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Abstract. In order to fully utilize the features of multi-source heterogeneous data and effectively
improve the accuracy and efficiency of fault diagnosis of rotating machinery, a multi-source
heterogeneous data diagnosis method based on parameter collaborative optimization multi-scale
convolutional autoencoder (MSCAE) is proposed. Firstly, multi-scale information learning is
integrated into the convolutional autoencoder (CAE) to consider the temporal and spatial feature
information of the diagnostic object simultaneously. To improve the training and diagnostic
efficiency of MSCAE, a quantum particle swarm optimization (QPSO) module is used to perform
hyperparameter optimization on it using chaos initialization and dynamic weight strategy (DWS).
Besides, the sparse attention mechanism is introduced into the MSCAE model to improve the
recognition rate of key fault features hidden in the original heterogeneous signals. Finally, the
confusion matrix and visualization techniques are used to achieve fault classification. The
experimental results demonstrate that after 100 experiments, the proposed method has an average
diagnostic accuracy of 98.5 % and strong robustness to noise, providing a new method for rotating
machinery fault diagnosis based on multi-source heterogeneous data.

Keywords: quantum particle swarm optimization, dynamic weight strategy, MSCAE, multi
source heterogencous data, rotating machinery.

1. Introduction

With the popularization of digital transformation in manufacturing enterprises, enterprises
usually deploy multiple sensors in the industrial production process to monitor the status of
equipment, and collect a large amount of multi-source heterogeneous data, such as vibration
signals collected by vibration sensors and current signals collected by current sensors and other
time-series data. These data exhibit characteristics such as large volume, heterogeneous sources,
and low value density. Although their sources and manifestations are different, they are all
descriptions of the status of the same device. Different data sources complement each other, which
can avoid the state evaluation bias caused by one single sensor signal and reflect the condition of
the device comprehensively from different perspectives [1].

In recent years, with the rapid development of deep learning in the fault diagnosis field
[2-6], the achievements in fault diagnosis based on multi-source heterogeneous data and deep
learning also have been particularly outstanding. Reference [7] proposed a bearing fault diagnosis
method that combines multi-source data fusion with improved attention mechanism. By
introducing attention mechanism, the information weights of different data sources can be adjusted
dynamically, with good robustness and adaptability. Reference [8] proposed a selective
convolutional deep residual network based on channel space attention mechanism and feature
fusion. This network utilizes channel space attention mechanism to assign different weights to
different channels, and integrates the features of different channels and different levels of feature
information, which improves the efficiency of fault recognition. Reference [9] proposed a hybrid
deep neural network designed specifically for estimating remaining useful life. This network
utilizes LSTM to extract temporal features from multi-sensor data and CNN to extract spatial
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features, demonstrating better generalization ability in complex prediction scenarios with
increasing operating conditions and fault modes. Reference [10] utilized generative adversarial
networks to extract features from multi-sensor data, and finally used variational autoencoders to
achieve bearing state evaluation and remaining service life prediction, providing a new solution
for equipment health management based on multi-sensor data. Reference [11] concatenated
multi-sensor signals and inputted them into a multi-channel fusion feature extractor, and combined
them with a bidirectional long short-term memory (BiLSTM) network to construct a bearing
health index. Reference [12] proposed a convolutional autoencoder with improved loss function,
which can capture the degradation process of bearings effectively, extract the health status features
of bearings from multi-sensor data, and avoid the loss of local information. Reference [13] merged
each sensor data by channel to achieve efficient fusion of multi-sensor data. Reference [14]
proposed a multimodal convolutional neural network that can learn fault related sensitive features
from vibration signals and infrared images automatically, and fuse these deep features using
T-SNE (T-Distributed Stochastic Neighbor Embedding, T-SNE). Reference [15] used
one-dimensional CNN to extract features from vibration signals and sound signals respectively,
and fused these features. Compared with the algorithm based on single mode sensor, this method
had higher diagnostic accuracy. Literature [16] proposed an improved multi head attention
mechanism to extract the features of different sensor signals, and designed a bilinear model to
achieve fine fusion of features, which can extract complementary fault information between
different signals effectively. Reference [17] proposed a deep coupled autoencoder model for
learning joint features of vibration and acoustic signals. Reference [18] alternately extracted and
fused one-dimensional temporal data features and two-dimensional image data features based on
stacked autoencoders, fully utilizing the correlation and complementarity of multi-source
heterogeneous data. Reference [19] proposed an integrated network based on multiple CNN and
BiLSTM with compression excitation mechanism in parallel. Reference [20] proposed a
convolutional long short-term memory (CLSTM) network, which used CNN to capture shallow
features of individual sensors, and then captures deep features through CLSTM. Reference [21]
proposed a novel multi-sensor selection framework. The framework can determine adaptively
which sensors were used to predict the remaining service life, and explained how different sensors
affect the final result of the remaining service life prediction over time. Reference [22] proposed
an end-to-end multi-sensor data fusion method based on LSTM encoder decoder structure.
Reference [23] used multiple different deep belief networks (DBNs) to extract data features with
different sources and structures, and proposed a weight matrix to fuse the decision results of
different DBNs. Reference [24] proposed a multi-sensor data fusion method for device health
indicators.

Although the above stated deep learning diagnostic models based on multi-source
heterogeneous data have achieved high diagnostic accuracy, most of them have not been evaluated
based on comprehensive factors such as multi-source heterogeneous feature extraction
effectiveness and model diagnostic efficiency to assess the effectiveness of constructed model.
Based on this, this paper proposes a multi-source heterogeneous data diagnosis method based on
parameter collaborative optimization of MSCAE. Compared to most the current idea of building
models based on one single factor, the hybrid model is constructed based on comprehensive
factors such as multi-source heterogeneous feature extraction effectiveness, model diagnostic
efficiency, and noise resistance, which is more comprehensive and applicable. The main
contributions of the paper are as follows:

1) A multi-scale information learning module considering different spatial scales is integrated
into CAE to construct a new model named as MSCAE, enhancing its ability to extract features
from heterogeneous multi-source information while considering feature information at different
spatial scales to improve its noise suppression capability.

2) The sparse attention mechanism is introduced into the MSCAE model to further improve
the recognition rate of the model for key fault features.

3) To improve the training and diagnostic efficiency of MSCAE, a quantum particle swarm
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optimization module is used to perform hyperparameter optimization on the MSCAE model using
chaos initialization and dynamic weight strategy.

The remains of the paper are arranged as following: Section 2 is dedicated to the related
theories. Section 3 presents the proposed integrated model and diagnostic process. Experiment
verification and conclusion are presented in Section 4 and Section 5 respectively.

2. Related theories
2.1. Multi-scale convolutional autoencoder

The basic structure of CAE consists of an encoder and a decoder, as shown in Fig. 1. The
encoder gradually reduces the spatial dimension of data through convolutional and pooling layers,
while increasing the number of feature channels to extract more abstract feature representations.
On the other hand, the decoder gradually restores the spatial dimension of the data through the
deconvolution layer (or transposed convolution layer), while reducing the number of feature
channels needed to reconstruct the original data.

Decoding Output

Imput

Encoding

Fig. 1. The basic structure of CAE

The encoder part can be represented as follows:

h=f(X) = fencoaer(X), (1)

where h represents the decoded feature. The encoder part can be implemented using convolution
and pooling operations, which can be expressed as follows:

h =o(Conv(X,W) + b), 2

where Conv(X, W) performs convolution operation on the input data X. W is the convolution
kernel, b represents the bias term, and o is the activation function (which can be sigmoid or ReLU
function).

The decoder part can be represented as follows:

X"'= g(h) = gaecoaer(h), 3)

where X' represents the reconstructed data. Convolution and upsampling operations can be used
to implement the decoder part, as follows:

X' = o(Conv(Upsample(h),W") + b"). 4
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In the formula, Upsample(h) represents the upsampling operation on the decoded features,
W' is the convolution kernel of the decoder, b’ is the bias term of the decoder, and o is the
activation function.

The encoding in traditional CAE mainly uses fixed scale convolutional kernels for feature
extraction. The kernel scale of each convolutional layer remains unchanged, limiting the ability to
extract classification information at different resolutions and kernel scales. Especially in the case
of variable operating condition, extracting deeper level features for diagnosis becomes more
challenging. The structure of MS-CAE is adding a layer of kernels with different scale before the
encoding layer of original CAE, as shown in Fig. 2, and corresponding multi scale information
learning could be realized. Multi scale information learning can capture information more
comprehensively and diversely by introducing convolution operators or pooling operations of
different scales, further enhancing the model’s understanding of data. Therefore, integrating multi-
scale information learning modules into the encoding of CAE can help constructing new MSCAE
models and discover more elastic key features. This module combines kernels of different scales
and considers feature information at different spatial scales, thereby improving the ability to
suppress noise and redundant feature information, and enhancing the model’s representation and
classification performance of data. The MSCAE model encodes information during the network
training phase, and the defined loss function is as following:

Loss = H(p(x),q(x)) = — Z p(x)logq (x), (5)

where Loss refers to the loss function, p(x) is the target distribution, and q(x) is the estimated
distribution.

The gradient of the backpropagation output layer for MSCAE can be described roughly as
following:

b= dL(w,b) 9dL(w,b)
To9zk T axt

® o' (zh), (6)

where § is the gradient, @ represents the operation of the matrix, and 0 represents solving for the
partial derivative. The function of Eq. (6) is to avoid gradient explosion of MSCAE.
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Fig. 2. The basic structure of MS-CAE
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2.2. Sparse attention mechanism

Sparse attention is an optimized attention mechanism. It can map a query vector with a set of
key value pairs to an output vector accurately. Sparse attention mechanisms typically include the
following key steps:

Firstly, for each element in the input sequence, calculate its corresponding score to indicate
the importance of the element. This score is usually calculated based on the characteristics of the
input elements and some learnable parameters. Then introduce sparsity and focus attention
weights to zero in some way (such as L1 regularization), so that the model only focuses on the
most important elements in the input sequence. Then normalization: convert the attention score
into a probability distribution, so that the sum of the attention weights of all elements is 1. Finally,
it is weighted and merged by using normalized attention weights to weight the input sequence,
and then a merging operation (such as summation or averaging) is performed to obtain the final
output representation.

The sparse attention mechanism is specifically expressed as follows based on the above stated:

Assuming the input sequence is X, the learnable weight matrix is W, where the unit is the
output dimension of the attention layer. Firstly, the attention score can be calculated using the
following formula:

score(t) = X[:,t,: ]W, (7

where t represents the time interval of the input sequence.
The sparsity (L, regularization) calculation is as following:

sequenceiength

loss = — Z log( score(t)) + A||score||,, (3)

t=1

where A is the regularization coefficient. The function of Eq. (8) is to prevent overfitting.
The normalization calculation is as following:

© exp(score(t))
a(t) = . 9
Z:Z?encele"g " exp(score(t")) ©
The final output is as following:
sequence_length
output = Z a(®)X[:,t,:]. (10)

t=1
2.3. Parameter optimization method based on QPSO-DWS
2.3.1. Dynamic weight strategy

DWS is used to adjust the inertia weights in the QPSO algorithm to balance global and local
search capabilities. The update formula for inertia weight is as following:

w —Wmi
a)=wmax—th, (11)

where Wy, and Wy, are the maximum and minimum values of the inertia weight, T is the
maximum number of iterations, andtis the current number of iterations.
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2.3.2. Quantum particle swarm optimization

The QPSO [25] is a global optimization algorithm based on the principles of quantum
mechanics. In QPSO, the formula for updating the position of particles is as following:

1
X = p o (C1OD g M- x| —n (), (12)
where x{ is the position of the ith particle at the tth iteration:

pZW'Pi+(1_W)‘Pgbest: (13)

where p; is the individual optimal position of the particle i, Pgpe; is the global optimal position,
Mt is the average of the optimal positions of all particle individuals, a is the step factor, u is the
random number in the range [0, 1], and rand(0,1) is the random generation of O or 1.

2.3.3. Quantum particle swarm optimization-dynamic weight strategy

The QPSO-DWS algorithm combines the QPSO algorithm with DWS, which can search the
hyperparameter space and find the optimal hyperparameter combination more effectively.
Specifically, in each iteration, the inertia weight is adjusted according to the DWS, and then the
particle position is updated based on the QPSO position update formula to evaluate the fitness of
the particles, and update the individual and global optimal positions.

3. The proposed integrated model and diagnostic process

On the basis of the proposed MSCAE, this article combines it with sparse attention mechanism
to propose an ensemble model. This ensemble model combines convolution kernels of different
scales to consider feature information at different spatial scales, while embedding a sparse
attention mechanism specifically designed for processing multi-source signal data to capture its
core features, thereby effectively improving the noise suppression and redundant feature
information removal capabilities of the ensemble model.

The integrated model implants sparse attention mechanism between the convolutional layers
of the autoencoder layers of MSCAE, with the specific formula as following:

(= ConvBlock(h4~0) a®,
= SparseAttention(h(l)) hfllt)t,
=aq® ©) h® h(l“),

\= Pool(h tt)

where (O represents element multiplication operation to create attention guided feature maps
before pooling.

The clustering centers and features generated by MSCAE are optimized using the following
loss function:

h® (14)

Ltotal - LCE(X X) + ll cluster + /12 sparse cluster = 2 Z ”h(x) /JLHZ (15)

i=1 x€Si

where y; is a learnable parameter that is updated through backpropagation.
During the training phase, the synchronization process is as follows:
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Data Path: X CAE + Attention - h K — means - y;,

Signal Path: u; Cluster — aware Decoder — X'. (16)
Reconstruct the decoder using cluster conditional deconvolution:
Deconv(h, p;) = o(W/ * Upsample(h) + b;). 17

Choosing an appropriate parameter optimization strategy is an important step in improving the
efficiency of hybrid model training and diagnosis. To reduce the experimental time for parameter
optimization of this model, the proposed QPSO-DWY algorithm is applied to the parameter
optimization of the integrated model.

The diagnostic process based on the proposed integrated model and parameter optimization
strategy is shown in Fig. 3, as follows:

1) Data preparation: Normalize the collected multi-source heterogeneous data and divide it
into training and testing sets.

2) Feature extraction: Output the training set to the ensemble model for model training, and
synchronously optimize the model hyperparameters based on the QPSO-DYS algorithm to
complete the training of the ensemble model.

3) Classification and diagnosis: Input the test set into the trained ensemble model for fault
classification.

4) Evaluation and visualization: using t-SNE for dimensionality reduction, model performance
evaluation, and parameter optimization.
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Fig. 3. Diagnosis flow chart based on the proposed hybrid model
4. Experiment

The method was validated using the NSK 6205 DDU bearing dataset from the Korea
Mechanical Research Institute [26]. The experimental testing system consists of a three-phase
induction motor, torque sensor, gearbox, two bearing seats, one rotor, and one hysteresis brake, as
shown in Fig. 4. The bearing seats are designed in an easy disassembly mode to facilitate the
installation of bearings of different running states, and the corresponding heterogeneous data of
each running states are collected separately. Five operating states of rolling bearings including
healthy bearing, Inner race fault (0.3 mm), Inner race fault (1.0 mm), Outer race fault (0.3 mm),
Inner race fault (0.3 mm) are conducted, and the five states are represented by 0, 1, 2, 3 and 4
respectively. Fig. 5 shows the points of failure from the faulty bearings.

The test runs at speed of 3010 RPM, with torque applied to braking and load of 0, 2, and 4 Nm,
respectively. Acoustic data is collected without load. Variable load test simulates bearing damage
occurring on inner or outer race. The heterogeneous data of five types of running states include
vibration, acoustic, and current data of healthy bearings under 0 Nm load, temperature data under
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2 Nm load, inner and outer race fault data of 0.3 mm and 1.0 mm under 0 Nm load, and temperature
data under 2 Nm load. The time-domain waveforms of the collected signals are shown in Fig. 6.

Thermocouple

Load
Controller

RPM
monitoring

Torque Current
monitoring < (Three-phase)

Alignment
controller

Fig. 4. The test rig

d) e)
Fig. 5. Bearing by crack size: a) inner race 0.3 mm, b) inner race 1.0 mm, c) inner race 3.0 mm,
d) outer race 0.3 mm, ¢) outer race 1.0 mm, f) outer race 3.0 mm

Vibration Data Waveform Acoustic Data Waveform

Amplitede (g)

0 25000 50000 73000

125000 150000 173000 200000 0 25000 50000 75000 100000 125000 150000 175000 200000
‘Sample Number(Ponits)

a) Vibration data b) Temperature data

Acoustic Data Waveform Current Data Waveform

100000
Sample Nurnber(Ponits)

1

27.70

2765

Amplitude (Pa)
. o
Amplitude (A)

27.60
125000 150000 175000 200000 25000

°

25000 50000 75001

50000 75000 100000 125000 150000 175000 200000
Sample NumbertPonits)

¢) Acoustic data d) Current data
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In this study, standardization and sliding window methods are used to preprocess the network
input data. Due to the large amount of single fault data, a window length of 4096 data points and
a step size of 64 are used to create training data, which is randomly divided into datasets for
training and testing. The details of multi-source sample division are shown in Table 1. Among
them, the sliding window method is mainly used to extract multiple overlapping samples from the
input sequence (as shown in Fig. 7). Then 38x4 sets of heterogeneous sample sets are chosen for
each state, that is to say that there are all 760x4 sets of heterogeneous sample sets obtained for the
five running states in the four loading states. Select 2900 sets of sample sets from 760x4 sets
randomly and divide them into training set sand testing sets in 7:3 ratio, and the corresponding
number of training sets and test sets 2030 (406x5) and 870 (174%5) respectively.

Table 1. Division table of training and test data
Total Partitioning ratio of | Partitioning ratio of
samples training set test set

Data type Running states | Loads

Healthy bearing
Inner race fault
(0.3 mm)
Inner race fault
Temperature (1.0 mm) 2 Nm 200000 70 % 30 %
Outer race fault
(0.3 mm)
Outer race fault
(1.0 mm)
Healthy bearing
Inner race fault
(0.3 mm)
Inner race fault
Acoustic (1.0 mm) 0 Nm 200000 70 % 30 %
Outer race fault
(0.3 mm)
Outer race fault
(1.0 mm)
Healthy bearing
Inner race fault
(0.3 mm)
Inner race fault
Vibration (1.0 mm) 4 Nm 200000 70 % 30 %
Outer race fault
(0.3 mm)
Outer race fault
(1.0 mm)
Healthy bearing
Inner race fault
(0.3 mm)
Inner race fault
Current (1.0 mm) 4 Nm 200000 70 % 30 %
Outer race fault
(0.3 mm)
Outer race fault
(1.0 mm)

Fig. 8 shows the diagnostic results. The confusion matrix and t-SNE classification showed
good results without misclassification. Based on Fig. 8(a) and 8(b), the following phenomenon
could be observed: the optimization step size is dynamically adjusted through the cyclic learning
rate (CLR) strategy. The model converges rapidly in the early stage of training and avoids
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overfitting in the later stage, and the verification loss tends to be stable. Based on Fig. 8(c) and
8(d): the confusion matrix shows that the classification accuracy rate of the model for all
categories reaches 100 %, and the clear clustering effect of feature embedding further verifies the
feature extraction ability of the model. The self-attention mechanism improves the feature fusion
effect significantly, the QPSO-DYS optimization accelerates the convergence speed, and the
dynamic learning rate strategy reduces the risk of overfitting effectively.

Fig. 7. Sliding window data augmentation
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Fig. 8. Diagnosis results

To verify the advantages of the proposed method, the following models are used for
comparison: WDCNN, ResNet, WDCNN-VLR-AE, WDCNN-VLR-SE, WDCNN-SE-AE (the
hyperparameter settings and other details of these comparison methods are set in the same way as
in their respective literature). Fig. 9 shows the average diagnostic accuracy of each model after
multiple experiments. The model presented in this article exhibits the highest accuracy of 98.5 %
and the lowest loss rate of 1.7 %. Specifically, the accuracy of our model is significantly higher
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than other compared models, indicating that it has stronger discriminative ability and higher
accuracy in fault classification tasks. Meanwhile, the loss rate of our model is significantly lower
than other models, indicating that it can converge more effectively during training and has better
stability.

ResNet and WDCNN perform relatively poorly. Their accuracy is 25.7 % and 27.6 % lower
than this model, indicating poor feature extraction ability and difficulty in fully utilizing key
information buried in the data. In addition, the loss rates of ResNet and WDCNN are 11.1 % and
12.6 % higher than the model in this paper, which may be related to their model structure and
optimization algorithm, leading them to easily fall into local optima, thereby affecting overall
performance.

In contrast, WDCNN-VLR-AE, WDCNN-VLR-SE, and WDCNN-SE-AE showed a 10.5 %,
14.6 %, and 7.5 % decrease in accuracy compared to our model on the NSK 6205 DDU dataset,
while the loss rate increased by 5 %, 8.2 %, and 4.1 %, respectively, demonstrating an
improvement in feature extraction, classification, and outlier resolution capabilities for the dataset.

@ WDCNN [ ReaNet @) WDONN-VLE-AE [ WDONN-VLR-SE ) WDONN-SE-AE () Texmal model

-
B ey wHM

Texmal model
WDCNN-SE-AE
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| | ResNet
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a) The accuracy rate of kinds of models after multiple experiments
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b) The loss rate of kinds of models after multiple experiments
Fig. 9. Comparison results

The radar chart shown in Fig. 10 further demonstrates the accuracy and loss rate of the dataset
based on the proposed model after ten times of experiments. The comparison results show that the
model proposed in this paper exhibits excellent performance under the same operating conditions.
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Specifically, the model presented in this article was able to maintain the lowest loss rate and
highest accuracy in ten experiments, with significantly higher accuracy than other models and
significantly lower loss rate than others. This indicates that it has better stability and convergence

when dealing with multi-source heterogeneous data.

WDCNN-VLR-AE == WDCNN ResNet WDCNN-VLR-AF
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b) Loss rate chart
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@— WDCNN-VLR-SF —&— WDCNN-SE-AF —8— WDCNN-SE-AE —#— Textual model

a) Precision rate chart

Fig. 10. Radar chart results

In terms of model diagnosis and performance evaluation, we have recorded the following key
indicators to comprehensively reflect the efficiency and performance of the model. The computer
configuration used in the experiment is: Intel Core AMD RyzenTM9-5900HX processor, with a
clock speed of 3.3 GHz, equipped with NVIDIA GeForce RTX 3080 graphics card (16 GB of
video memory), the system is equipped with 32GB of memory, runs Windows 11 Home Edition,
and is equipped with solid-state memory, with a total capacity of about 2TB. In order to
demonstrate the advantages of the method compared to the comparative method from multiple
perspectives, Table 2 presents score statistics from multiple dimensions such as time efficiency

and F1 score.

Table 2. Comparison table of performance evaluation parameters

Method Training times | Inference speed | Fl-score | Recall
Propose method 7 mins 1.251 ms 98.28% | 93 %
WDCNN 29 mins 2.552 ms 96.4% | 92%
ResNet 38 mins 5.89 ms 95.7% | 90%
WDCNN-VLR-AE 57 mins 8.35 ms 942% | 88%
WDCNN-VLR-SE 52 mins 4.56 ms 92.9 % 87 %
WDCNN-SE-AE 63 3.630 922% | 92%

In order to compare the advantages of optimizing parameters in this article, several parameter
optimization models were compared, as shown in Table 3. From the table, it can be seen that the
parameter optimization model in this article saves a lot of training time relatively, and the final
training accuracy and loss rate are only reduced by 0.1 % and 0.2 %, and the loss rate is only
increased by 0.2 % and 0.2 % compared to manual parameter tuning one by one.

Table 3. Comparison of optimizing parameters

Optimization scheme | Test time | Precision | Loss ratio
Manual input test - 98.6 % 0.92 %
PSO 62 min 92.4 % 1.52 %
QPSO 45 min 95.5% 1.21%
QPSO-AWA 30 min 98.5 % 0.94 %

5. Conclusions
This paper proposes a hybrid diagnostic model that integrates MSCAE and sparse attention
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mechanism, and applies it to fault diagnosis based on multi-source heterogeneous features. To
overcome the shortcomings of fixed scale convolution kernels in traditional convolutional
autoencoder for feature extraction of multi-source information, the proposed hybrid model
integrates a multi-scale information learning module into traditional convolutional autoencoder to
construct MSCAE, enhancing its ability to extract features from heterogeneous multi-source
information while considering feature information at different spatial scales to improve its noise
suppression capability. Introduce sparse attention mechanism into MSCAE to improve the model's
recognition rate of key fault features. At the same time, a quantum particle swarm optimization
module is used to perform hyperparameter optimization on the hybrid model using chaos
initialization and dynamic inertia weight strategy, improving the training and diagnostic efficiency
of the model, and the problem of the randomness of diagnostic results caused by human selection
of hyperparameters is also solved. Compared to most the current idea of building models based
on one single factor, the hybrid model is constructed based on comprehensive factors such as
multi-source heterogeneous feature extraction effectiveness, model diagnostic efficiency, and
noise resistance, which is more comprehensive and applicable. The effectiveness and superiority
of the model are verified through experiment and comparative studies. The superiority of the
hyperparameter optimization algorithm was verified through ablation experiments.

In future research, we will attempt to apply the method on the diagnosis of gear and bearing
faults under variable operating conditions such as variable speed, or the scenario where both
variable load and variable speed occur simultaneously.
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