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Abstract. The existing quantitative (such as fractal dimension) methods for the dynamic
performance of magnetorheological (MR) damping systems have problems in predicting damping
efficiency due to the small sample size, overfitting risk, poor generalization and robustness, and
difficulty in meeting industrial reliability requirements. In order to improve the prediction
accuracy of damping efficiency in MR damping systems, ensure the reliability of prediction results
for small sample datasets, this study first calculates five entropy indices — Approximate Entropy
(ApEn), Sample Entropy (SampEn), Permutation Entropy (PermEn), Fuzzy Entropy (FuzzyEn),
and Shannon Entropy (ShannonEn) — of the system’s time series under different operating states.
These indicators are used to accurately evaluate the dynamic performance of the system and
determine parameters that quantify its dynamic quality. Taking damping efficiency as the
prediction objective, each entropy index is treated as a single input parameter, and a cross
validation generalized regression neural network (GRNN) model is adopted to select the optimal
entropy calculation parameter from the comprehensive score evaluation prediction results. On this
basis, the entropy feature vector was reconstructed, and a reconstruction entropy feature prediction
algorithm based on GRNN and balance criterion was established. The performance of the model
was compared with existing prediction algorithms, and the performance of the optimal
combination was verified. The industrial environment was simulated, and the industrial
application prospects of the model were evaluated. Key findings indicate that: The preferred single
entropy parameter using GRNN can achieve a prediction accuracy of 99 %, which is suitable for
quantifying the dynamic quality of the system. Among all single entropy parameters, approximate
entropy(ApEn) exhibits the highest prediction accuracy; The comprehensive scoring method
based on GRNN Gaussian kernel selects the optimal parameter scheme for single entropy
calculation; The reconstructed entropy feature vector was used to select the optimal entropy
feature combination scheme for damping efficiency prediction based on GRNN inverse multiple
quadratic (IMQ)-kernel and balance criterion; The combination of “ApEn+FuzzyEn” GRNN
IMQ-kernel and balance criterion not only achieves better prediction accuracy than existing
VMD-box dimension-GRNN, Long Short-Term Memory (LSTM), Random Forest (RF), and
Support Vector Machine (SVM), but also demonstrates good generalization, robustness and
reliability, as well as stable performance under different SNR noises. The relevant algorithms have
also achieved good prediction accuracy and generalization in other datasets. This research model
algorithm breaks through the accuracy bottleneck of traditional fractal dimension methods and
provides an efficient, stable, and reliable prediction solution for small sample datasets. Its
industrial application prospects are broad.

Keywords: time series, entropy feature reconstruction, GRNN, state prediction.
1. Introduction
The damper is developed using magnetorheological (MR) fluid with controllable and variable

properties. This MR damping system is widely used in key fields such as anti vibration of building
structures (such as wind vibration control of high-rise buildings), vibration reduction of rail transit
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(such as damping adjustment of train bogies), and protection of military equipment (such as impact
buffering of armored vehicles). Accurate damping efficiency prediction is crucial to ensure the
reliability of equipment in these fields [1]. The beginning of MR materials is dating back to 1970’s,
mainly for vibration damping. Researchers started early in the theoretical research of MR dampers,
proposing various mechanical models such as Bingham and Herschel Bulkley, as well as
algorithms such as ceiling damping, sliding mode variable structure, and intelligent control based
on neural networks and fuzzy logic. Experimentally testing the performance of MR dampers under
various operating conditions provides a basis for verifying and improving theoretical models [2-
4]. An MR damping system was developed according to the working principle of the MR fluid.
Xiaomei et al. [5, 6] conducted many studies on the dynamic model construction, calculation
method of dynamic performance parameters, high-order spectrum characteristics of vibration
testing time series, and fractal dimension of time series. For the damping system, they developed
an accurate dynamic model, determined dynamic characteristic parameters, and analyzed dynamic
performance, high-order spectrum characteristics and their corresponding relationship with the
working state. By calculating the correlation and fractal dimensions of the vibration signal, the
complexity of the system and its relationship with the working state are quantitatively analyzed,
and the most suitable working conditions of the system is then determined [7]. Qingtang et al. [8]
also used the damping efficiency as the prediction value, and adopted many signal processing
methods, including the Fast Fourier Transform (FFT), Empirical Mode Decomposition (EMD),
and Variational Mode Decomposition (VMD), as well as direct time series analysis, extracted AR
model coefficients, and box dimensions. They considered the latter as the state feature parameters,
and applied machine learning and classification methods, such as support vector machine (SVM),
to predict the state, which allowed them to reach a high prediction accuracy. The generalized
regression neural network (GRNN) is based on mathematical statistics, and it adopts a radial basis
function as the activation function. It is widely used in many fields, such as engineering intelligent
monitoring, fault diagnosis, state identification and prediction, parameter estimation, and decision
analysis, yielding satisfactory results [9, 10]. The authors of [9] established four prediction
algorithms to predict the damping efficiency of a the MR damping system: time series-GRNN,
time series AR model coefficient-GRNN, time series box dimension-GRNN, and VMD-box
dimension-GRNN. All these algorithms achieved satisfactory prediction results. The minimum
prediction error of the VMD-box dimension-GRNN prediction algorithm reached 1.905 % [9].
However, these methods only select optimal model parameters based on the sole criterion of
minimizing prediction errors, lacking effective model evaluation standards. They fail to ensure
robustness, generalization, and stability, resulting in unverified reliability of the outcomes.
Additionally, these methods lack strong evidence regarding their practical industrial application
prospects and feasibility. Entropy is a physical quantity of the degree of heat dissipation, which
quantifies the degree of chaos of things or reflects the irregularity of system signals. It is widely
used in the identification and prediction of system states [10, 11]. To the best of our knowledge,
studies on the entropy characteristics of the damping system, and the state prediction of the MR
damping system through the combination of entropy characteristics and GRNN, have not been
reported yet.

To better evaluate the dynamic performance of MR damping systems and determine the
parameters that quantify the dynamic quality of the system, the time series signals tested by the
MR damping system under different states, the sample entropy (SampEn), approximate
entropy(ApEn), permutation entropy (PermEn), fuzzy entropy (FuzzyEn), Shannon entropy
(ShannonEn), box dimension, and correlation dimension of the time series are calculated for
measuring the complexity of the time series. Considering the damping efficiency of the damping
system as the prediction goal, these parameters are then used as a single input feature, and different
combinations are formed as the state eigenvectors. In addition, a GRNN classification method is
used to perform state prediction. Afterwards, the extraction method and prediction algorithm of
the state parameters applicable to the system are studied to find the optimal combination scheme
of prediction feature vectors. Finally, the prediction results are compared with those of the VMD-
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box dimension-GRNN prediction algorithm, Long Short-Term Memory (LSTM), Random Forest
(RF), and SVM, the optimal parameters of the model were selected by evaluating its predictive
performance and industrial application prospects.

2. Basic theory
2.1. Time series entropy

Entropy is a physical statistic used to measure the state of a material system. More precisely,
it is the degree to which the system state may occur. It reflects the complexity of the time series
[11, 12]. In general, the entropy of the time series includes SampEn, ApEn, PermEn, FuzzyEn,
and ShannonEn. They can reflect the complexity or the irregularity of time series to varying
degrees [13-15].

ApEn can describe the irregularity of time series. The larger its value, the more the time series
is irregular [15, 16]. In general, the mode dimension (m) and similarity tolerance threshold (r) are
the parameters that affect the ApEn of the time series, and m is usually set to 2 or 3, while the
value of r is related to the standard deviation (std) of the time series. The literature [14] published
by Pincus S. M. et al. suggests that when calculating ApEn, the value of m is generally 2, and the
range of r is (0.1-0.2) -std. SampEn is an improved method of ApEn. However, its value is less
affected by the length of the time series, and the changes of the mode dimension (m) and similarity
tolerance threshold (r) show high consistency [16]. The mode dimension(m) of SampEn can be 1
or 2, and the value range of r is (0.1-0.25) -std [16, 17]. The value of FuzzyEn is closely related
to m, r, and the step (n). In reference [19], it is mentioned that the embedding dimension m of the
FuzzyEn algorithm can be taken as 2 or 3, (0.1-0.25) -std. In general, n is set to 2 or 3. Similar to
ApEn, SampEn, and FuzzyEn, PermEn is a parameter that quantifies the complexity of time series
signals [18]. It also measures their random variation and reflects the regularity of their permutation
[19]. ShannonEn of the time series is the change trend information that represents the state
parameters in the time dimension [20].

2.2. GRNN

GRNN is a neural network based on mathematical statistics, using a radial basis function as
the activation function. Its network structure comprises four layers: input, mode, summation, and
output layers. It has a satisfactory prediction effect, especially when dealing with small samples.
The main kernel functions of GRNN include the Gaussian kernel (G-kernel), the multiquadratic
kernel (IMQ-kernel) and inverse multiple quadratic kernel (IMQ-kernel). The smoothness factor
(Spread) or scale parameter (o) of the radial basis function is the main parameter affecting the
prediction accuracy of the GRNN [9, 10].

3. Prediction algorithm

Based on the complexity characteristics reflected by each entropy value of the time series, the
SampEn, ApEn, PermEn, FuzzyEn, and ShannonEn of the time series are proposed to represent
the state. By looking for the entropy value of the best identification state, and using the GRNN
model, the entropy feature reconstruction-GRNN prediction algorithm is developed. The main
steps are summarized as follows:

(1) Entropy types and parameter space.

Define five candidate entropy features for time series: ApEn, SampEn, PermEn, FuzzyEn, and
ShannonEn. For each entropy feature, specify parameter search spaces that match their
characteristics: set the embedding dimension m and tolerance r ranges within reasonable intervals
for ApEn, SampEn and FuzzyEn, define the fuzzy membership function parameter n for FuzzyEn,
and set the permutation order m and delay t for PermEn, as well as the number of bins for
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ShannonEn, ensuring the search spaces cover mainstream and reasonable value ranges.

(2) Dataset construction.

Construct a dataset containing 42 states by obtaining time series signals from vibration systems
under different conditions. The entropy values calculated under different parameter combinations
for the time series were used as single-feature predictors, taking vibration damping efficiency as
the prediction target, and yielding in five datasets of single entropy features.

(3) Optimization of single Entropy parameters.

A GRNN with Gaussian kernel is used for a single entropy feature input dataset based on
different parameter settings. Apply 7-fold cross-validation repeated three times and search for the
smoothing factor (or scale parameter) of the GRNN kernel function within a specific range.

(4) Evaluation framework.

To alleviate overfitting and ensure the robustness of model parameter selection, three criteria
were selected to evaluate each configuration: cross validation (CV) error, F-value, and mutual
information (MI). The performance of the model is comprehensively evaluated through a
comprehensive score defined as (1 / CV,ppor) - F - M1I.

(5) Iterative loop to obtain evaluation results.

Traverse entropy types and their parameter combinations, calculate corresponding entropy
features, run repeated 7-fold cross validation, collect performance indicators and learning curve
data, and select the optimal parameter combination for each entropy based on the comprehensive
score.

(6) Overfitting analysis.

Draw the learning curve for each optimal entropy configuration. By comparing the ratio of
training error percentage to validation error percentage, the fitting status can be determined to
prevent overfitting or underfitting.

(7) Multi-entropy reconstruction and prediction.

Reconstruct feature vectors from five optimized entropies to form 31 different combinations
(including combinations of sizes 5, 4, 3, 2 and 1). For each combination, adjust the number of
training samples from 7 to 36, fix the last 6 samples as the test set, and train the GRNN model
within a reasonable spread range. Calculate the average absolute error percentage (MAPE) for
predicting damping efficiency and the training damping efficiency.

(8) Balance criterion.

In order to comprehensively consider the stability and generalization of predictions, the
training MAPE and test MAPE are weighted and scored using a balance criterion to obtain
prediction results and balance criterion scores for different smoothing factor (or scale parameter)
under different training sample sizes.

(9) Optimal combination and model parameter selection.

Select the optimal feature combination and GRNN parameters based on the balance criteria
scores and prediction results and use them as the final recommended configuration.

(10) Performance and industrial evaluation.

Compare the GRNN prediction model with LSTM, RF, and SVM based on the optimal entropy
feature combination and parameters to demonstrate its superiority. Simulate industrial application
scenarios by incorporating multiple different noise levels to evaluate performance degradation and
computational costs. Use these results to evaluate the feasibility and prospects of deploying
entropy based reconstruction prediction frameworks in industrial environments.

The flowchart of the algorithm is shown in Fig. 1.

4. Sources of the experimental data

The experimental data are derived from those measured by the MR vibration and testing
system developed by Yijian et al. [5, 6]. The test system is composed of MR damper, vibration
test bench, sensor, excitation control module, and virtual instrument signal detection module. The
magnetic field strength of the MR damper is changed by controlling the current.
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Fig. 1. Flowchart of the time series entropy feature reconstruction-GRNN prediction algorithm

In the test, the control current (/) values are set to 0, 0.5, 1, 1.5, 2, and 2.5 A, and the
displacement and acceleration signals are detected for all these values. The eccentric wheel device
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is installed under the vibration test bench. The eccentric wheel is driven by the motor to generate
resonance excitation. Under the control of the frequency converter, the drive motor generates
different excitation drives by setting different input frequencies (f) of 20, 25, 30, 35, 40, 45, and
50 Hz. Six control currents and seven input frequencies constitute 42 test states. A total of 42 state
time series signals are then detected [5, 6]. For the detected time series, the stable data segment is
selected, and the SampEn, ApEn, PermEn, FuzzyEn, ShannonEn, box dimension, and correlation
dimension of the time series signals are calculated for different working conditions.

5. Analysis of the prediction results
5.1. Single entropy feature prediction and computational parameter optimization

To find the optimal parameter combination scheme for calculating time series entropy and
effectively capture the characteristics of time series, the scope is expanded to cover the complete
interval of “low similarity threshold (capturing fine particle features) - high similarity threshold
(capturing overall trend)” by 0.1-2.5 times the standard deviation std of the coverage signal. Due
to the standard deviation std of the data for each sample in this experiment being 0.05-0.12,
r = 0.005+ 0.02 - i (i =0,..., 14) was selected for this study. The calculation parameters for five
types of entropy are set as shown in Table 1.

Table 1. Parameters range for entropy calculation and state prediction

Entropy ApEn SampEn PermEn FuzzyEn ShannonEn
m 1:1:3% 1:1:3 3:1:7 1:1:3 -
r 0.005:0.02:0.3 0.005:0.02:0.3 - 0.005:0.02:0.3 -
n - - - 2:1:3 -
Bin - - - - 2:2:20
Spread | 0.0001:0.015:1.5 | 0.0001:0.015:1.5 | 0.0001:0.01:3 | 0.0001:0.01:1 | 0.0001:0.01:1
o 0.0001:0.015:1.5 | 0.0001:0.015:1.5 | 0.0001:0.01:3 | 0.0001:0.01:1 | 0.0001:0.01:1

*“1:1:3”in Table 1 indicates a maximum of 3 from 1, with intervals of 1. And so on for others

The above entropy calculation parameters are combined to form 195 different combination
schemes. Under different combination schemes, the entropy values of 42 state time series are
obtained, and the individual entropy values of the 42 states under each combination scheme are
combined with the damping efficiency to form a dataset. Using a 7-fold cross validation method,
two different kernel functions, GRNN G-kernel and IMQ-kernel, were selected. The smoothing
factor Spread or scale parameter ¢ interval of the GRNN model kernel function was set for
different entropy feature types (the final selected interval is listed in Table 2) to ensure the
selection of parameter optimization schemes under good fitting conditions. Calculate three
metrics: CV error, F-value, and MI between predicted and true values, to evaluate the prediction
stability, robustness, and generalization of the model. A comprehensive score is obtained by
weighted combination of these three metrics, which serves as the basis for assessing the superiority
of parameter schemes. The fitting curves of cross-validation predictions using single entropy
values, the highest comprehensive score, and the degree of fit are plotted in Fig. 2 and 3.

From the data analysis in Table 2, it can be seen that:

When using the GRNN G-kernel function, the highest comprehensive scores for the five
entropy feature predictions are as follows: FuzzyEn (4.419) > ApproxEn (3.173) > ShannonEn
(0.881) > SampEn (0.430) > PermEn (0.243). Among them, FuzzyEn performs the best and can
obtain the highest comprehensive score; ApproxEn comes second, while PermEn has the lowest
performance. When using GRNN IMQ-kernel function, the highest comprehensive score ranking
of the five entropy feature predictions are as follows: SampEn (3.397) > ApproxEn (3.261) >
FuzzyEn (1.206) > ShannonEn (0.707) > PermEn (0.229). Under IMQ-kernel function, the
comprehensive score of SampEn is the highest, ApproxEn still ranks second, and PermEn remains
the worst performing entropy feature.
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By adjusting the parameter range, the ratio of training error to validation error for both kernel
functions remains stable within the range of 0.88-0.95 under the optimal parameter combination
of entropy features. This result indicates that both kernel function configurations can achieve good
model fitting performance and demonstrate excellent generalization ability, effectively avoiding
overfitting or underfitting problems.

Comparison of the two kernels’ core metrics: in terms of mean CV error, the G-kernel is
significantly lower than the IMQ-kernel; in terms of the overall composite score, the G-kernel
likewise outperforms the IMQ-kernel. In summary, the GRNN with a G-kernel shows superior
comprehensive performance on the single-entropy feature prediction task and is therefore chosen
as the final hyperparameter selection scheme. The optimal parameter combinations for the
single-entropy GRNN prediction model are as follows: ApproxEn (2, 0.225, x), SampEn (x, 1,
0.205), PermEn (x, 7), FuzzyEn (x, 3, 0.065, 3), ShannonEn (x, 2).

ApproxEn FuzzyEn
03 Learning curve under optimal combination 0.25 Learning curve under optimal combination
0.2
N £ 0.15
= =
B e
< <
= = 0.1
0.05
0
0 0.2 0.4 0.6 0.8 1
Spread
PermEn SampEn ShannonEn
05 Learning curve under optimal combination 03 Learning curve under optimal combination 03 Learning curve under optimal
5 . .

0.4

—— Training error

O optimal point

MAPE %
e

0.1

0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 0 0.2 0.4 0.6 08 1
Spread Spread Spread

Fig. 2. Learning curves of five entropies under the G-kernel at the optimal parameter combination

12

0
ApprosEn FuzzyEn PermEn SampEn ShannonEn ApproxEn FuzzyEn PermEn SampEn ShannonEn

a) The optimal comprehensive score b) Fitting coefficient
Fig. 3. Single entropy value cross-validation predicts
the optimal comprehensive score and its fitting coefficient
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Table 2. Comparison of prediction performance for the best parameter schemes
of five entropies via cross-validation

Kernel Parameter range Comprehensive| Training error /
function Entropy spread or O'g CVerror F MI l:core validatiin error
ApproxEn | 0.0001:0.015:1.5 | 0.1397 | 1.0000 | 0.4432 3.173 0.902
G- SampEn 0.0001:0.015:1.5 | 0.1565 | 0.1597 | 0.4217 0.430 0.899
Kernel PermEn 0.0001:0.01:3 0.2329 | 0.2040 | 0.2775 0.243 0.929
FuzzyEn 0.0001:0.01:1 0.1171 | 1.0000 | 0.5176 4.419 0.879
ShannonEn 0.0001:0.01:1 0.1925 | 0.6250 | 0.2714 0.881 0.906
ApproxEn 0.0001:0.015:1.5 | 0.1338 | 1.0000 | 0.4364 3.261 0.940
IMQ- SampEn 0.0001:0.015:1.5 | 0.1364 | 1.0000 | 0.4632 3.397 0.940
Kernel PermEn 0.0001:0.01:3 0.2590 | 0.2026 | 0.2924 0.229 0.950
FuzzyEn 0.0001:0.01:1 0.2143 | 0.7744 | 0.3338 1.206 0.931
ShannonEn 0.0001:0.01:1 0.2400 | 0.6250 | 0.2714 0.707 0.933

5.2. Prediction results after entropy feature vector reconstruction

To determine the optimal feature combination scheme, based on the parameter optimization
results of the five types of entropy values under different states mentioned above, under the
optimal parameter conditions corresponding to each entropy value, the five types of entropy
features were combined in different numbers — 1 (5 combinations in total), 2 (10 in total), 3 (10 in
total), 4 (5 in total), and 5 (1 in total) — resulting in a total of 31 feature vector combinations. Each
combination was then paired with the vibration reduction efficiency reconstruction dataset. To
evaluate the predictive performance of each feature combination in the system, the last 6 samples
of the dataset were fixed as the test set, and the number of training set samples N gradually
increased from 7 to 36. When predicting in the GRNN model, G-kernel and IMQ-kernel are also
used to set the search range of parameters from 0.0001 to 3, with a step size of 0.001, in order to
obtain the optimal model parameters for different feature combinations. Finally, the top 10 feature
combination schemes with the best prediction performance were selected, and the optimal
prediction results were analyzed. Fig. 4 shows the top 10 combination schemes and their
corresponding minimum prediction errors under two kernel functions. Fig. 5 shows the trend of
prediction error with the number of training samples N under the optimal prediction scheme for
different combinations.

ApproxEn PermEn FuzzyEn ShannonEn ApproxEn SampEn FuzzyEn ShannonEn

ApproxEn PermEn ApproxEn SampEn
ApproxEn SampEn FuzzyEn ApproxEn PermEn FuzzyEn ShannonEn
ApproxEn ShannonEn ApproxEn PermEn
FuzzyEn ApproxEn SampEn FuzzyEn
FuzzyEn ShannonEn ApproxEn ShannonEn
ApproxEn PermEn FuzzyEn ApproxEn FuzzyEn ShannonEn

ApproxEn FuzzyEn ShannonEn ApproxEn PermEn FuzzyEn

ApproxEn ApproxEn
ApproxEn FuzzyEn ApproxEn FuzzyEn
0 1 2 3 0 1 2 3
Minimum MAPE (%) Minimum MAPE (%)
a) G-kernel b) IMQ-kernel

Fig. 4. The MAPEmin of the top 10 combinations

Comparing and analyzing the prediction results of two GRNN kernel functions, it can be seen
that the minimum MAPE of the top 10 different entropy feature combinations is less than 3.5 %,
indicating that the entropy feature combination can achieve high prediction accuracy. The first
two optimal entropy feature combinations with smaller prediction errors selected using different
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kernel functions are“ApEn+FuzzyEn”and “ApEn”, which are the two entropy combinations with
higher comprehensive scores for single features. This indicates that the feature combination
scheme can prioritize selecting the entropy with better single entropy prediction for combination,
further verifying that the comprehensive scoring method of single entropy prediction is an
effective method for evaluating prediction results and can serve as the main basis for selecting
optimal entropy feature parameter combinations. However, the optimal results of the entropy
feature combination of the two kernel functions are different, and the corresponding MAPE
ranking of 3-10 combinations varies. The minimum MAPE of the top 10 combinations predicted
by G-kernel is slightly lower than that predicted by IMQ-kernel, while the minimum prediction
error of the “ApEn+FuzzyEn” combination (0.571 %) is higher than that predicted by IMQ-kernel
(0.264 %). From the perspective of minimum MAPE, using IMQ-kernels can achieve higher
prediction accuracy. Therefore, a combination of entropy features and model parameter
optimization scheme have been preliminarily selected for the prediction model.

40 35
—%— 1 Feature =—y— 1 Feature
35+ —0—2 Features =——0—2 Features
—#— 3 Features 30 ~—#— 3 Features
30l 4 Features 4 Features
—A— 5 Features 250 —&— 5 Features
~25" -
3‘5 é 20 -
% 20 - E
<15+
=15t =
ol 10 -
s 5t
0l . ! . . . . 0 I . ! )
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Training Sample Size N Training Sample Size N
a) G-kernel b) IMQ-kernel

Fig. 5. The trend of MAPEmin with different combinations of feature numbers changing with N
5.3. Evaluation of model performance and industrial application prospects

To evaluate the performance of the entropy feature reconstruction prediction model for the
system, firstly, the prediction performance of different GRNN kernel functions was compared
under the optimal feature combination conditions to determine the most suitable kernel function;
Subsequently, by extracting the prediction MAPE and training MAPE, the generalization and
overfitting of the model are judged, and the optimal prediction results and model parameters
suitable for the model are selected through the balance criterion; Finally, under the same
conditions, the proposed GRNN model was compared with mainstream prediction methods such
as LSTM, RF, SVM, and the VMD-box dimension-GRNN model proposed in reference [9], in
order to verify the superiority of the entropy feature combination GRNN model in prediction
accuracy and stability. The relevant prediction results (Fig. 6) and model parameters are
summarized in Table 3.

From Table 3, it can be seen that when using the same GRNN model for prediction, the same
feature combination (such as “ApEn+FuzzyEn”) has different minimum MAPE values
corresponding to different kernel functions, and the generalization gap also varies greatly. This
indicates that there are significant differences in predictive performance under different kernel
functions.

The “ApEn+FuzzyEn” GRNN model proposed in this article has a minimum MAPE (0.264 %
—0.715 %) lower than the minimum MAPE (1.905 %) of the VMD-box dimension-GRNN
combination in reference [9] under three kernel functions, demonstrating its significant advantage
in prediction accuracy. However, their corresponding generalization gaps (34 %-45 %) are
generally large, indicating that the“ApEn+FuzzyEn”- GRNN model has a certain risk of
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overfitting and weak generalization ability. Therefore, it cannot be concluded from the perspective
of minimum error that the combination of “ApEn+FuzzyEn” is superior to the VMD-box
dimension feature combination in predicting vibration reduction efficiency.
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Fig. 6. GRNN-IMQ model prediction results
Table 3. Prediction results and model parameters of different prediction models
Prediction results based Prediction results based
on minimal error on balance criteria
Feature |Prediction Training Training
parameter| model |MAPE,,;,|samples Spread|Generalization MAPE|Spread| samples |Generalization
(%) number | or o gap (%) (%) | oro |number gap (%)
N N
VMD-box
dimension GRNN G- 1.905 33 0.601 18.56 3.04 | 0.243 34 13.46
[9] kernel
GRNN
VMD-box | o | 5186 | 31 0003|401 519 10.0001| 31 0.49
dimension
kernel
GRNN G- 0.497 14 0.882 40.11 0.798 | 0.812 15 36.96
kernel
GRNN
MQ- 0.264 12 0.474 45.21 0.95 10.0001| 34 0.76
kernel
+FAPE“E GRNN
WAYER MH- | 0715 14 | 1435 3479 426 0.0001| 34 12.72
kernel
LSTM 3.581 34 - 11.36 3.71 - 34 3.81
RF 5.913 10 - 31.19 7.51 - 34 2.88
SVM 0.571 19 - 34.96 2.49 - 8 7.42

To further evaluate the performance of the model, a balance criterion with a weight of 0.3 is
introduced for re evaluation, in order to select the balanced optimal prediction result. The results
showed that the prediction errors of each model increased under the balance criterion, but the
generalization gap decreased to varying degrees with different kernel functions, reflecting that
weakening the prediction accuracy to a certain extent contributes to the overall improvement of
the model’s generalization ability. Among them, the GRNN-IMQ kernel function performs
particularly well under the balance criterion, with its minimum error (0.95 %) and generalization
gap (0.76 %) lower than other kernel functions, demonstrating excellent predictive stability and
reliability. In summary, after optimizing the balance criterion, the combination of
“ApEn+FuzzyEn” features not only has higher prediction accuracy than VMD-box dimension in
most cases, but also has stronger generalization performance, making it more suitable for reliable
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prediction of vibration reduction efficiency.

By comparing our research model with three mainstream prediction methods, including
LSTM, RF, SVM, etc., the minimum error, balanced optimal prediction error, and generalization
gap of GRNN-IMQ prediction based on the “ApEn+FuzzyEn” entropy feature combination were
found to be optimal. This validates the significant advantages of the model in terms of prediction
accuracy and stability, making it suitable for high-precision and high stability prediction tasks and
having strong practical application value.

To evaluate the industrial application potential of the proposed model, this study simulates
common random interference in industrial environments by superimposing Gaussian white noise
with different Signal to Noise Ratio (SNR) levels of 20-45 dB on the original input signal. On this
basis, the optimal parameter combination determined by previous optimization is adopted, and the
GRNN-IMQ model is used for prediction. The system characterizes its environmental adaptability
under different levels of noise interference by quantifying the percentage decrease in model
prediction accuracy after adding noise (as shown in Fig. 7). At the same time, in order to further
match the core demand for real-time performance in industrial scenarios, this study introduces the
model operating efficiency index - by accurately calculating entropy parameters and the actual
machine time consumption of GRNN prediction algorithm, analyzing the model’s satisfaction
with real-time response requirements in industrial applications from the perspective of
computational efficiency, and ultimately providing multi-dimensional (anti-interference,
real-time) application references for the feasibility of industrial implementation of the model.
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Fig. 7. Changes in the prediction performance of balance criteria under different SNR noises

From Fig. 7, it can be seen that as the noise intensity increases, the overall decrease in accuracy
shows a decreasing trend, with a decrease of about 5.84 % at SNR = 20 dB, and a decrease of less
than 0.5 % at SNR = 30, 35, and 45dB, Higher SNR levels yield prediction performance closer to
original signal, the prediction accuracy slightly increases when SNR = 40 dB. At the same time,
in ordinary industrial control computers, the model feature extraction takes 0.07 s, the prediction
time is 0.08 s, and the average time for a single prediction of the model is less than 0.15 s, which
meets the real-time response requirements of industrial scenarios. This indicates that the model
has strong anti-interference ability and efficient computing performance, and has good industrial
application potential.

To further explore the industrial application feasibility of the algorithm proposed in this paper,
we selected the probability screen vibration test dataset [21]. This dataset records vibration signals
and corresponding screening efficiency under 30 different states, forming 30 samples. Among
them, 25 samples were used as the training set, while the remaining 5 served as the test set. Based
on the algorithm, parameters r are chosen from 0 to 50 with an interval of 0.5, as listed in Table 1.
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The optimal selection results for single entropy values using the GRNN G-kernel as follows:
ApproxEn (3, 24.01, x), SampEn (x, 1, 2.51), PermEn (x, 6), FuzzyEn (x, 3, 0.01, 3), and
ShannonEn (x, 4). By combining these entropy values in different configurations, the best
combination scheme of “FuzzyEn + ShannonEn” was obtained. Under this optimal combination,
the balanced criterion was applied to achieve a best prediction accuracy of 98.98 % under the
G-kernel, with a generalization error of 2.27 %, demonstrating excellent prediction and
generalization performance. This further highlights the industrial application value of the
proposed method.

6. Conclusions

In this paper, the damping efficiency of the system is predicted and analyzed by calculating
the entropy values of the time series for different states of the MR damping system, and by
establishing the entropy and reconstruction entropy characteristic-GRNN prediction algorithm.
The following conclusions are drawn:

1) The GRNN G-kernel prediction model based on cross-validation can obtain a good fitting
state of the prediction model by setting personalized kernel parameter intervals. The method
established by the comprehensive score of “CV error, F-value, and MI”provides an ideal
parameter optimization scheme for the calculation of single entropy features of vibration system
time series.

2) Reconstructing a multi-entropy feature combination scheme, adopting the GRNN IMQ-
kernel prediction model, and establishing a weight based balance criterion to optimize the entropy
feature reconstruction combination scheme, not only achieved better prediction accuracy than
existing VMD-box dimension-GRNN, entropy feature combination LSTM, RF, SVM and other
prediction models, but also ensured the generalization and reliability of the model.

3) Under the optimal combination of “ApEn+FuzzyEn”, using the constructed GRNN-IMQ
kernel prediction model, the prediction accuracy decreases by no more than 6 % after
incorporating Gaussian white noise with different SNR of 20-45dB, and most of them only
decrease by less than 0.4 %, demonstrating good anti-interference performance. In addition, the
prediction model has low machine time consumption and overall shows good robustness and
industrial application prospects.

4) The balance criterion optimization model based on GRNN-IMQ provides a new method for
predicting the damping efficiency of small sample vibration systems, selecting the optimal entropy
calculation, entropy feature reconstruction, and model parameter scheme for the system.

5) The entropy feature reconstruction-GRNN prediction algorithm, when applied to the
probability screen vibration test dataset, still achieves high prediction accuracy and generalization
performance, demonstrating strong potential for industrial application and promotion.

In addition, the multi-source signal detection and fusion algorithm model can be a focus of
research on MR damping systems in the feature, and the reliability and further promotion value of
the model algorithm can be verified by applying it to industrial practice through more sample
acquisition.
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