the number of iterations t < T, perform the following operations.

3) Calculate E using Eq. (4).

4) Generate a random number 1,,. If 1, < E, update the individual position through the soft
frost search strategy. This strategy is similar to simulating the random diffusion of frost,
conducting global exploration in the solution space to avoid the algorithm from falling into local
optimality.

5) Generate a random number 5. If r; < F"°'™1(S;), activate the hard frost penetration
mechanism to achieve information exchange between individuals and enhance local development
capabilities.

6) After updating the individual position, if the fitness value of the new individual
Frew(S;) < Fq4(S;), update the current optimal solution using the forward greedy mechanism.

7) t =t + 1, continue the next round of iteration.

After the iteration ends, obtain the optimal individual position, i.e., the optimal parameter
combination of [K,a]. Use these parameters to decompose the original signal through VMD,
yielding multiple Intrinsic Mode Function (IMF) components. Calculate the kurtosis values of
each IMF component, and screen the IMF components based on the kurtosis magnitude for signal
reconstruction to enhance the separability of fault features. Apply the reconstructed signal to fault
diagnosis, such as combining machine learning classifiers (SVM, KNN model, etc.) for fault type
identification and classification. The flow chart is shown in Fig. 1.

3.2. Diagnostic process

Bearing fault signals are nonlinear and non-stationary, and the fault analysis process is as
follows: First, sensors are arranged in different directions of the rotor system to collect vibration
data. Then, RIME-VMD is used to decompose the initial signal. The optimal IMF components
rich in fault information are screened out according to the kurtosis value, and signal reconstruction
is performed. The sample entropy of the reconstructed signal is calculated as a nonlinear fault
feature. The reconstructed dataset is divided into a training set, a validation set, and a test set. The
training set and validation set are used to train the KNN model, and the trained model is saved.
Finally, the test set is used to evaluate the accuracy and generalization ability of the model to
achieve rapid fault diagnosis of bearing faults. The process is shown in Fig. 2.
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Output the optimal [ K] KNN Fault Classification
parameters
Fig. 1. Flow chart of RIME optimized VMD Fig. 2. Diagnostic flow chart

3.3. Fault diagnosis analysis

1) Data collection. The data in this study was sourced from the Electrical Engineering
Laboratory of Case Western Reserve University. The SKF6205 deep groove roller bearing was
selected as the research object. This bearing was equipped with 9 rollers, and its fault
characteristics were simulated by a preset damage with a diameter of 0.1778 mm. The experiment
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was driven by a 2-horsepower motor, operating under a stable rotational speed of 1750 r/min. The
bearing vibration signals were captured in real time at a high-frequency sampling rate of 12 kHz,
forming a time-series sample of 2048 data points for each collection. The study covered four
typical states of the bearing: normal operation, inner ring fault, ball fault, and outer ring fault.
Through systematic signal collection, a multi-dimensional fault feature database was constructed,
providing accurate and reliable data support for subsequent model training and performance
verification.

2) Analysis of original time series signals. The time-domain and frequency-domain
representations of signals in four different states are shown in Fig. 3 and Fig. 4.
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Fig. 3. Original time series of the four states

The figure shows the original time-series signals of rolling bearings in four states (normal,
inner ring fault, ball fault, and outer ring fault). In terms of time-series signals, although each state
has differences in fluctuation characteristics, the boundaries between different states are blurred
and difficult to distinguish intuitively due to the complexity of the signals and noise interference.
In the frequency-domain diagrams, the frequency distributions of different fault states overlap,
making it difficult to accurately determine the characteristic frequencies. Since it is difficult to
effectively distinguish each state based solely on these two types of diagrams, feature extraction
methods based on intelligent algorithms, such as optimized decomposition algorithms like RIME-
VMD, need to be adopted to deeply excavate the hidden features of the signals, improve the
accuracy of judging the operating status and fault types of rolling bearings, and provide more
reliable support for fault diagnosis and equipment maintenance.

3) Decomposition and reconstruction of signals. In the field of signal decomposition, the
RIME-VMD, GA-VMD, GWO-VMD and AOA-VMD methods were tested and compared,
showing different performance due to differences in the setting of their parameters [K, a]. The
decomposition mode number K controls the fineness of signal deconstruction: a too small value
is prone to missing key features, while a too large value causes over-decomposition. The penalty
factor a coordinates decomposition accuracy and smoothness, and improper values will lead to
signal distortion or detail loss. To accurately explore the influence of parameters, the search
interval of K was set to [2, 10], and the range of a was set to [100, 2500]. After T iterations of
trial and error, each algorithm screened out the optimal parameter strategy. Among them, the
RIME algorithm, relying on a unique optimization mechanism, finally determined (K, @) = (9,
400) as the best parameter combination, which can effectively capture the multi-scale features of
the signal under this configuration. The GA-VMD method set the parameter combination as
(K,a) = (9, 1600) through experience and experiments, balancing the integrity of signal
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decomposition and detail retention. The GWO-VMD algorithm found the parameter solution of
(K, a) = (8, 2000), achieving a balance between signal smoothness and accuracy with a larger
penalty factor . The AOA-VMD algorithm, leveraging its swarm intelligence optimization
characteristics, identified (K, @) = (8, 1900) as the suitable parameter combination, and achieved
a balance between decomposition accuracy and detail capture. These parameter settings provide a
specific reference for the comparison of signal decomposition effects of the three methods. Taking
the inner race fault as an example, a data sample of 500 points was selected, and the signal
decomposition is shown in Fig. 5.
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Fig. 4. Frequency-domain display of four states

As shown in Fig. 5, each method decomposes the original signal into multiple sub-signals.
These sub-signals exhibit very similar time-domain and frequency-domain characteristics,
showing no obvious differences and containing identical or highly overlapping information, which
leads to redundancy. Processing a large number of sub-signals increases the computational burden
and reduces efficiency. Among them, over-decomposition occurs in the other three methods
except RIME-VMD. Over-decomposition may mistake noise for important signal components,
thereby amplifying the impact of noise. Therefore, further processing and analysis of the
decomposed sub-signals are required to remove redundant information and noise and extract
useful features. To further compare the advantages and disadvantages of the three algorithms, an
iterative graph analysis can be performed, as shown in Fig. 6.

As shown in Fig. 6, in the initial several iterations, the median values of all algorithms show a
significant downward trend, indicating that they are all rapidly converging to the optimal solution.
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The RIME-VMD algorithm descends the fastest in the first few iterations, demonstrating the
fastest convergence speed. After approximately the 9th iteration, the median values of all
algorithms tend to stabilize with minimal variation, suggesting that each algorithm has approached
or reached a local optimal solution. At the end of 18 iterations, the RIME-VMD algorithm
achieves the lowest median value. Overall, the RIME-VMD algorithm performs best in both
convergence speed and final results.
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Fig. 5. Signal decomposition
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Fig. 6. Iterative diagram for algorithm comparison

The Pearson Correlation Coefficient (PCC) is a statistic used to measure the linear correlation
degree between two continuous variables, with its value range between —1 and 1. The method
combining the Pearson Correlation Coefficient (PCC) with the IMF components has demonstrated
significant advantages. The PCC value between each IMF component and the fault state is
calculated to quantify their linear correlation. The closer the PCC value is to 1 or —1, the stronger
the correlation between the IMF component and the fault state, thereby screening out the key
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components reflecting fault characteristics. This method can not only accurately locate the fault
source but also effectively separate the noise and fault features in the signal, improving the
accuracy of diagnosis. The relationship between the magnitude of the PCC value and the linear

relationship between the two variables is shown in Table 1.

Table 1. Linear relationship between PCC values and two variables

PCC value range | Correlation degree Explanation
10 Perfect positive The two variables have a perfect linear relationship: as one
) correlation variable increases, the other variable increases accordingly
0.7-0.9 Strong pqsitive There is a strong positive linqar relationship between the two
T correlation variables
04-0.6 Moderate ppsitive There is a moderate positive lil'lear relationship between the
T correlation two variables
0.1-0.3 Weak pos.itive There is a weak positive linegr relationship between the two
correlation variables
0.0 No correlation There is no linear relationship between the two variables.
01--03 Weak neg.ative There is a weak negative linqar relationship between the two
) ) correlation variables
04--06 Moderate nfegative There is a moderate negative lipear relationship between the
) ) correlation two variables
0.7 --0.9 Strong negative There is a strong negative 1ine?ar relationship between the two
correlation variables
10 Perfect negative The two variables have a perfect linear relationship: as one
) correlation variable increases, the other variable decreases accordingly.

The correlation coefficients of each IMF component are calculated using PCC, and the
calculation results are shown in Table 2.

Table 2. Comparison of IMF correlation coefficients

IMF index | RIME-VMD | GA-VMD | GWO-VMD | AOA-VMD
1 0.35 0.33 0.35 0.34
2 0.35 0.32 0.33 0.33
3 0.52 0.5 0.55 0.51
4 0.36 0.35 0.36 0.33
5 0.38 0.35 0.36 0.36
6 0.37 0.35 0.35 0.36
7 0.36 0.34 0.36 0.35
8 0.35 0.34 0.35 0.33
9 0.35 0.32 0.35 0.35

In all states, the PCC coefficients of IMF3 and IMF5 are generally high, indicating that these
IMF components contain more fault characteristic information. For each IMF combination, signal
reconstruction was performed, followed by classifying signals under different states using the
same classification model. Table 3 presents the classification accuracy corresponding to different
IMF combinations, from which it could be observed that the combination of IMF3 and IMF5 was
more reasonable.

To evaluate the stability of PCC selection under different noise levels, noises of varying
intensities (specifically low, medium, and high noise levels) were added to the original signal by
setting different noise variances. Table 4 presents the performance of PCC coefficients for each
IMF component under different noise levels. It can be observed from the table that the PCC
coefficients of IMF3 and IMFS5 consistently maintain relatively high values across different
scenarios (low, medium, and high noise). This indicates that selecting IMF3 and IMF5 via PCC
for signal reconstruction exhibits good stability when confronted with different noise
interferences.

10
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Classification | Classification | Classification Classification
accuracy Average
IMF accuracy accuracy accuracy . . Performance
.. ) ) for outer |classification
combination | for normal | for inner ring for ball ring fault | accuracy (%) grade
0 0 ) 0
state (%) |fault state (%)| fault state (%) state (%)

IMF3+IMF5 94.6 92.8 91.5 93.2 93.0 Excellent
IMF1+IMF4 81.4 77.8 76.3 78.5 78.5 General
IMF2+IMF4 83.7 80.2 79.1 81.5 81.1 Good
IMF2+IMF5 81.9 84.5 83.2 80.6 82.6 Good

Table 4. Performance of PCC coefficients for each IMF component under different noise levels

IE componeni/| Lo, | Medum| i
w035 | o0 | ois | T eliiodeen it o ke b
iz o | oas | oy | ecmTere ot s ey
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These two components were selected for signal reconstruction to effectively extract and retain
key fault characteristic information in the signal, while removing noise and other irrelevant signal
components. The reconstructed signal is shown in Fig. 7.

Wi wem  sem wokos

gl ()
Lo e

::::: 26 200 ) W

a) Original and reconstructed signals
in normal state

b) Original and reconstructed signals
in inner ring fault state

20000

¢) Original and reconstructed signals
in ball fault state

d) Original and reconstructed signals
in outer ring fault state
Fig. 7. Reconstructed signals

4) Fault Diagnosis Analysis. Fig. 8 shows the visualization results of multi-scale sample
entropy using RIME-VMD, GA-VMD, GWO-VMD and AOA-VMD methods, all of which use
t-SNE dimensionality reduction technology to project multi-dimensional data onto a
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two-dimensional plane. In Fig. 8(b), although the signal reconstructed by the GA-VMD method
can distinguish different states to a certain extent, some categories overlap, leading to unclear
classification. The same applies to GWO-VMD in Fig. 8(c) and AOA-VMD in Fig. 8(d). In
contrast, the signal reconstructed by the RIME-VMD method in Fig. 8(a) shows more compact
distribution and higher separation of points in each category, with significantly reduced
overlapping. It can be seen that the RIME-VMD method can more clearly distinguish different
states when reconstructing signals, reducing classification uncertainty, which is superior to the
GA-VMD, GWO-VMD and AOA-VMD methods. This is of great significance for fields such as
fault diagnosis and condition monitoring, as it helps to more accurately identify the status of
equipment and potential problems.

a) RIME-VMD reconstructed signal b) GA-VMD reconstructed signal

¢) GWO-VMD reconstructed signal d) AOA-VMD reconstructed signal
Fig. 8. Visualization of multi-scale sample entropy

To further measure the accuracy of several methods, 100 time windows were selected for each
modal component of the four states to extract multi-scale sample entropy, resulting in 100x20
training samples. Finally, 400x20 samples of the four states were labeled and used as inputs to the
KNN classifier. The results are shown in Fig. 9.

It can be seen from Fig. 9 that the GA-VMD, GWO-VMD and AOA-VMD methods can
predict fault categories well for most categories, but there are certain deviations between the
predicted values and the true values for individual categories. In contrast, the identification results
of RIME-VMD show higher overall accuracy and stability. Although there are also some
deviations in the results of RIME-VMD, these deviations are smaller than those of the other three
methods, and the distribution is more concentrated. Especially for some key categories, the
predicted values of RIME-VMD almost completely coincide with the true values, demonstrating
its superior performance in fault identification.

12 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460



RESEARCH ON FAULT DIAGNOSIS OF ROLLING BEARINGS BASED ON MULTI-METHOD FUSION.
SHIJUN YU, CHANGYOU GUO, HAORUI LIU, HENGWEI ZHU

KNN Classification Confusion Matrix KNN Classification Confusion Matrix

normal state

ne faulz

inner ring fault

True Labels
inner

True Labels
ball Hault

ball fault

tault

outer ring fault

normal state inner ring fault ball fault outer ring fault Pormal state inner ring fault. ball “aul=
Predicted Labels Predicted Labals

a) RIME-VMD b) GA-VMD

KNN Classification Confusion Matrix KNN Classification Confusion Matrix

e ring fault normal state

True Labels
in

True Labels
i inner ¢
ball fault

-20

fr ring fault

normal state inner ring fault ball fault outer ring fault

e ring taut ball “auls P —
Predicted Labels Predicted Labels

¢) GWO-VMD d) AOA-VMD
Fig. 9. KNN classification confusion matrix

To evaluate the stability and significance of the RIME-VMD method, validation was
conducted using a “multiple random partitioning + cross-validation” approach, with the following
steps:

(1) Data partitioning: Divide all data into five equal parts.

(2) Cyclic Evaluation:

— Use the first sample as the test set and the remaining four samples as the training set, then
calculate the metric once.

— Use the second sample as the test set and the remaining four samples as the training set, then
recalculate the metrics.

— Repeat the above steps until all 5 portions have served as the test set, yielding 5 sets of
metrics.

(3) Statistical Results: The calculated averages are summarized in tabular form. See Table 5
for details.

In summary, we can conclude that the RIME-VMD method is superior to the GA-VMD,
GWO-VMD and AOA-VMD methods in fault identification. Especially when dealing with
complex and changeable fault data, RIME-VMD can provide more accurate and reliable
prediction results. This finding is of great significance for practical engineering applications and
helps to improve the efficiency of equipment fault diagnosis and maintenance.

To further verify the method proposed in this paper, a Data Combination test was conducted.
The bearing load was set to 2 horsepower, and the damage diameters were 0.1778 mm,
0.3556 mm, 0.5334 mm, and 0.7112 mm respectively; tests and analyses were carried out for these
four operating states. Each Intrinsic Mode Function (IMF) under each state was constructed into
a 100x20 training sample. Finally, a total of 400x20 samples from the four states were labeled
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and input into SVM and KNN classifiers respectively. As can be seen from Table 6, the test results
show that there were a small number of sample misclassifications when using SVM, while the
accuracy rate of the KNN comprehensive judgment method reached 100 %.

Table 5. Performance comparison

Evaluation Performance | RIME- GA- | GWO- | AOA- | Criteria for judging the merits
dimension indicator (%) | VMD VMD | VMD | VMD of indicators
Basic The higher, the better
classification Accuracy 98.6 923 94.8 93.5 (reflecting the overall
ability correctness of prediction)
Precision of The higher, the better (to reduce
positive class Precision 97.9 89.5 91.2 90.7 the misjudgment of normal
recognition cases as faults)
Completeness of .
positive class Recall 98.2 90.1 93.5 92.1 The hlgher, Fhe better (to reduce
the missed judgment of faults)
coverage
Ability to balance The higher, the better
precision and F1-Score 98.0 89.8 923 91.4 (integrating Precision and
coverage Recall)

Table 6. Comparison of classification results

Multi-scale MSE | Single scale SE
KNN SVM | KNN | SVM
IMF1 | 100% | 99 %
IMF2 | 100% | 100 %
VMD | IMF3 | 100% | 100% | 100% | 99 %
IMF4 | 100% | 99 %
IMF5 | 100 % | 100 %

3.4. Verification of real-time performance

To verify the real-time performance of the proposed method, experiments were designed from
three aspects: processing delay, computational efficiency, and adaptability to embedded/edge
computing. The experimental platforms and parameter settings are as follows:

Experimental Platforms: General-purpose computing platform: Intel i7-12700H CPU, 16GB
DDR4 memory, Windows 11 operating system; Edge computing platform: Raspberry Pi 4B
(4-core ARM Cortex-A72 CPU, 4GB LPDDR4 memory).

Experimental Parameters: The bearing fault dataset from the “data combination” was adopted,
which has a load of 2 horsepower and a damage diameter range of 0.1778-0.7112 mm; Sample
size: 400%20.

Each platform was run independently for 10 experiments, and the average value and standard
deviation were calculated for final results.

1) Analysis of processing delay. Table 7 presents the comparison of processing delays across
different platforms.

Table 7. Comparison of processing latency

Platform type Method | Sample size | Average latency (ms) | Standard deviation (ms)
General computing platform | RIME-VMD | 400%x20 18.3 1.5
General computing platform | GA-VMD 400x20 45.8 3.5
General computing platform | GWO-VMD |  400x20 38.2 2.8
General computing platform | AOA-VMD |  400x20 28.5 2.1
Edge computing platform |RIME-VMD | 400x20 69.5 3.2
Edge computing platform GA-VMD 400x20 153.7 6.8
Edge computing platform | GWO-VMD | 400x20 126.3 5.6
Edge computing platform | AOA-VMD | 400x20 93.6 4.3
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As can be seen from the table, on the general-purpose computing platform, the average delay
of RIME-VMD in processing 400x20 samples is 18.3 ms with a standard deviation of 1.5 ms, both
of which are lower than the corresponding values of the other three methods. This indicates that
the proposed method has better real-time performance on general-purpose devices.

On the edge computing platform, the average delay of RIME-VMD is 69.5 ms, which is not
only lower than the requirement threshold of “delay < 100 ms” for industrial real-time diagnosis
but also lower than that of the other three methods. This proves that the proposed method still has
real-time processing capability on edge devices.

2) Analysis of Computational Efficiency. The computational efficiency is analyzed from two
aspects: “Samples Processed Per Second (SPS)” and “Resource Utilization”, with specific details
shown in Table 8.

Table 8. Analysis of computational efficiency

Method Sample set Samples per Average CPU Peak memory usage
specification second (SPS) utilization (%) (MB)
RIME-VMD 100x20 5.7 38 46
GA-VMD 100x20 3.1 63 89
GWO-VMD 100x20 3.6 56 76
AOA-VMD 100x20 4.1 48 62

Efficiency: On the Raspberry Pi 4B, the SPS (Samples Processed Per Second) of the proposed
method is 5.7 (i.e., processing 5.7 sets of 100x20 samples per second), which is 1.8 times that of
GA-VMD. This indicates that the proposed method has higher throughput and can cope with
scenarios with higher-frequency data input.

Resource Occupancy: During processing, the proposed method has an average CPU utilization
rate of 38 % and a peak memory occupancy of 46 MB. In contrast, GA-VMD has a CPU utilization
rate of 63 % and a memory occupancy of 89 MB. This proves that the proposed method has lower
hardware resource requirements and is more suitable for resource-constrained environments.

3) Feasibility Conclusion for Embedded/Edge Computing. Based on the above data,
RIME-VMD can operate stably on edge devices, with the following key performance indicators
meeting application requirements: The processing delay satisfies industrial real-time demands
(i.e., < 100 ms); Its resource occupancy is lower than that of the other three methods, requiring no
high-performance hardware support and thus being adaptable to low-cost embedded devices.

Therefore, RIME-VMD is feasible for embedded/edge computing scenarios and can be applied
to on-site real-time fault diagnosis.

3.5. Verification of generalization ability

To comprehensively evaluate the generalization ability of the model, on the basis of
verification using the CWRU dataset, the XJTU-SY dataset (Xi'an Jiaotong University - Shaoxing
University of Arts and Sciences Bearing Dataset) was supplemented. This dataset covers “full-life
cycle faults” (ranging from normal conditions to early-stage, mid-stage, and late-stage faults) and
includes operating conditions with variable rotational speeds (1000-3000 r/min) and variable loads
(0-3000 N). In contrast to the fixed operating conditions of the CWRU dataset, it is used to test
the model's generalization ability under varying operating conditions.

After the simulation model is trained in the benchmark scenario, it is migrated to a similar but
distinct laboratory scenario to verify its generalization ability across different operating
conditions. The normal/single-fault samples from the CWRU dataset are used as the training set
(divided according to the original proportion, with 70 % allocated for training), while the full-life
cycle fault samples from the XJTU-SY dataset serve as the test set (100 % used for testing, with
no training data included). The accuracy of the original study, which was based on training with
the CWRU dataset and subsequent testing with the same dataset (CWRU training — CWRU
testing), is retained as the benchmark. Additionally, the accuracies of GA-VMD, GWO-VMD,
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and AOA-VMD under the same cross-dataset testing are newly incorporated. The comparison of
cross-dataset testing accuracies is presented in Table 9.

Table 9. Comparison of cross-dataset testing accuracy

Model Training set |CWRU test set (Baseline)| XJTU-SY test set (variable operating conditions)
RIME-VMD CWRU 99.2 % 853 %
RIME-VMD|CWRU+XJTU 99.5 % 91.7%

GA-VMD |CWRU+XIJTU 98.8 % 82.5%
GWO-VMD |CWRU+XJTU 98.5 % 82.1%
AOA-VMD |CWRU+XJTU 97.6 % 81.3 %

As can be seen from the table, when trained solely on the CWRU dataset, the model achieves
an accuracy of only 85.3 % on the variable operating condition dataset. This is because the faults
in the CWRU dataset occur under fixed operating conditions, while those in the XJTU-SY dataset
occur under variable operating conditions — this discrepancy results in the model having weak
ability to identify faults under variable operating conditions. After training with multi-source data,
the accuracy on the variable operating condition dataset increases to 91.7 %. This indicates that
by combining data from the CWRU and XJTU-SY datasets, the model learns more generalized
fault features and reduces its reliance on the distribution of a single dataset. It can also be observed
from the table that the RIME-VMD model has advantages over other models: its accuracy in
composite fault testing is higher than that of other models. The reason lies in the attention module
of this model, which can focus on the multi-fault features in composite faults, whereas other
models are easily interfered with by redundant features. This thus verifies the generalization
ability of RIME-VMD under varying operating conditions.

4. Conclusions

To tackle the issues of subjective parameter selection and insufficient decomposition accuracy
in complex noise for traditional VMD in rolling bearing fault diagnosis, this paper proposed a
method integrating the RIME optimization algorithm, VMD, and KNN. The RIME algorithm
optimizes VMD’s core parameters (K and «) globally, breaking the reliance on experience to
decompose vibration signals accurately under complex noise. PCC then screens key IMF
components for signal reconstruction, preserving core fault features. Finally, sample entropy of
the reconstructed signal is input as a feature vector into the KNN classifier for fault identification.
Multi-dimensional experiments show RIME outperforms GA, GWO, and AOA in parameter
optimization with faster convergence and higher accuracy. The method has good generalization
on both test bench and XJTU-SY datasets, adapting to different equipment and conditions. KNN
is simpler and more efficient than SVM, meeting engineering needs. Multiple cross-validations
and confusion matrices confirm its stability, while computation time and resource data verify
deployment feasibility. Future research will explore its universality in multi-condition/multi-type
bearing faults and combine edge computing to enhance online processing, advancing intelligent
fault diagnosis.
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