
 

 JOURNAL OF VIBROENGINEERING 1 

State prediction study of vibration system based on time 
series entropy feature reconstruction-GRNN 

Qingtang Chen1, Zilong Yang2 
College of Intelligent Manufacturing, Putian University, Fujian, Putian, 351100, China 
1Corresponding author 
E-mail: 1chenqingt@yeah.net, 22238693834@qq.com 
Received 2 July 2025; accepted 3 December 2025; published online 25 January 2026 
DOI https://doi.org/10.21595/jve.2025.25177 

Copyright © 2026 Qingtang Chen, et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. The existing quantitative (such as fractal dimension) methods for the dynamic 
performance of magnetorheological (MR) damping  systems have problems in predicting damping 
efficiency due to the small sample size, overfitting risk, poor generalization and robustness, and 
difficulty in meeting industrial reliability requirements. In order to improve the prediction 
accuracy of damping efficiency in MR damping systems, ensure the reliability of prediction results 
for small sample datasets, this study first calculates five entropy indices – Approximate Entropy 
(ApEn), Sample Entropy (SampEn), Permutation Entropy (PermEn), Fuzzy Entropy (FuzzyEn), 
and Shannon Entropy (ShannonEn) – of the system’s time series under different operating states. 
These indicators are used to accurately evaluate the dynamic performance of the system and 
determine parameters that quantify its dynamic quality. Taking damping efficiency as the 
prediction objective, each entropy index is treated as a single input parameter, and a cross 
validation generalized regression neural network (GRNN) model is adopted to select the optimal 
entropy calculation parameter from the comprehensive score evaluation prediction results. On this 
basis, the entropy feature vector was reconstructed, and a reconstruction entropy feature prediction 
algorithm based on GRNN and balance criterion was established. The performance of the model 
was compared with existing prediction algorithms, and the performance of the optimal 
combination was verified. The industrial environment was simulated, and the industrial 
application prospects of the model were evaluated. Key findings indicate that: The preferred single 
entropy parameter using GRNN can achieve a prediction accuracy of 99 %, which is suitable for 
quantifying the dynamic quality of the system. Among all single entropy parameters, approximate 
entropy(ApEn) exhibits the highest prediction accuracy; The comprehensive scoring method 
based on GRNN Gaussian kernel selects the optimal parameter scheme for single entropy 
calculation; The reconstructed entropy feature vector was used to select the optimal entropy 
feature combination scheme for damping efficiency prediction based on GRNN inverse multiple 
quadratic (IMQ)-kernel and balance criterion; The combination of “ApEn+FuzzyEn” GRNN 
IMQ-kernel and balance criterion not only achieves better prediction accuracy than existing 
VMD-box dimension-GRNN, Long Short-Term Memory (LSTM), Random Forest (RF), and 
Support Vector Machine (SVM), but also demonstrates good generalization, robustness and 
reliability, as well as stable performance under different SNR noises. The relevant algorithms have 
also achieved good prediction accuracy and generalization in other datasets. This research model 
algorithm breaks through the accuracy bottleneck of traditional fractal dimension methods and 
provides an efficient, stable, and reliable prediction solution for small sample datasets. Its 
industrial application prospects are broad. 
Keywords: time series, entropy feature reconstruction, GRNN, state prediction. 

1. Introduction 

The damper is developed using magnetorheological (MR) fluid with controllable and variable 
properties. This MR damping system is widely used in key fields such as anti vibration of building 
structures (such as wind vibration control of high-rise buildings), vibration reduction of rail transit 
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(such as damping adjustment of train bogies), and protection of military equipment (such as impact 
buffering of armored vehicles). Accurate damping efficiency prediction is crucial to ensure the 
reliability of equipment in these fields [1]. The beginning of MR materials is dating back to 1970’s, 
mainly for vibration damping. Researchers started early in the theoretical research of MR dampers, 
proposing various mechanical models such as Bingham and Herschel Bulkley, as well as 
algorithms such as ceiling damping, sliding mode variable structure, and intelligent control based 
on neural networks and fuzzy logic. Experimentally testing the performance of MR dampers under 
various operating conditions provides a basis for verifying and improving theoretical models [2-
4]. An MR damping system was developed according to the working principle of the MR fluid. 
Xiaomei et al. [5, 6] conducted many studies on the dynamic model construction, calculation 
method of dynamic performance parameters, high-order spectrum characteristics of vibration 
testing time series, and fractal dimension of time series. For the damping system, they developed 
an accurate dynamic model, determined dynamic characteristic parameters, and analyzed dynamic 
performance, high-order spectrum characteristics and their corresponding relationship with the 
working state. By calculating the correlation and fractal dimensions of the vibration signal, the 
complexity of the system and its relationship with the working state are quantitatively analyzed, 
and the most suitable working conditions of the system is then determined [7]. Qingtang et al. [8] 
also used the damping efficiency as the prediction value, and adopted many signal processing 
methods, including the Fast Fourier Transform (FFT), Empirical Mode Decomposition (EMD), 
and Variational Mode Decomposition (VMD), as well as direct time series analysis, extracted AR 
model coefficients, and box dimensions. They considered the latter as the state feature parameters, 
and applied machine learning and classification methods, such as support vector machine (SVM), 
to predict the state, which allowed them to reach a high prediction accuracy. The generalized 
regression neural network (GRNN) is based on mathematical statistics, and it adopts a radial basis 
function as the activation function. It is widely used in many fields, such as engineering intelligent 
monitoring, fault diagnosis, state identification and prediction, parameter estimation, and decision 
analysis, yielding satisfactory results [9, 10]. The authors of [9] established four prediction 
algorithms to predict the damping efficiency of a the MR damping system: time series-GRNN, 
time series AR model coefficient-GRNN, time series box dimension-GRNN, and VMD-box 
dimension-GRNN. All these algorithms achieved satisfactory prediction results. The minimum 
prediction error of the VMD-box dimension-GRNN prediction algorithm reached 1.905 % [9]. 
However, these methods only select optimal model parameters based on the sole criterion of 
minimizing prediction errors, lacking effective model evaluation standards. They fail to ensure 
robustness, generalization, and stability, resulting in unverified reliability of the outcomes. 
Additionally, these methods lack strong evidence regarding their practical industrial application 
prospects and feasibility. Entropy is a physical quantity of the degree of heat dissipation, which 
quantifies the degree of chaos of things or reflects the irregularity of system signals. It is widely 
used in the identification and prediction of system states [10, 11]. To the best of our knowledge, 
studies on the entropy characteristics of the damping system, and the state prediction of the MR 
damping system through the combination of entropy characteristics and GRNN, have not been 
reported yet. 

To better evaluate the dynamic performance of MR damping systems and determine the 
parameters that quantify the dynamic quality of the system, the time series signals tested by the 
MR damping system under different states, the sample entropy (SampEn), approximate 
entropy(ApEn), permutation entropy (PermEn), fuzzy entropy (FuzzyEn), Shannon entropy 
(ShannonEn), box dimension, and correlation dimension of the time series are calculated for 
measuring the complexity of the time series. Considering the damping efficiency of the damping 
system as the prediction goal, these parameters are then used as a single input feature, and different 
combinations are formed as the state eigenvectors. In addition, a GRNN classification method is 
used to perform state prediction. Afterwards, the extraction method and prediction algorithm of 
the state parameters applicable to the system are studied to find the optimal combination scheme 
of prediction feature vectors. Finally, the prediction results are compared with those of the VMD-
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box dimension-GRNN prediction algorithm, Long Short-Term Memory (LSTM), Random Forest 
(RF), and SVM, the optimal parameters of the model were selected by evaluating its predictive 
performance and industrial application prospects. 

2. Basic theory 

2.1. Time series entropy 

Entropy is a physical statistic used to measure the state of a material system. More precisely, 
it is the degree to which the system state may occur. It reflects the complexity of the time series 
[11, 12]. In general, the entropy of the time series includes SampEn, ApEn, PermEn, FuzzyEn, 
and ShannonEn. They can reflect the complexity or the irregularity of time series to varying 
degrees [13-15]. 

ApEn can describe the irregularity of time series. The larger its value, the more the time series 
is irregular [15, 16]. In general, the mode dimension (𝑚) and similarity tolerance threshold (𝑟) are 
the parameters that affect the ApEn of the time series, and 𝑚 is usually set to 2 or 3, while the 
value of 𝑟 is related to the standard deviation (std) of the time series. The literature [14] published 
by Pincus S. M. et al. suggests that when calculating ApEn, the value of 𝑚 is generally 2, and the 
range of 𝑟 is (0.1–0.2) ·std. SampEn is an improved method of ApEn. However, its value is less 
affected by the length of the time series, and the changes of the mode dimension (𝑚) and similarity 
tolerance threshold (𝑟) show high consistency [16]. The mode dimension(𝑚) of SampEn can be 1 
or 2, and the value range of 𝑟 is (0.1-0.25) ·std [16, 17]. The value of FuzzyEn is closely related 
to 𝑚, 𝑟, and the step (𝑛). In reference [19], it is mentioned that the embedding dimension 𝑚 of the 
FuzzyEn algorithm can be taken as 2 or 3, (0.1-0.25) ·std. In general, 𝑛 is set to 2 or 3. Similar to 
ApEn, SampEn, and FuzzyEn, PermEn is a parameter that quantifies the complexity of time series 
signals [18]. It also measures their random variation and reflects the regularity of their permutation 
[19]. ShannonEn of the time series is the change trend information that represents the state 
parameters in the time dimension [20]. 

2.2. GRNN 

GRNN is a neural network based on mathematical statistics, using a radial basis function as 
the activation function. Its network structure comprises four layers: input, mode, summation, and 
output layers. It has a satisfactory prediction effect, especially when dealing with small samples. 
The main kernel functions of GRNN include the Gaussian kernel (G-kernel), the multiquadratic 
kernel (IMQ-kernel) and inverse multiple quadratic kernel (IMQ-kernel). The smoothness factor 
(Spread) or scale parameter (𝜎) of the radial basis function is the main parameter affecting the 
prediction accuracy of the GRNN [9, 10]. 

3. Prediction algorithm 

Based on the complexity characteristics reflected by each entropy value of the time series, the 
SampEn, ApEn, PermEn, FuzzyEn, and ShannonEn of the time series are proposed to represent 
the state. By looking for the entropy value of the best identification state, and using the GRNN 
model, the entropy feature reconstruction-GRNN prediction algorithm is developed. The main 
steps are summarized as follows: 

(1) Entropy types and parameter space. 
Define five candidate entropy features for time series: ApEn, SampEn, PermEn, FuzzyEn, and 

ShannonEn. For each entropy feature, specify parameter search spaces that match their 
characteristics: set the embedding dimension 𝑚 and tolerance 𝑟 ranges within reasonable intervals 
for ApEn, SampEn and FuzzyEn, define the fuzzy membership function parameter 𝑛 for FuzzyEn, 
and set the permutation order 𝑚 and delay 𝜏 for PermEn, as well as the number of bins for 
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ShannonEn, ensuring the search spaces cover mainstream and reasonable value ranges. 
(2) Dataset construction. 
Construct a dataset containing 42 states by obtaining time series signals from vibration systems 

under different conditions. The entropy values calculated under different parameter combinations 
for the time series were used as single-feature predictors, taking vibration damping efficiency as 
the prediction target, and yielding in five datasets of single entropy features. 

(3) Optimization of single Entropy parameters. 
A GRNN with Gaussian kernel is used for a single entropy feature input dataset based on 

different parameter settings. Apply 7-fold cross-validation repeated three times and search for the 
smoothing factor (or scale parameter) of the GRNN kernel function within a specific range. 

(4) Evaluation framework. 
To alleviate overfitting and ensure the robustness of model parameter selection, three criteria 

were selected to evaluate each configuration: cross validation (CV) error, F-value, and mutual 
information (MI). The performance of the model is comprehensively evaluated through a 
comprehensive score defined as (1 / 𝐶𝑉௘௥௥௢௥) · 𝐹 · 𝑀𝐼. 

(5) Iterative loop to obtain evaluation results. 
Traverse entropy types and their parameter combinations, calculate corresponding entropy 

features, run repeated 7-fold cross validation, collect performance indicators and learning curve 
data, and select the optimal parameter combination for each entropy based on the comprehensive 
score. 

(6) Overfitting analysis. 
Draw the learning curve for each optimal entropy configuration. By comparing the ratio of 

training error percentage to validation error percentage, the fitting status can be determined to 
prevent overfitting or underfitting. 

(7) Multi-entropy reconstruction and prediction. 
Reconstruct feature vectors from five optimized entropies to form 31 different combinations 

(including combinations of sizes 5, 4, 3, 2 and 1). For each combination, adjust the number of 
training samples from 7 to 36, fix the last 6 samples as the test set, and train the GRNN model 
within a reasonable spread range. Calculate the average absolute error percentage (MAPE) for 
predicting damping efficiency and the training damping efficiency. 

(8) Balance criterion. 
In order to comprehensively consider the stability and generalization of predictions, the 

training MAPE and test MAPE are weighted and scored using a balance criterion to obtain 
prediction results and balance criterion scores for different smoothing factor (or scale parameter) 
under different training sample sizes. 

(9) Optimal combination and model parameter selection. 
Select the optimal feature combination and GRNN parameters based on the balance criteria 

scores and prediction results and use them as the final recommended configuration. 
(10) Performance and industrial evaluation. 
Compare the GRNN prediction model with LSTM, RF, and SVM based on the optimal entropy 

feature combination and parameters to demonstrate its superiority. Simulate industrial application 
scenarios by incorporating multiple different noise levels to evaluate performance degradation and 
computational costs. Use these results to evaluate the feasibility and prospects of deploying 
entropy based reconstruction prediction frameworks in industrial environments. 

The flowchart of the algorithm is shown in Fig. 1. 

4. Sources of the experimental data 

The experimental data are derived from those measured by the MR vibration and testing 
system developed by Yijian et al. [5, 6]. The test system is composed of MR damper, vibration 
test bench, sensor, excitation control module, and virtual instrument signal detection module. The 
magnetic field strength of the MR damper is changed by controlling the current.  
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Fig. 1. Flowchart of the time series entropy feature reconstruction-GRNN prediction algorithm 

In the test, the control current (𝐼) values are set to 0, 0.5, 1, 1.5, 2, and 2.5 A, and the 
displacement and acceleration signals are detected for all these values. The eccentric wheel device 
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is installed under the vibration test bench. The eccentric wheel is driven by the motor to generate 
resonance excitation. Under the control of the frequency converter, the drive motor generates 
different excitation drives by setting different input frequencies (𝑓) of 20, 25, 30, 35, 40, 45, and 
50 Hz. Six control currents and seven input frequencies constitute 42 test states. A total of 42 state 
time series signals are then detected [5, 6]. For the detected time series, the stable data segment is 
selected, and the SampEn, ApEn, PermEn, FuzzyEn, ShannonEn, box dimension, and correlation 
dimension of the time series signals are calculated for different working conditions. 

5. Analysis of the prediction results 

5.1. Single entropy feature prediction and computational parameter optimization 

To find the optimal parameter combination scheme for calculating time series entropy and 
effectively capture the characteristics of time series, the scope is expanded to cover the complete 
interval of “low similarity threshold (capturing fine particle features) - high similarity threshold 
(capturing overall trend)” by 0.1-2.5 times the standard deviation std of the coverage signal. Due 
to the standard deviation std of the data for each sample in this experiment being 0.05-0.12,  𝑟 = 0.005 + 0.02 · 𝑖 (𝑖 = 0,…, 14) was selected for this study. The calculation parameters for five 
types of entropy are set as shown in Table 1. 

Table 1. Parameters range for entropy calculation and state prediction 
Entropy ApEn SampEn PermEn FuzzyEn ShannonEn 𝑚 1:1:3* 1:1:3 3:1:7 1:1:3 – 𝑟 0.005:0.02:0.3 0.005:0.02:0.3 – 0.005:0.02:0.3 – 𝑛 – – – 2:1:3 – 

Bin – – – – 2:2:20 
Spread 0.0001:0.015:1.5 0.0001:0.015:1.5 0.0001:0.01:3 0.0001:0.01:1 0.0001:0.01:1 𝜎 0.0001:0.015:1.5 0.0001:0.015:1.5 0.0001:0.01:3 0.0001:0.01:1 0.0001:0.01:1 
*“1:1:3”in Table 1 indicates a maximum of 3 from 1, with intervals of 1. And so on for others 

The above entropy calculation parameters are combined to form 195 different combination 
schemes. Under different combination schemes, the entropy values of 42 state time series are 
obtained, and the individual entropy values of the 42 states under each combination scheme are 
combined with the damping efficiency to form a dataset. Using a 7-fold cross validation method, 
two different kernel functions, GRNN G-kernel and IMQ-kernel, were selected. The smoothing 
factor Spread or scale parameter 𝜎 interval of the GRNN model kernel function was set for 
different entropy feature types (the final selected interval is listed in Table 2) to ensure the 
selection of parameter optimization schemes under good fitting conditions. Calculate three 
metrics: CV error, F-value, and MI between predicted and true values, to evaluate the prediction 
stability, robustness, and generalization of the model. A comprehensive score is obtained by 
weighted combination of these three metrics, which serves as the basis for assessing the superiority 
of parameter schemes. The fitting curves of cross-validation predictions using single entropy 
values, the highest comprehensive score, and the degree of fit are plotted in Fig. 2 and 3. 

From the data analysis in Table 2, it can be seen that: 
When using the GRNN G-kernel function, the highest comprehensive scores for the five 

entropy feature predictions are as follows: FuzzyEn (4.419) > ApproxEn (3.173) > ShannonEn 
(0.881) > SampEn (0.430) > PermEn (0.243). Among them, FuzzyEn performs the best and can 
obtain the highest comprehensive score; ApproxEn comes second, while PermEn has the lowest 
performance. When using GRNN IMQ-kernel function, the highest comprehensive score ranking 
of the five entropy feature predictions are as follows: SampEn (3.397) > ApproxEn (3.261) > 
FuzzyEn (1.206) > ShannonEn (0.707) > PermEn (0.229). Under IMQ-kernel function, the 
comprehensive score of SampEn is the highest, ApproxEn still ranks second, and PermEn remains 
the worst performing entropy feature. 
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By adjusting the parameter range, the ratio of training error to validation error for both kernel 
functions remains stable within the range of 0.88-0.95 under the optimal parameter combination 
of entropy features. This result indicates that both kernel function configurations can achieve good 
model fitting performance and demonstrate excellent generalization ability, effectively avoiding 
overfitting or underfitting problems. 

Comparison of the two kernels’ core metrics: in terms of mean CV error, the G-kernel is 
significantly lower than the IMQ-kernel; in terms of the overall composite score, the G-kernel 
likewise outperforms the IMQ-kernel. In summary, the GRNN with a G-kernel shows superior 
comprehensive performance on the single-entropy feature prediction task and is therefore chosen 
as the final hyperparameter selection scheme. The optimal parameter combinations for the 
single-entropy GRNN prediction model are as follows: ApproxEn (2, 0.225, x), SampEn (x, 1, 
0.205), PermEn (x, 7), FuzzyEn (x, 3, 0.065, 3), ShannonEn (x, 2). 

 
Fig. 2. Learning curves of five entropies under the G-kernel at the optimal parameter combination  

 
a) The optimal comprehensive score 

 
b) Fitting coefficient 

Fig. 3. Single entropy value cross-validation predicts  
the optimal comprehensive score and its fitting coefficient 
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Table 2. Comparison of prediction performance for the best parameter schemes  
of five entropies via cross-validation 

Kernel 
function Entropy Parameter range 

spread or 𝜎 𝐶𝑉௘௥௥௢௥ F MI Comprehensive 
score 

Training error / 
validation error 

G-
kernel 

ApproxEn 0.0001:0.015:1.5 0.1397 1.0000 0.4432 3.173 0.902 
SampEn 0.0001:0.015:1.5 0.1565 0.1597 0.4217 0.430 0.899 
PermEn 0.0001:0.01:3 0.2329 0.2040 0.2775 0.243 0.929 
FuzzyEn 0.0001:0.01:1 0.1171 1.0000 0.5176 4.419 0.879 

ShannonEn 0.0001:0.01:1 0.1925 0.6250 0.2714 0.881 0.906 

IMQ-
kernel 

ApproxEn 0.0001:0.015:1.5 0.1338 1.0000 0.4364 3.261 0.940 
SampEn 0.0001:0.015:1.5 0.1364 1.0000 0.4632 3.397 0.940 
PermEn 0.0001:0.01:3 0.2590 0.2026 0.2924 0.229 0.950 
FuzzyEn 0.0001:0.01:1 0.2143 0.7744 0.3338 1.206 0.931 

ShannonEn 0.0001:0.01:1 0.2400 0.6250 0.2714 0.707 0.933 

5.2. Prediction results after entropy feature vector reconstruction 

To determine the optimal feature combination scheme, based on the parameter optimization 
results of the five types of entropy values under different states mentioned above, under the 
optimal parameter conditions corresponding to each entropy value, the five types of entropy 
features were combined in different numbers – 1 (5 combinations in total), 2 (10 in total), 3 (10 in 
total), 4 (5 in total), and 5 (1 in total) – resulting in a total of 31 feature vector combinations. Each 
combination was then paired with the vibration reduction efficiency reconstruction dataset. To 
evaluate the predictive performance of each feature combination in the system, the last 6 samples 
of the dataset were fixed as the test set, and the number of training set samples 𝑁 gradually 
increased from 7 to 36. When predicting in the GRNN model, G-kernel and IMQ-kernel are also 
used to set the search range of parameters from 0.0001 to 3, with a step size of 0.001, in order to 
obtain the optimal model parameters for different feature combinations. Finally, the top 10 feature 
combination schemes with the best prediction performance were selected, and the optimal 
prediction results were analyzed. Fig. 4 shows the top 10 combination schemes and their 
corresponding minimum prediction errors under two kernel functions. Fig. 5 shows the trend of 
prediction error with the number of training samples 𝑁 under the optimal prediction scheme for 
different combinations. 

 
a) G-kernel 

 
b) IMQ-kernel 

Fig. 4. The MAPEmin of the top 10 combinations 

Comparing and analyzing the prediction results of two GRNN kernel functions, it can be seen 
that the minimum MAPE of the top 10 different entropy feature combinations is less than 3.5 %, 
indicating that the entropy feature combination can achieve high prediction accuracy. The first 
two optimal entropy feature combinations with smaller prediction errors selected using different 
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kernel functions are“ApEn+FuzzyEn”and“ApEn”, which are the two entropy combinations with 
higher comprehensive scores for single features. This indicates that the feature combination 
scheme can prioritize selecting the entropy with better single entropy prediction for combination, 
further verifying that the comprehensive scoring method of single entropy prediction is an 
effective method for evaluating prediction results and can serve as the main basis for selecting 
optimal entropy feature parameter combinations. However, the optimal results of the entropy 
feature combination of the two kernel functions are different, and the corresponding MAPE 
ranking of 3-10 combinations varies. The minimum MAPE of the top 10 combinations predicted 
by G-kernel is slightly lower than that predicted by IMQ-kernel, while the minimum prediction 
error of the “ApEn+FuzzyEn” combination (0.571 %) is higher than that predicted by IMQ-kernel 
(0.264 %). From the perspective of minimum MAPE, using IMQ-kernels can achieve higher 
prediction accuracy. Therefore, a combination of entropy features and model parameter 
optimization scheme have been preliminarily selected for the prediction model. 

 
a) G-kernel 

 
b) IMQ-kernel 

Fig. 5. The trend of MAPEmin with different combinations of feature numbers changing with 𝑁 

5.3. Evaluation of model performance and industrial application prospects 

To evaluate the performance of the entropy feature reconstruction prediction model for the 
system, firstly, the prediction performance of different GRNN kernel functions was compared 
under the optimal feature combination conditions to determine the most suitable kernel function; 
Subsequently, by extracting the prediction MAPE and training MAPE, the generalization and 
overfitting of the model are judged, and the optimal prediction results and model parameters 
suitable for the model are selected through the balance criterion; Finally, under the same 
conditions, the proposed GRNN model was compared with mainstream prediction methods such 
as LSTM, RF, SVM, and the VMD-box dimension-GRNN model proposed in reference [9], in 
order to verify the superiority of the entropy feature combination GRNN model in prediction 
accuracy and stability. The relevant prediction results (Fig. 6) and model parameters are 
summarized in Table 3. 

From Table 3, it can be seen that when using the same GRNN model for prediction, the same 
feature combination (such as “ApEn+FuzzyEn”) has different minimum MAPE values 
corresponding to different kernel functions, and the generalization gap also varies greatly. This 
indicates that there are significant differences in predictive performance under different kernel 
functions. 

The “ApEn+FuzzyEn” GRNN model proposed in this article has a minimum MAPE (0.264 % 
–0.715 %) lower than the minimum MAPE (1.905 %) of the VMD-box dimension-GRNN 
combination in reference [9] under three kernel functions, demonstrating its significant advantage 
in prediction accuracy. However, their corresponding generalization gaps (34 %-45 %) are 
generally large, indicating that the“ApEn+FuzzyEn”- GRNN model has a certain risk of 
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overfitting and weak generalization ability. Therefore, it cannot be concluded from the perspective 
of minimum error that the combination of “ApEn+FuzzyEn” is superior to the VMD-box 
dimension feature combination in predicting vibration reduction efficiency. 

 
a) Curves of generalization gap with kernel 

parameters under different 𝑁 

 
b) Curve of testing MAPE -N based  

on balance criterion 
Fig. 6. GRNN-IMQ model prediction results 

Table 3. Prediction results and model parameters of different prediction models 

Feature 
parameter 

Prediction 
model 

Prediction results based  
on minimal error 

Prediction results based  
on balance criteria 𝑀𝐴𝑃𝐸௠௜௡ 

(%) 

Training 
samples 
number 𝑁 

Spread 
or 𝜎 

Generalization 
gap (%) 

MAPE 
(%) 

Spread 
or 𝜎 

Training 
samples 
number 𝑁 

Generalization 
gap (%) 

VMD-box 
dimension 

[9] 

GRNN G-
kernel 1.905 33 0.601 18.56 3.04 0.243 34 13.46 

VMD-box 
dimension 

GRNN 
IMQ-
kernel 

5.186 31 0.003 4.01 5.19 0.0001 31 0.49 

ApEn 
+FuzzyEn 

GRNN G-
kernel 0.497 14 0.882 40.11 0.798 0.812 15 36.96 

GRNN 
IMQ-
kernel 

0.264 12 0.474 45.21 0.95 0.0001 34 0.76 

GRNN  
MH-

kernel 
0.715 14 1.435 34.79 4.26 0.0001 34 12.72 

LSTM 3.581 34 – 11.36 3.71 – 34 3.81 
RF 5.913 10 – 31.19 7.51 – 34 2.88 

SVM 0.571 19 – 34.96 2.49 – 8 7.42 

To further evaluate the performance of the model, a balance criterion with a weight of 0.3 is 
introduced for re evaluation, in order to select the balanced optimal prediction result. The results 
showed that the prediction errors of each model increased under the balance criterion, but the 
generalization gap decreased to varying degrees with different kernel functions, reflecting that 
weakening the prediction accuracy to a certain extent contributes to the overall improvement of 
the model’s generalization ability. Among them, the GRNN-IMQ kernel function performs 
particularly well under the balance criterion, with its minimum error (0.95 %) and generalization 
gap (0.76 %) lower than other kernel functions, demonstrating excellent predictive stability and 
reliability. In summary, after optimizing the balance criterion, the combination of 
“ApEn+FuzzyEn” features not only has higher prediction accuracy than VMD-box dimension in 
most cases, but also has stronger generalization performance, making it more suitable for reliable 
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prediction of vibration reduction efficiency. 
By comparing our research model with three mainstream prediction methods, including 

LSTM, RF, SVM, etc., the minimum error, balanced optimal prediction error, and generalization 
gap of GRNN-IMQ prediction based on the “ApEn+FuzzyEn” entropy feature combination were 
found to be optimal. This validates the significant advantages of the model in terms of prediction 
accuracy and stability, making it suitable for high-precision and high stability prediction tasks and 
having strong practical application value. 

To evaluate the industrial application potential of the proposed model, this study simulates 
common random interference in industrial environments by superimposing Gaussian white noise 
with different Signal to Noise Ratio (SNR) levels of 20-45 dB on the original input signal. On this 
basis, the optimal parameter combination determined by previous optimization is adopted, and the 
GRNN-IMQ model is used for prediction. The system characterizes its environmental adaptability 
under different levels of noise interference by quantifying the percentage decrease in model 
prediction accuracy after adding noise (as shown in Fig. 7). At the same time, in order to further 
match the core demand for real-time performance in industrial scenarios, this study introduces the 
model operating efficiency index - by accurately calculating entropy parameters and the actual 
machine time consumption of GRNN prediction algorithm, analyzing the model’s satisfaction 
with real-time response requirements in industrial applications from the perspective of 
computational efficiency, and ultimately providing multi-dimensional (anti-interference, 
real-time) application references for the feasibility of industrial implementation of the model. 

 
a) Training and testing MAPE performance summary 

 
b) Performance degradation summary 

Fig. 7. Changes in the prediction performance of balance criteria under different SNR noises 

From Fig. 7, it can be seen that as the noise intensity increases, the overall decrease in accuracy 
shows a decreasing trend, with a decrease of about 5.84 % at SNR = 20 dB, and a decrease of less 
than 0.5 % at SNR = 30, 35, and 45dB, Higher SNR levels yield prediction performance closer to 
original signal, the prediction accuracy slightly increases when SNR = 40 dB. At the same time, 
in ordinary industrial control computers, the model feature extraction takes 0.07 s, the prediction 
time is 0.08 s, and the average time for a single prediction of the model is less than 0.15 s, which 
meets the real-time response requirements of industrial scenarios. This indicates that the model 
has strong anti-interference ability and efficient computing performance, and has good industrial 
application potential. 

To further explore the industrial application feasibility of the algorithm proposed in this paper, 
we selected the probability screen vibration test dataset [21]. This dataset records vibration signals 
and corresponding screening efficiency under 30 different states, forming 30 samples. Among 
them, 25 samples were used as the training set, while the remaining 5 served as the test set. Based 
on the algorithm, parameters 𝑟 are chosen from 0 to 50 with an interval of 0.5, as listed in Table 1. 
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The optimal selection results for single entropy values using the GRNN G-kernel as follows: 
ApproxEn (3, 24.01, x), SampEn (x, 1, 2.51), PermEn (x, 6), FuzzyEn (x, 3, 0.01, 3), and 
ShannonEn (x, 4). By combining these entropy values in different configurations, the best 
combination scheme of “FuzzyEn + ShannonEn” was obtained. Under this optimal combination, 
the balanced criterion was applied to achieve a best prediction accuracy of 98.98 % under the 
G-kernel, with a generalization error of 2.27 %, demonstrating excellent prediction and 
generalization performance. This further highlights the industrial application value of the 
proposed method. 

6. Conclusions 

In this paper, the damping efficiency of the system is predicted and analyzed by calculating 
the entropy values of the time series for different states of the MR damping system, and by 
establishing the entropy and reconstruction entropy characteristic-GRNN prediction algorithm. 
The following conclusions are drawn: 

1) The GRNN G-kernel prediction model based on cross-validation can obtain a good fitting 
state of the prediction model by setting personalized kernel parameter intervals. The method 
established by the comprehensive score of “CV error, F-value, and MI”provides an ideal 
parameter optimization scheme for the calculation of single entropy features of vibration system 
time series. 

2) Reconstructing a multi-entropy feature combination scheme, adopting the GRNN IMQ-
kernel prediction model, and establishing a weight based balance criterion to optimize the entropy 
feature reconstruction combination scheme, not only achieved better prediction accuracy than 
existing VMD-box dimension-GRNN, entropy feature combination LSTM, RF, SVM and other 
prediction models, but also ensured the generalization and reliability of the model. 

3) Under the optimal combination of “ApEn+FuzzyEn”, using the constructed GRNN-IMQ 
kernel prediction model, the prediction accuracy decreases by no more than 6 % after 
incorporating Gaussian white noise with different SNR of 20-45dB, and most of them only 
decrease by less than 0.4 %, demonstrating good anti-interference performance. In addition, the 
prediction model has low machine time consumption and overall shows good robustness and 
industrial application prospects. 

4) The balance criterion optimization model based on GRNN-IMQ provides a new method for 
predicting the damping efficiency of small sample vibration systems, selecting the optimal entropy 
calculation, entropy feature reconstruction, and model parameter scheme for the system. 

5) The entropy feature reconstruction-GRNN prediction algorithm, when applied to the 
probability screen vibration test dataset, still achieves high prediction accuracy and generalization 
performance, demonstrating strong potential for industrial application and promotion. 

In addition, the multi-source signal detection and fusion algorithm model can be a focus of 
research on MR damping systems in the feature, and the reliability and further promotion value of 
the model algorithm can be verified by applying it to industrial practice through more sample 
acquisition. 
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