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Abstract. In order to fully utilize the features of multi-source heterogeneous data and effectively 
improve the accuracy and efficiency of fault diagnosis of rotating machinery, a multi-source 
heterogeneous data diagnosis method based on parameter collaborative optimization multi-scale 
convolutional autoencoder (MSCAE) is proposed. Firstly, multi-scale information learning is 
integrated into the convolutional autoencoder (CAE) to consider the temporal and spatial feature 
information of the diagnostic object simultaneously. To improve the training and diagnostic 
efficiency of MSCAE, a quantum particle swarm optimization (QPSO) module is used to perform 
hyperparameter optimization on it using chaos initialization and dynamic weight strategy (DWS). 
Besides, the sparse attention mechanism is introduced into the MSCAE model to improve the 
recognition rate of key fault features hidden in the original heterogeneous signals. Finally, the 
confusion matrix and visualization techniques are used to achieve fault classification. The 
experimental results demonstrate that after 100 experiments, the proposed method has an average 
diagnostic accuracy of 98.5 % and strong robustness to noise, providing a new method for rotating 
machinery fault diagnosis based on multi-source heterogeneous data. 
Keywords: quantum particle swarm optimization, dynamic weight strategy, MSCAE, multi 
source heterogeneous data, rotating machinery. 

1. Introduction 

With the popularization of digital transformation in manufacturing enterprises, enterprises 
usually deploy multiple sensors in the industrial production process to monitor the status of 
equipment, and collect a large amount of multi-source heterogeneous data, such as vibration 
signals collected by vibration sensors and current signals collected by current sensors and other 
time-series data. These data exhibit characteristics such as large volume, heterogeneous sources, 
and low value density. Although their sources and manifestations are different, they are all 
descriptions of the status of the same device. Different data sources complement each other, which 
can avoid the state evaluation bias caused by one single sensor signal and reflect the condition of 
the device comprehensively from different perspectives [1]. 

In recent years, with the rapid development of deep learning in the fault diagnosis field  
[2-6], the achievements in fault diagnosis based on multi-source heterogeneous data and deep 
learning also have been particularly outstanding. Reference [7] proposed a bearing fault diagnosis 
method that combines multi-source data fusion with improved attention mechanism. By 
introducing attention mechanism, the information weights of different data sources can be adjusted 
dynamically, with good robustness and adaptability. Reference [8] proposed a selective 
convolutional deep residual network based on channel space attention mechanism and feature 
fusion. This network utilizes channel space attention mechanism to assign different weights to 
different channels, and integrates the features of different channels and different levels of feature 
information, which improves the efficiency of fault recognition. Reference [9] proposed a hybrid 
deep neural network designed specifically for estimating remaining useful life. This network 
utilizes LSTM to extract temporal features from multi-sensor data and CNN to extract spatial 
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features, demonstrating better generalization ability in complex prediction scenarios with 
increasing operating conditions and fault modes. Reference [10] utilized generative adversarial 
networks to extract features from multi-sensor data, and finally used variational autoencoders to 
achieve bearing state evaluation and remaining service life prediction, providing a new solution 
for equipment health management based on multi-sensor data. Reference [11] concatenated 
multi-sensor signals and inputted them into a multi-channel fusion feature extractor, and combined 
them with a bidirectional long short-term memory (BiLSTM) network to construct a bearing 
health index. Reference [12] proposed a convolutional autoencoder with improved loss function, 
which can capture the degradation process of bearings effectively, extract the health status features 
of bearings from multi-sensor data, and avoid the loss of local information. Reference [13] merged 
each sensor data by channel to achieve efficient fusion of multi-sensor data. Reference [14] 
proposed a multimodal convolutional neural network that can learn fault related sensitive features 
from vibration signals and infrared images automatically, and fuse these deep features using 
T-SNE (T-Distributed Stochastic Neighbor Embedding, T-SNE). Reference [15] used 
one-dimensional CNN to extract features from vibration signals and sound signals respectively, 
and fused these features. Compared with the algorithm based on single mode sensor, this method 
had higher diagnostic accuracy. Literature [16] proposed an improved multi head attention 
mechanism to extract the features of different sensor signals, and designed a bilinear model to 
achieve fine fusion of features, which can extract complementary fault information between 
different signals effectively. Reference [17] proposed a deep coupled autoencoder model for 
learning joint features of vibration and acoustic signals. Reference [18] alternately extracted and 
fused one-dimensional temporal data features and two-dimensional image data features based on 
stacked autoencoders, fully utilizing the correlation and complementarity of multi-source 
heterogeneous data. Reference [19] proposed an integrated network based on multiple CNN and 
BiLSTM with compression excitation mechanism in parallel. Reference [20] proposed a 
convolutional long short-term memory (CLSTM) network, which used CNN to capture shallow 
features of individual sensors, and then captures deep features through CLSTM. Reference [21] 
proposed a novel multi-sensor selection framework. The framework can determine adaptively 
which sensors were used to predict the remaining service life, and explained how different sensors 
affect the final result of the remaining service life prediction over time. Reference [22] proposed 
an end-to-end multi-sensor data fusion method based on LSTM encoder decoder structure. 
Reference [23] used multiple different deep belief networks (DBNs) to extract data features with 
different sources and structures, and proposed a weight matrix to fuse the decision results of 
different DBNs. Reference [24] proposed a multi-sensor data fusion method for device health 
indicators. 

Although the above stated deep learning diagnostic models based on multi-source 
heterogeneous data have achieved high diagnostic accuracy, most of them have not been evaluated 
based on comprehensive factors such as multi-source heterogeneous feature extraction 
effectiveness and model diagnostic efficiency to assess the effectiveness of constructed model. 
Based on this, this paper proposes a multi-source heterogeneous data diagnosis method based on 
parameter collaborative optimization of MSCAE. Compared to most the current idea of building 
models based on one single factor, the hybrid model is constructed based on comprehensive 
factors such as multi-source heterogeneous feature extraction effectiveness, model diagnostic 
efficiency, and noise resistance, which is more comprehensive and applicable. The main 
contributions of the paper are as follows: 

1) A multi-scale information learning module considering different spatial scales is integrated 
into CAE to construct a new model named as MSCAE, enhancing its ability to extract features 
from heterogeneous multi-source information while considering feature information at different 
spatial scales to improve its noise suppression capability.  

2) The sparse attention mechanism is introduced into the MSCAE model to further improve 
the recognition rate of the model for key fault features.  

3) To improve the training and diagnostic efficiency of MSCAE, a quantum particle swarm 
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optimization module is used to perform hyperparameter optimization on the MSCAE model using 
chaos initialization and dynamic weight strategy.  

The remains of the paper are arranged as following: Section 2 is dedicated to the related 
theories. Section 3 presents the proposed integrated model and diagnostic process. Experiment 
verification and conclusion are presented in Section 4 and Section 5 respectively. 

2. Related theories 

2.1. Multi-scale convolutional autoencoder 

The basic structure of CAE consists of an encoder and a decoder, as shown in Fig. 1. The 
encoder gradually reduces the spatial dimension of data through convolutional and pooling layers, 
while increasing the number of feature channels to extract more abstract feature representations. 
On the other hand, the decoder gradually restores the spatial dimension of the data through the 
deconvolution layer (or transposed convolution layer), while reducing the number of feature 
channels needed to reconstruct the original data. 
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Fig. 1. The basic structure of CAE 

The encoder part can be represented as follows: ℎ = 𝑓ሺ𝑋ሻ = 𝑓௘௡௖௢ௗ௘௥ሺ𝑋ሻ, (1)

where ℎ represents the decoded feature. The encoder part can be implemented using convolution 
and pooling operations, which can be expressed as follows: ℎ = 𝜎ሺ𝐶𝑜𝑛𝑣ሺ𝑋,𝑊ሻ + 𝑏ሻ, (2)

where 𝐶𝑜𝑛𝑣ሺ𝑋,𝑊ሻ performs convolution operation on the input data 𝑋. 𝑊 is the convolution 
kernel, 𝑏 represents the bias term, and 𝜎 is the activation function (which can be sigmoid or ReLU 
function). 

The decoder part can be represented as follows: 𝑋ᇱ =  𝑔ሺℎሻ = 𝑔ௗ௘௖௢ௗ௘௥ሺℎሻ, (3)

where 𝑋′ represents the reconstructed data. Convolution and upsampling operations can be used 
to implement the decoder part, as follows: 𝑋ᇱ = 𝜎ሺ𝐶𝑜𝑛𝑣ሺ𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒ሺℎሻ,𝑊ᇱሻ + 𝑏ᇱሻ. (4)
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In the formula, 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒ሺℎሻ represents the upsampling operation on the decoded features, 𝑊ᇱ is the convolution kernel of the decoder, 𝑏ᇱ is the bias term of the decoder, and 𝜎 is the 
activation function. 

The encoding in traditional CAE mainly uses fixed scale convolutional kernels for feature 
extraction. The kernel scale of each convolutional layer remains unchanged, limiting the ability to 
extract classification information at different resolutions and kernel scales. Especially in the case 
of variable operating condition, extracting deeper level features for diagnosis becomes more 
challenging. The structure of MS-CAE is adding a layer of kernels with different scale before the 
encoding layer of original CAE, as shown in Fig. 2, and corresponding multi scale information 
learning could be realized. Multi scale information learning can capture information more 
comprehensively and diversely by introducing convolution operators or pooling operations of 
different scales, further enhancing the model’s understanding of data. Therefore, integrating multi-
scale information learning modules into the encoding of CAE can help constructing new MSCAE 
models and discover more elastic key features. This module combines kernels of different scales 
and considers feature information at different spatial scales, thereby improving the ability to 
suppress noise and redundant feature information, and enhancing the model’s representation and 
classification performance of data. The MSCAE model encodes information during the network 
training phase, and the defined loss function is as following: 𝐿𝑜𝑠𝑠 = 𝐻൫𝑝ሺ𝑥ሻ, 𝑞ሺ𝑥ሻ൯ = −෍𝑝ሺ𝑥ሻ௫ log 𝑞 ሺ𝑥ሻ, (5)

where 𝐿𝑜𝑠𝑠 refers to the loss function, 𝑝ሺ𝑥ሻ is the target distribution, and 𝑞ሺ𝑥ሻ is the estimated 
distribution. 

The gradient of the backpropagation output layer for MSCAE can be described roughly as 
following: 

𝛿௅ = 𝜕𝐿(𝑤, 𝑏)𝜕𝑧௅ = 𝜕𝐿(𝑤, 𝑏)𝜕𝑥௅ ⊗ 𝜎ᇱ(𝑧௅), (6)

where 𝛿 is the gradient, ⊗ represents the operation of the matrix, and 𝜕 represents solving for the 
partial derivative. The function of Eq. (6) is to avoid gradient explosion of MSCAE. 
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Fig. 2. The basic structure of MS-CAE 
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2.2. Sparse attention mechanism 

Sparse attention is an optimized attention mechanism. It can map a query vector with a set of 
key value pairs to an output vector accurately. Sparse attention mechanisms typically include the 
following key steps: 

Firstly, for each element in the input sequence, calculate its corresponding score to indicate 
the importance of the element. This score is usually calculated based on the characteristics of the 
input elements and some learnable parameters. Then introduce sparsity and focus attention 
weights to zero in some way (such as L1 regularization), so that the model only focuses on the 
most important elements in the input sequence. Then normalization: convert the attention score 
into a probability distribution, so that the sum of the attention weights of all elements is 1. Finally, 
it is weighted and merged by using normalized attention weights to weight the input sequence, 
and then a merging operation (such as summation or averaging) is performed to obtain the final 
output representation. 

The sparse attention mechanism is specifically expressed as follows based on the above stated: 
Assuming the input sequence is 𝑋, the learnable weight matrix is 𝑊, where the unit is the 

output dimension of the attention layer. Firstly, the attention score can be calculated using the 
following formula: 𝑠𝑐𝑜𝑟𝑒(𝑡) = 𝑋ሾ: , 𝑡, : ሿ𝑊, (7)

where 𝑡 represents the time interval of the input sequence. 
The sparsity (𝐿ଵ regularization) calculation is as following: 

𝑙𝑜𝑠𝑠 = − ෍ log( 𝑠𝑐𝑜𝑟𝑒(𝑡)) + 𝜆||𝑠𝑐𝑜𝑟𝑒||ଵ௦௘௤௨௘௡௖௘೗೐೙೒೟೓
௧ୀଵ , (8)

where 𝜆 is the regularization coefficient. The function of Eq. (8) is to prevent overfitting. 
The normalization calculation is as following: 

𝑎(𝑡) = exp( 𝑠𝑐𝑜𝑟𝑒(𝑡))∑ exp( 𝑠𝑐𝑜𝑟𝑒(𝑡′))௦௘௤௨௘௡௖௘೗೐೙೒೟೓௧ᇲୀଵ . (9)

The final output is as following: 

𝑜𝑢𝑡𝑝𝑢𝑡 = ෍ 𝑎(𝑡)𝑋[: , 𝑡, : ]௦௘௤௨௘௡௖௘_௟௘௡௚௧௛
௧ୀଵ . (10)

2.3. Parameter optimization method based on QPSO-DWS 

2.3.1. Dynamic weight strategy 

DWS is used to adjust the inertia weights in the QPSO algorithm to balance global and local 
search capabilities. The update formula for inertia weight is as following: 𝜔 = 𝜔௠௔௫ − 𝜔௠௔௫−𝜔௠௜௡𝑇 × 𝑡, (11)

where 𝜔௠௔௫ and 𝜔௠௜௡ are the maximum and minimum values of the inertia weight, 𝑇 is the 
maximum number of iterations, and𝑡is the current number of iterations. 
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2.3.2. Quantum particle swarm optimization 

The QPSO [25] is a global optimization algorithm based on the principles of quantum 
mechanics. In QPSO, the formula for updating the position of particles is as following: 𝑥௜௧ାଵ = 𝑝 + (−1)௥௔௡ௗ(଴,ଵ) ⋅ 𝛼 ⋅∣ 𝑀௧ − 𝑥௜௧| − ln ൬1𝑢൰, (12)

where 𝑥௜௧ is the position of the 𝑖th particle at the 𝑡th iteration: 𝑝 = 𝑤 ⋅ 𝑃௜ + (1 −𝑤) ⋅ 𝑃௚௕௘௦௧ , (13)

where 𝑝௜ is the individual optimal position of the particle 𝑖, 𝑃௚௕௘௦௧ is the global optimal position, 𝑀௧ is the average of the optimal positions of all particle individuals, 𝛼 is the step factor, 𝑢 is the 
random number in the range [0, 1], and rand(0,1) is the random generation of 0 or 1. 

2.3.3. Quantum particle swarm optimization-dynamic weight strategy 

The QPSO-DWS algorithm combines the QPSO algorithm with DWS, which can search the 
hyperparameter space and find the optimal hyperparameter combination more effectively. 
Specifically, in each iteration, the inertia weight is adjusted according to the DWS, and then the 
particle position is updated based on the QPSO position update formula to evaluate the fitness of 
the particles, and update the individual and global optimal positions. 

3. The proposed integrated model and diagnostic process 

On the basis of the proposed MSCAE, this article combines it with sparse attention mechanism 
to propose an ensemble model. This ensemble model combines convolution kernels of different 
scales to consider feature information at different spatial scales, while embedding a sparse 
attention mechanism specifically designed for processing multi-source signal data to capture its 
core features, thereby effectively improving the noise suppression and redundant feature 
information removal capabilities of the ensemble model. 

The integrated model implants sparse attention mechanism between the convolutional layers 
of the autoencoder layers of MSCAE, with the specific formula as following: 

ℎ(௟)
⎩⎪⎨
⎪⎧= 𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘൫ℎ(௟ିଵ)൯ 𝛼(௟),= 𝑆𝑝𝑎𝑟𝑠𝑒𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛൫ℎ(𝑙)൯ ℎ௔௧௧(௟) ,= 𝛼(௟) ⊙ℎ(௟) ℎ(௟ାଵ),= 𝑃𝑜𝑜𝑙൫ℎ௔௧௧(௟) ൯,  (14)

where ⊙ represents element multiplication operation to create attention guided feature maps 
before pooling. 

The clustering centers and features generated by MSCAE are optimized using the following 
loss function: 

𝐿௧௢௧௔௟ = 𝐿஼ா(𝑋,𝑋′) + 𝜆ଵ𝐿௖௟௨௦௧௘௥ + 𝜆ଶ𝑅௦௣௔௥௦௘𝐿௖௟௨௦௧௘௥ = ෍෍‖ℎ(𝑥) − 𝜇௜‖ଶ,௫∈ௌ௜
௞
௜ୀଵ  (15)

where 𝜇௜ is a learnable parameter that is updated through backpropagation. 
During the training phase, the synchronization process is as follows: 
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Data Path:𝑋 𝐶𝐴𝐸 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 → ℎ 𝐾 −𝑚𝑒𝑎𝑛𝑠 → 𝜇௜ , Signal Path:𝜇௜ 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 − 𝑎𝑤𝑎𝑟𝑒 𝐷𝑒𝑐𝑜𝑑𝑒𝑟  → 𝑋ᇱ. (16)

Reconstruct the decoder using cluster conditional deconvolution: 𝐷𝑒𝑐𝑜𝑛𝑣൫ℎ, 𝜇௜൯ = 𝜎(𝑊௜ᇱ ∗ 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒(ℎ) + 𝑏௜ᇱ). (17)

Choosing an appropriate parameter optimization strategy is an important step in improving the 
efficiency of hybrid model training and diagnosis. To reduce the experimental time for parameter 
optimization of this model, the proposed QPSO-DWY algorithm is applied to the parameter 
optimization of the integrated model. 

The diagnostic process based on the proposed integrated model and parameter optimization 
strategy is shown in Fig. 3, as follows: 

1) Data preparation: Normalize the collected multi-source heterogeneous data and divide it 
into training and testing sets. 

2) Feature extraction: Output the training set to the ensemble model for model training, and 
synchronously optimize the model hyperparameters based on the QPSO-DYS algorithm to 
complete the training of the ensemble model. 

3) Classification and diagnosis: Input the test set into the trained ensemble model for fault 
classification. 

4) Evaluation and visualization: using t-SNE for dimensionality reduction, model performance 
evaluation, and parameter optimization. 

 
Fig. 3. Diagnosis flow chart based on the proposed hybrid model 

4. Experiment 

The method was validated using the NSK 6205 DDU bearing dataset from the Korea 
Mechanical Research Institute [26]. The experimental testing system consists of a three-phase 
induction motor, torque sensor, gearbox, two bearing seats, one rotor, and one hysteresis brake, as 
shown in Fig. 4. The bearing seats are designed in an easy disassembly mode to facilitate the 
installation of bearings of different running states, and the corresponding heterogeneous data of 
each running states are collected separately. Five operating states of rolling bearings including 
healthy bearing, Inner race fault (0.3 mm), Inner race fault (1.0 mm), Outer race fault (0.3 mm), 
Inner race fault (0.3 mm) are conducted, and the five states are represented by 0, 1, 2, 3 and 4 
respectively. Fig. 5 shows the points of failure from the faulty bearings. 

The test runs at speed of 3010 RPM, with torque applied to braking and load of 0, 2, and 4 Nm, 
respectively. Acoustic data is collected without load. Variable load test simulates bearing damage 
occurring on inner or outer race. The heterogeneous data of five types of running states include 
vibration, acoustic, and current data of healthy bearings under 0 Nm load, temperature data under 
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2 Nm load, inner and outer race fault data of 0.3 mm and 1.0 mm under 0 Nm load, and temperature 
data under 2 Nm load. The time-domain waveforms of the collected signals are shown in Fig. 6. 

 
Fig. 4. The test rig 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 5. Bearing by crack size: a) inner race 0.3 mm, b) inner race 1.0 mm, c) inner race 3.0 mm,  
d) outer race 0.3 mm, e) outer race 1.0 mm, f) outer race 3.0 mm 

 
a) Vibration data 

 
b) Temperature data 

 
c) Acoustic data 

 
d) Current data 

Fig. 6. Time-domain waveforms of five kinds of heterogeneous data 
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In this study, standardization and sliding window methods are used to preprocess the network 
input data. Due to the large amount of single fault data, a window length of 4096 data points and 
a step size of 64 are used to create training data, which is randomly divided into datasets for 
training and testing. The details of multi-source sample division are shown in Table 1. Among 
them, the sliding window method is mainly used to extract multiple overlapping samples from the 
input sequence (as shown in Fig. 7). Then 38×4 sets of heterogeneous sample sets are chosen for 
each state, that is to say that there are all 760×4 sets of heterogeneous sample sets obtained for the 
five running states in the four loading states. Select 2900 sets of sample sets from 760×4 sets 
randomly and divide them into training set sand testing sets in 7:3 ratio, and the corresponding 
number of training sets and test sets 2030 (406×5) and 870 (174×5) respectively. 

Table 1. Division table of training and test data 

Data type Running states Loads Total 
samples 

Partitioning ratio of 
training set 

Partitioning ratio of 
test set 

Temperature 

Healthy bearing 

2 Nm 200000 70 % 30 % 

Inner race fault 
(0.3 mm) 

Inner race fault 
(1.0 mm) 

Outer race fault 
(0.3 mm) 

Outer race fault 
(1.0 mm) 

Acoustic 

Healthy bearing 

0 Nm 200000 70 % 30 % 

Inner race fault 
(0.3 mm) 

Inner race fault 
(1.0 mm) 

Outer race fault 
(0.3 mm) 

Outer race fault 
(1.0 mm) 

Vibration 

Healthy bearing 

4 Nm 200000 70 % 30 % 

Inner race fault 
(0.3 mm) 

Inner race fault 
(1.0 mm) 

Outer race fault 
(0.3 mm) 

Outer race fault 
(1.0 mm) 

Current 

Healthy bearing 

4 Nm 200000 70 % 30 % 

Inner race fault 
(0.3 mm) 

Inner race fault 
(1.0 mm) 

Outer race fault 
(0.3 mm) 

Outer race fault 
(1.0 mm) 

Fig. 8 shows the diagnostic results. The confusion matrix and t-SNE classification showed 
good results without misclassification. Based on Fig. 8(a) and 8(b), the following phenomenon 
could be observed: the optimization step size is dynamically adjusted through the cyclic learning 
rate (CLR) strategy. The model converges rapidly in the early stage of training and avoids 
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overfitting in the later stage, and the verification loss tends to be stable. Based on Fig. 8(c) and 
8(d): the confusion matrix shows that the classification accuracy rate of the model for all 
categories reaches 100 %, and the clear clustering effect of feature embedding further verifies the 
feature extraction ability of the model. The self-attention mechanism improves the feature fusion 
effect significantly, the QPSO-DYS optimization accelerates the convergence speed, and the 
dynamic learning rate strategy reduces the risk of overfitting effectively. 

 
Fig. 7. Sliding window data augmentation 

 
a) The curves of precision and loss rate 

 
b) The variable learning rate curve 

 
c) The confusion matrix diagram 

 
d) The visualization diagram of t-SNE 

Fig. 8. Diagnosis results  

To verify the advantages of the proposed method, the following models are used for 
comparison: WDCNN, ResNet, WDCNN-VLR-AE, WDCNN-VLR-SE, WDCNN-SE-AE (the 
hyperparameter settings and other details of these comparison methods are set in the same way as 
in their respective literature). Fig. 9 shows the average diagnostic accuracy of each model after 
multiple experiments. The model presented in this article exhibits the highest accuracy of 98.5 % 
and the lowest loss rate of 1.7 %. Specifically, the accuracy of our model is significantly higher 



MULTI SOURCE HETEROGENEOUS DATA DIAGNOSIS METHOD OF ROTATING MACHINERY BASED ON PARAMETER COLLABORATIVE OPTIMIZATION 
OF MULTI-SCALE CONVOLUTIONAL AUTOENCODER. XIAOLI YANG 

 JOURNAL OF VIBROENGINEERING. DECEMBER 2025, VOLUME 27, ISSUE 8 1449 

than other compared models, indicating that it has stronger discriminative ability and higher 
accuracy in fault classification tasks. Meanwhile, the loss rate of our model is significantly lower 
than other models, indicating that it can converge more effectively during training and has better 
stability. 

ResNet and WDCNN perform relatively poorly. Their accuracy is 25.7 % and 27.6 % lower 
than this model, indicating poor feature extraction ability and difficulty in fully utilizing key 
information buried in the data. In addition, the loss rates of ResNet and WDCNN are 11.1 % and 
12.6 % higher than the model in this paper, which may be related to their model structure and 
optimization algorithm, leading them to easily fall into local optima, thereby affecting overall 
performance. 

In contrast, WDCNN-VLR-AE, WDCNN-VLR-SE, and WDCNN-SE-AE showed a 10.5 %, 
14.6 %, and 7.5 % decrease in accuracy compared to our model on the NSK 6205 DDU dataset, 
while the loss rate increased by 5 %, 8.2 %, and 4.1 %, respectively, demonstrating an 
improvement in feature extraction, classification, and outlier resolution capabilities for the dataset. 

 
a) The accuracy rate of kinds of models after multiple experiments 

 
b) The loss rate of kinds of models after multiple experiments 

Fig. 9. Comparison results 

The radar chart shown in Fig. 10 further demonstrates the accuracy and loss rate of the dataset 
based on the proposed model after ten times of experiments. The comparison results show that the 
model proposed in this paper exhibits excellent performance under the same operating conditions. 
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Specifically, the model presented in this article was able to maintain the lowest loss rate and 
highest accuracy in ten experiments, with significantly higher accuracy than other models and 
significantly lower loss rate than others. This indicates that it has better stability and convergence 
when dealing with multi-source heterogeneous data. 

 
a) Precision rate chart 

 
b) Loss rate chart 

Fig. 10. Radar chart results  

In terms of model diagnosis and performance evaluation, we have recorded the following key 
indicators to comprehensively reflect the efficiency and performance of the model. The computer 
configuration used in the experiment is: Intel Core AMD RyzenTM9-5900HX processor, with a 
clock speed of 3.3 GHz, equipped with NVIDIA GeForce RTX 3080 graphics card (16 GB of 
video memory), the system is equipped with 32GB of memory, runs Windows 11 Home Edition, 
and is equipped with solid-state memory, with a total capacity of about 2TB. In order to 
demonstrate the advantages of the method compared to the comparative method from multiple 
perspectives, Table 2 presents score statistics from multiple dimensions such as time efficiency 
and F1 score. 

Table 2. Comparison table of performance evaluation parameters 
Method Training times Inference speed F1-score Recall 

Propose method 7 mins 1.251 ms 98.28 % 93 % 
WDCNN 29 mins 2.552 ms 96.4 % 92 % 
ResNet 38 mins 5.89 ms 95.7 % 90 % 

WDCNN-VLR-AE 57 mins 8.35 ms 94.2 % 88 % 
WDCNN-VLR-SE 52 mins 4.56 ms 92.9 % 87 % 
WDCNN-SE-AE 63 3.630 92.2 % 92 % 

In order to compare the advantages of optimizing parameters in this article, several parameter 
optimization models were compared, as shown in Table 3. From the table, it can be seen that the 
parameter optimization model in this article saves a lot of training time relatively, and the final 
training accuracy and loss rate are only reduced by 0.1 % and 0.2 %, and the loss rate is only 
increased by 0.2 % and 0.2 % compared to manual parameter tuning one by one. 

Table 3. Comparison of optimizing parameters 
Optimization scheme Test time Precision Loss ratio 

Manual input test – 98.6 % 0.92 % 
PSO 62 min 92.4 % 1.52 % 

QPSO 45 min 95.5 % 1.21 % 
QPSO-AWA 30 min 98.5 % 0.94 % 

5. Conclusions 

This paper proposes a hybrid diagnostic model that integrates MSCAE and sparse attention 
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mechanism, and applies it to fault diagnosis based on multi-source heterogeneous features. To 
overcome the shortcomings of fixed scale convolution kernels in traditional convolutional 
autoencoder for feature extraction of multi-source information, the proposed hybrid model 
integrates a multi-scale information learning module into traditional convolutional autoencoder to 
construct MSCAE, enhancing its ability to extract features from heterogeneous multi-source 
information while considering feature information at different spatial scales to improve its noise 
suppression capability. Introduce sparse attention mechanism into MSCAE to improve the model's 
recognition rate of key fault features. At the same time, a quantum particle swarm optimization 
module is used to perform hyperparameter optimization on the hybrid model using chaos 
initialization and dynamic inertia weight strategy, improving the training and diagnostic efficiency 
of the model, and the problem of the randomness of diagnostic results caused by human selection 
of hyperparameters is also solved. Compared to most the current idea of building models based 
on one single factor, the hybrid model is constructed based on comprehensive factors such as 
multi-source heterogeneous feature extraction effectiveness, model diagnostic efficiency, and 
noise resistance, which is more comprehensive and applicable. The effectiveness and superiority 
of the model are verified through experiment and comparative studies. The superiority of the 
hyperparameter optimization algorithm was verified through ablation experiments.  

In future research, we will attempt to apply the method on the diagnosis of gear and bearing 
faults under variable operating conditions such as variable speed, or the scenario where both 
variable load and variable speed occur simultaneously. 
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