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Abstract. To address inaccurate strawberry recognition caused by cluttered field environments
such as varying illumination, occlusion and uneven distribution, an improved lightweight model
YOLOV7-SSC for strawberry ripeness detection was proposed. First, the backbone network of
YOLOV7 is replaced with ShuffleNetV2, a lightweight feature extraction network, to significantly
reduce the number of model parameters. Second, the lightweight network Slim-neck is used as the
neck structure to reduce model complexity while preserving high precision. Finally, the Content
Perception Feature Recombination (CARAFE) upsampling is used to enlarge receptive field in
the feature fusion network and fully leverage semantic information. Moreover, the pictures of the
strawberry dataset with three common conditions (unripe strawberry, near ripe strawberry and ripe
strawberry) were collected in real picking environment. The experimental results show that
compared to the original YOLOv7 model, the improved model parameters are reduced by 69.0 %,
the floating point number is decreased by 79.4 %, and the accuracy rate reaches 99.6 %. These
results demonstrate that YOLOv7-SSC model can achieve fast recognition of strawberry maturity
while maintaining high precision, making it more suitable for small target detection in complex
field compared with other algorithms.

Keywords: improved model YOLOv7-SSC, ShuffleNetv2, lightweight network, slim-neck,
CARAFE upsampling, strawberry ripeness.

1. Introduction

Strawberries are widely cultivated worldwide due to their appealing taste, high nutritional
value, and edibility. As a crucial element in strawberry cultivation, the harvesting of strawberries
still depends on hand labor, making up more than 75 % of the total cultivation expense [1].
Therefore, mechanized harvesting has become an inevitable trend for the development of
strawberry industrial planting. However, due to the complex field environment, intelligently
identify the maturity of strawberries is difficult.

Convolutional neural network (CNN), a representative algorithm of deep learning, performs
consistently well in image recognition by extracting discriminative features from images in the
presence of sufficient training data [2-5]. CNN can realize high precision recognition of
two-dimensional image data [6-8]. In addition, the target detection task has been applied to a wide
range of scenarios and has achieved good results. The multi-expert diffusion model, which
integrates a Multi-Expert Feature Extraction module, a Low-Pass Guided Feature Aggregation
module, and a Heterogeneous Diffusion Detection mechanism, enables high-precision detection
of surface defects on motor control valve spools, improving accuracy by 6.1 % over special
methods and ensuring the safe operation of electromechanical equipment [9]. Furthermore, the
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vision-language cyclic interaction mode, which progressively refines visual feature extraction by
integrating domain prior knowledge and generic large model, effectively bridges the dual-domain
barrier of “generic-specific” and “vision-language”, achieving high-precision defect detection
while demonstrating strong validity and generalization across diverse scenarios [10]. One-stage
object detection algorithm represented by YOLO series transforms the target detection task into a
regression problem within a single neural network, achieving fast and accurate target localization
and classification of strawberries in in cluttered field environment [11-13]. YOLOVS algorithm
and dark channel image enhancement were combined to classify strawberry maturity into three
levels: ripe, near ripe and immature [ 14]. Two-stage, represented by Faster-RCNN, is usually more
accurate than One-stage algorithm, but the detection speed is slower [15]. The fast and stable
target recognition system can enable the picking robot to work effectively for a long time, which
greatly improves the picking efficiency. Domestic and foreign scholars have made a preliminary
exploration on the research of strawberry ripeness recognition [16].

The integration of deep learning with traditional digital image processing and segmentation
can achieve more effective and accurate fruit detection and classification [17]. The ellipsoidal
Hough transform segmentation algorithm is used to automatically segment strawberry images, and
Probabilistic Soft Logic (PSL) model is adopted to predict strawberry sweetness and acidity
according to the ripening stage [18]. The convolutional neural network of an automated system is
used to extract the color, size and shape features of the surface of the strawberry to determine
whether the strawberry is ripe or damaged, and the classification output and classification image
are displayed on the Graphical User Interface (GUI) [19]. According to a dual-path model which
learns strawberry ripen and stem coordinates simultaneously through semantic segmentation, the
feature maps acquired at the final part of the multi-path convolution segmentation model is used
for two ways: one path is used for semantic segmentation learning to determine strawberry
maturity, and the other path is used for key point segmentation to detect strawberry stem [20].
Since individual frames are enhanced with depth information to determine the strawberry position
by providing live video as input, the fast and accurate detection system based on neural networks
can be used to detect strawberries for a large-scale harvest [21]. However, strawberries are easily
blocked by soil, branches and leaves, and a large number of strawberries with similar colors are
gathered to cause clustering, overlapping, blocking and other phenomena resulting in difficult
strawberry target detection [22].

Therefore, some aspects should be considered in the strawberry recognition process: first,
when the target is overlapped and blocked, it is difficult to distinguish through the shape
information of the detection target because of the difference of strawberry shape; second, due to
the surface texture of strawberries affected by illumination, shadow and other factors, the
brightness and color of strawberries in the image are different, thus influencing the recognition
result; third, since the background of strawberry recognition is complicated, the texture and color
information of strawberry fruit is often confused with the interference information such as soil and
green leaves, interfering with the accuracy of recognition. Due to the above differences, the
existing target recognition strategies are difficult to be directly applied to strawberry recognition.
The literature remains sparse regarding rapid and intelligent classification and detection of
strawberry ripeness.

YOLOV7, released in 2022, offers superior detection accuracy and fast inference due to its
complex architecture and training strategy [23-25]. The field of lightweight detection has since
advanced, with newer models like YOLOvS [26], RT-DETR [27], and PP-YOLOE [28] pushing
the boundaries of performance and efficiency. Despite their general excellence, these state-of-the-
art models often struggle with specialized agricultural tasks, such as detecting small, occluded
strawberries in cluttered environments. The complexity of these newer architectures can also
hinder their adaptation for resource-constrained deployment. Consequently, the robust and
well-established YOLOv7 framework serves as a practical foundation. By integrating advanced
lightweight modules into YOLOV7, a model can be created that is specifically optimized for
strawberry detection, achieving a fine-tuned balance of accuracy, speed, and efficiency. This
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rationale underpins the proposal of YOLOv7-SSC, a lightweight model built upon the YOLOvV7
framework for strawberry ripeness detection. The following is the main content of the paper:

1) The original YOLOvV7 backbone is replaced with ShuffleNetV2 to reduce the model’s
computational burden.

2) Lightweight network Slim-neck is selected as the neck structure of the improved model,
which can not only reduce the complexity of the model, but also better retain information and
improve the detection accuracy.

3) The upsampling operator of CARAFE enables us to extract information more completely
from images by expanding the perceptual field of view, thus enhancing the detection accuracy of
small objects.

The rest of this article is organized as follows: The second section introduces the image data
collection and dataset construction; the third section introduces the improved lightweight model
YOLOv7-SSC; the fourth section introduces the experiments; in the fifth section, results are
discussed and analyzed; the sixth section summarizes the research methods. Moreover, this paper
establishes strawberry data set in complex environment, adopts YOLOvV7 detection network
model, and improves and optimizes algorithm model according to problems existing in data
samples, providing research basis for mechanized picking of ripe strawberries.

2. Materials and methods
2.1. Image data collection

The experimental images were acquired from a strawberry plantation in Xinhua Village,
Huainan City, Anhui Province, China, during the harvest period from March 1 to March 10, 2023,
by Yuanmeng Wang, Xinyi Chen and Ruoqi Wu. The strawberry plantation is cultivated in a land-
based ridge pattern, and the main strawberry varieties include “Hong Yan” and “Feng Xiang”,
which are characterized by the reddish color, large size, and full-fleshed fruits. To ensure a
comprehensive and balanced dataset, 3000 JPEG images with 4000x3000 resolution were
collected, with 1000 images each for unripe, near-ripe, and ripe strawberries. To account for
lighting and environmental changes, all images were randomly acquired at different times of day
(morning, noon, afternoon) across various weather conditions. The distribution of the image
dataset is summarized in Table 1.

Table 1. Detailed distribution of the strawberry image dataset

Maturity stage | Number of images Acquisition time Weather condition
Morning | Noon | Afternoon | Sunny | Cloudy
Unripe 1000 347 295 358 693 307
Near-ripe 1000 408 247 345 758 242
Ripe 1000 295 352 353 801 199
Total 3000 1050 894 1056 2252 748

The collection intentionally includes instances of partial and severe occlusion obtained through
different shooting angles (top-down, side-view, and oblique). To quantify the occlusion levels of
strawberries in the acquired image dataset, three levels of occlusion for each strawberry were
defined based on the visible proportion of the fruit: None (over 90 % of the fruit is visible with a
clear contour), Partial (between 50 % to 90 % is visible, allowing for confident maturity
assessment), and Severe (less than 50 % is visible, making maturity challenging to determine).
The occlusion status of strawberries in the dataset was cross-validated by three independent
annotators to adhere strictly to these criteria shown in Fig. 1.

2.2. Dataset construction and annotation

The strawberry image dataset was divided into training and validation sets in the proportion of
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8:2. The detection targets focus on three ripening stages: unripe, near-ripe, and ripe strawberries,
as shown in Fig. 2.

Labellmg is an open-source graphical image annotation tool designed for manual object
detection labeling. It supports the creation of both rectangular bounding boxes (ideal for marking
the position and size of regular objects) and polygonal annotations (suitable for irregularly shaped
objects). Using this tool, the corresponding XML files were generated to record strawberry
locations and their associated category information, thereby building a high-quality strawberry
dataset.

To ensure annotation consistency, all annotations were cross-validated by three annotators,
guided by different professional growers at the plantation, and ambiguous cases were resolved
through group discussion. A subset of 300 images was re-annotated by a second annotator,
achieving an inter-annotator agreement (as measured by IoU) of 0.92, indicating high labeling
consistency.
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Fig. 1. Occlusion levels of strawberries in the dataset
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Fig. 2. Examples of acquired strawberry pictures in different ripeness states. Photos were taken

in Xinhua Village, Huainan City, Anhui Province, China, from March 1 to March 10, 2023,
by Yuanmeng Wang, Xinyi Chen, and Ruoqi Wu
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3. An improved lightweight model for strawberry detection
3.1. Overview of the original YOLOV7 network structure

YOLOvV7 has outperformed known detectors such as YOLOvVS for velocity and precision.
Since YOLOv7 uses faster convolution operations and smaller models, it can achieve
high-precision results in a short time during detection. The overall network architecture of
YOLOv7 is shown in Fig. 3, which includes input layer, backbone layer, neck layer and head
layer. The preprocessed images are input to the backbone layer for feature extraction which is
head-fused to acquire features at different size. Finally, the detection results are output by the
detection head after receiving the fused features.

The YOLOvV7 network model primarily consists of three main parts: Backbone (based on
CSPDarknet53), Neck (featuring Path Aggregation Feature Pyramid Network, PAFPN), and
Head. Key modules include the Efficient Layer Aggregation Network (ELAN) module, the
MaxPool convolution (MP-1) module, and the Spatial Pyramid Pooling Cross Stage Partial
(SPPCSPC) module [29].

The CBS module is a basic convolution module, consisting of asynchronously long
convolution, which contains convolution, batch normalization, and activation functions. The
ELAN module is an efficient network architecture composed of multiple CBS modules, which
enhances the learning capability of the network while preserving the integrity of the original
gradient paths. The MP-1 module is a subsampling module composed of two branches of the same
length, one part is composed of MaxPool and CBS modules, and the other part is composed of
two CBS modules. The MP-1 module aims to preserve feature information while reducing the
number of parameters during the downsampling process. SPPCSPC module is an improved spatial
pyramid pooling structure, which adds concurrent MaxPool operations to convolution. The
PAFPN used by the Head layer realizes the efficient fusion of features at various degrees by
introducing a bottom-up path [30]. The Reparameter Convolution (Repconv) module is used to
acquire further feature information [31].
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Fig. 3. Network architecture of the original YOLOv7 model. BN is the Batch normalization; Silu and Mish
are activation functions; UPSample denotes resizing the feature map using nearest-neighbor interpolation
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3.2. Enhanced module design
3.2.1. ShuffleNetv2 backbone

The YOLOv7 backbone network is based on the CSPDarknet53 architecture. Because this
two-branch structure contains too many convolutional layers, the number of parameters is too
large, which seriously affects the detection rate. Hence, in the study, in order to decrease
computational requirements and the required storage space, the network ShuffleNetv2 is used to
replace the YOLOV7 backbone network.

The main improvement in ShuffleNetv2 [32] is the channel shuffle operation, which enables
efficient exchange of information between different channel groups, which enhances the network's
ability to capture space and channel dependencies. ShuffleNetv2 also utilizes depth-separable
convolution, splitting the convolution operation into separate deep and point-by-point
convolution. This operation decreases arithmetic complexity of the network while preserving its
expressiveness.

ShuffleNetv2 uses a new operation Channel Split shown in Fig. 4. When the step length is 1,
ShuffleNetv2 uses Channel Split to divide the original channel number into two parts, and the left
one is not processed shown in Fig. 4(a). The right branch consists of two normal convolution and
one depth-wise convolution (DWConv) operation, after which ShuffleNetv2 splices the two
branches together to reduce element-level operations, and finally mixes the channels with Channel
Shuffle. When the step size equals to 2, the input data separated into two parts, both of which use
DWConv to decrease the size of feature maps, thereby lowering the network's FLOPs shown in
Fig. 4(b). After processing, the branches are concatenated to increase network width, with Channel
Shuftle facilitating information exchange between channels.

Input
Channel Split {
DWConv_3x3

DWConv_3x3

| Concat | |

v
\_CL(M
DWConv 3x3
v

Concat |

v

¢ .
Channel Split Channel Split
@ Output @ Output

Fig. 4. ShuffleNetv2 base Units: a) Unit] with stride = 1, which uses Channel Split to process features;
b) Unit2 with stride = 2, which employs depth-wise convolution (DWConv) for downsampling

3.2.2. Introducing Slim-neck by GSConv in neck layer

Slim-neck by Ghost-Shuffle Convolution (GSConv) is a lightweight feature fusion module
that reduces the detector's computational complexity and inference time by reducing the number
of feature channels while maintaining accuracy [33-34]. In strawberry ripeness detection, because
the target is usually small, the excessive number of feature channels will lead to the redundancy
of the model and affect detection performance. Slim-neck can effectively reduce feature channels
and increase detection rate and accuracy.
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GSConv is the mixed convolution of channel standard convolution (SC), depth-wise separable
convolution (DSC), and shuffle. When applied to the neck layer, the feature graph output from the
backbone reaches its maximum channel dimension and minimum width and height. However,
using GSConv would deepen the network, increase data flow resistance and reasoning time.

In the GSConv structure shown in Fig. 5, first of all, the input feature graph is convolved 3%3
to produce an intermediate output. Subsequently, the intermediate output is processed by
DWConv. Then, the two outputs are formed a new feature graph through the concat operation.
Finally, channel shuffling is performed using Shuffle operation to produce the output with C,
channels.

| C5/2 channels GSConv
\
\
\
Input ! D

| WConv

C, channels ‘ Concat —»
] |
\
\
\
. Cpchamels |

Fig. 5. The structure of GSConv module. GSConv is the Ghost-Shuffle Convolution; C; is the number
of channels of the input feature graph; C, is the number of channels of the output feature graph

The calculation process is shown in Eq. (1):
Fesconw = Shuffle(Cat(a(XCl)cz/z), S(Q(Xcl)cz/z))czr (D

where, Fgscony is the output feature map after GSConv, X, is input feature graphs with C;
channels, a is the conventional convolution, and § is DWConv.

The shuffle operation integrates the information produced by the SC into each part of the DSC
output. By uniformly exchanging local feature information across different channels, SC
information is thoroughly mixed into the DSC output without any additional functions.

The standard convolution is to multiply each channel data and the corresponding channel of
the filter element by element and add it up, as displayed in Fig. 6. If the input data has C channels
and the filter size is K3K, the standard convolution parameter is C3K3K. The DWConv is
composed of the deep and the point-by-point convolution step. If the input data has C channels
and the filter size is K3K, the deep convolution parameter of DWC convolution is C3K3K, and
the point-by-point convolution parameter is C.

GSConv is used to replace SC, and continue to introduce Ghost-Shuffle bottleneck (GS
bottleneck) on the basis of GSConv exhibited in Fig. 7(a). Preprocessed images are input to the
backbone for feature extraction, which are then fused into large, medium, and small size features.
These fused features are sent to the detection head to produce the detection results.

To reduce further model complexity, a one-time aggregation cross stage partial network
(VoVGSCSP) module is designed using the clustering method based on ResNet, as illustrated in
Fig. 7(b). First, a 1x1 convolution is adopted to extract input features, reduces channels by half,
and then enter them into GS bottleneck. The first GSConv layer further halves the channels and
outputs them through the second GSConv layer, resulting in channels of C,/2. Then, it bottlenecks
the VoVGSCSP input with a 1x1 convolution and concats the GSBottleneck output. The final
output is produced by another 1x1 convolution with C, channels.
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Fig. 6. Calculation processes of SC and DWConv. SC is standard convolution;
C is the number of channels of the input feature map; K3K is the filter size
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Fig. 7. The structure of the GS bottleneck and VOVGSCSP: a) the structures of the GS bottleneck;
b) the structures of the VOVGSCSP, where GS bottleneck is the Ghost-Shuffle bottleneck, and
VoVGSCSP is one-time aggregation cross stage partial network module

3.2.3. CARAFE for feature fusion

The upsampling method used by YOLOV7 is the nearest neighbor interpolation, however, this
upsampling method only considers the subpixel neighborhood, and cannot capture the semantic
information required for intensive prediction tasks. Usually, the perceptual domain is very small.
However, the upsampling of Content Sensing Feature Recombination (CARAFE) can use the
underlying content information to predict the recombination kernel. The feature is reassembled in
the predefined nearby regions to ensure that the receptive field in the feature fusion network can
be extended while the semantic information is fully utilized. The core idea of CARAFE is to use
the content of the input feature itself to guide the upsampling process, so as to achieve more
accurate and efficient feature reconstruction. CARAFE is composed of upsampling prediction
module and feature recombination module [35-36].

Assuming that the upsampling rate is ¢ and an input feature graph with the shape of H3W3C
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is given, CARAFE first predicts the upsampled kernel with the upsampled kernel prediction
module, and then completes the upsampled kernel with the feature recombination module to obtain
the output feature graph with the shape of cH30W3C, as shown in Fig. 8.

For the upsampling prediction module, the channel compression of the feature graph is firstly
carried out, that is, the channel number of the input feature graph with size H3W3C is compressed
to H3W3C(,, by 1x1 convolution, and the convolution kernel is applied to carry out the convolution
operation. Then content coding is carried out to generate the reassembled kernel, the number of
input channels, output channels and the number of channels is extended to content coding; finally,
the output is spatially normalized. In the feature recombination module, the corresponding
position of the output feature map and the traditional feature map is dot product, and the output
value is obtained.

| Kernel Prediction Module |

Content > oH
Encoder H

Kup

W T
Channel

Compressor

=

<+«——— Kernel
Normalizer

Content-aware

Reassembly Module | OExample Location

| ® Reassemble Operation

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, J

sampling module. CARAFE is the upsampling of content sensing feature
recombination; the input feature graph with size H3W3C is upsampled by a factor of

3.3. Integrated architecture: YOLOv7-SSC

The proposed YOLOV7-SSC framework addresses the limitations of vanilla YOLOV7 in
handling occluded and densely clustered strawberries. The overall framework of the improved
network structure YOLOvV7-SSC is shown in Fig. 9. Key enhancements include the replacement
of the original backbone with ShuffleNetV2, the integration of a Slim-neck with GSConv for
efficient feature fusion, and the adoption of CARAFE for content-aware upsampling, collectively
improving performance on occluded and clustered strawberries.

The input images are first preprocessed into 640x640 resolution RGB format and fed into the
ShuffleNetV2 backbone network. The lightweight backbone network ShuffleNetV2 processes the
images and outputs feature maps. The generated feature maps are then processed by the Slim-neck
module, where GSConv replaces standard convolution. Afterward, CARAFE upsampling
leverages semantic content to adaptively reassemble features, which are further processed by
VoVGSCSP module to preserve fine-grained details. This design enhances the detection
capability for small and occluded strawberries.
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VoVGSCPS

GSConv
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GSConv

Repconv

VoVGSCPS
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GSConv ++ Slim-neck Backbone GSbottleneck ++— GSConv*2 —

VoVGSCPS + T Cony — GSbottleneck — Concat — Conv —
*

Fig. 9. Architecture of the proposed YOLOvV7-SSC network. The model incorporates ShuffleNetV2
as the backbone, a Slim-neck with GSConv, and a CARAFE upsampling module

4. Experiments
4.1. Experimental environment configuration and parameter settings

The hardware environment of this paper uses RTX 3080 Ti graphics card with 12GB video
memory and Intel(R) Xeon(R) Silver 4214R CPU@?2.40GHz. The software environment is
Windows 11 operating system, the development environment is PyTorch 2.0.0, CUDA 11.8, and
Python version 3.9.0. During the training, SGD optimizer was used to optimize the model.
Iteration batches were 8, the initial learning rate was set to 0.001, and the input image resolution
was 640%x640. A total of 200 training cycles were conducted.

To mitigate overfitting and enhance the model’s generalization ability, a series of data
augmentation techniques were applied to the training set using the PyTorch and OpenCV
frameworks. These techniques included geometric transformations such as random rotation
(15 degrees) and horizontal flipping, as well as photometric adjustments like random brightness
and contrast variations. This process effectively expanded the training dataset to about 5000
annotated images, simulating a wider range of real-world conditions, such as varying shooting
angles and lighting environments.

The model was optimized using the SIoU (Scalable Intersection over Unio) loss function,
which incorporates angle cost, distance cost, and shape cost into the bounding box regression,
effectively decreasing the total degrees of freedom and leading to faster and more stable
convergence. The learning rate was scheduled using a linear decay strategy, which gradually
reduces the learning rate from the initial value of 0.001 to a final value of 0.00001 over the course
of the 200 training epochs, ensuring a stable and consistent decline throughout the optimization
process.

4.2. Model evaluation index

In this study, the effect of the model is tested mainly from the lightweight degree and
recognition accuracy of the model, and the mean average precision (mAP), Giga floating-point
operations per second (GFLOPs), the frame per second (FPS) and Parameters are used as four
indexes to evaluate the lightweight degree of the model. Specifically, the number of parameters
(Params) was obtained by summing all trainable weights in the network, while the computational
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load (FLOPs) was calculated for a single forward pass using the ptflops library (version 2.0.0).

(1) AP indicator is the area under the PR curve and is used to describe the average accuracy of
high ridge strawberry detection. Where TP (True Positive) is the number of samples that correctly
detect the ripeness of strawberries, TN (True Negative) indicates the number of samples that are
correctly detected as unripe strawberries, FP (False Positive) is the number of samples that
incorrectly detect the ripeness of immature strawberries, and FN (False Negative) is the number
of samples that incorrectly detect the ripeness of strawberries. The formula is as follows:

TP
= 2
P TP FPF P’ @
R=—— A3)
TP Il_ FN
AP = j PRdr. 4)
0
(2) GFLOPs is used to measure the complexity of the model, calculated as follows:
GFLOPs = (2C;K? — 1)HWC,, %)

where C; and C, represents the number of input and output channels, K represents the size of the
kernel, H and W are used to describe the size of the feature map.

(3) The value of FPS is equal to the number of images processed by the model per second,
which can be used to detect the model speed, and n is the number of images processed by the
model; T is the time consumed. The formula is as follows:

Fps =" 6
-2 ©)

(4) Parameters number refers to the number of parameters that the model contains.
5. Result and discussion
5.1. Training evaluation of YOLOvV7-SSC model

All evaluation indexes tend to be stable after 150~200 epochs shown in Fig. 10. The training
of the model ends when epoch reaches 200.

5.2. Experimental analysis of lightweight network

In order to achieve both accurate identification of strawberry maturity and model lightweight,
it is also the most important thing to select the appropriate backbone network. Therefore, the
YOLOv7 backbone network is replaced by the current mainstream lightweight network to detect
the maturity of high-ridge strawberries. The main lightweight model structure is MobileNetv3
[37], ShuffleNetv2, GhostNet [38]. Each network model Params(M), FLOPs(G) and mAP are
shown in Table 2.

As can be seen from Table 2, after adding ShuffleNetv2 network to the model, the number of
parameters decreased by 46.2 %, FLOPs(G) decreased by 62.1 % and mAP did not decrease.
Compared with other lightweight networks, the model with ShuffleNetv2 network has better
accuracy and lower parameters. Therefore, ShuffleNetv2 network was chosen as the backbone
network in this paper, which can reduce the complexity of the model while retaining the
expressibility. Better detection results can be achieved with less computing resources.
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Table 2. Comparison of lightweight network models

Model Params(M) | FLOPs(G) | mAP(%)
YOLOv7 37.2 105.1 99.6
YOLOv7-MobileNetv3 23.4 37.4 97.6
YOLOv7-GhostNet 26.7 533 96.5
YOLOv7-ShuffleNetv2 20.0 39.8 99.6
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0.08 0.014 0.0:
1.0 1.0
o012 006 » ”“W
0.06 ' '
0.010] 0.012 0.6 0.6
0.04 0.008 0.008 04 04
0.006 0.004 0.2 0.2
0.02
0 50 100 150 200 0,0(140 50 100 150 200 B mmi) 50 100 150 200 0 n(] 50 100 150 200 0 nii 50 100 150 200
epoch epoch epoch epoch epoch
mAP@O0.5 mAP@0.5:0.95 val Box val Objectness val Classification
0.10 0.008 0.030
1.0 1.0/
08 rJ 08 0.08 0.007 0,005
0.6 0.6 0.06 0.006
0.020
04 04 0.04 0.005
0.015
02 02 0.02 0.004
0'CU 50 100 150 200 0'OU 50 100 150 200 U.“"“ 50 100 150 200 0‘0030 50 100 150 ZUUU‘UI"U 50 100 150 200
epoch epoch epoch epoch epoch

Fig. 10. Evaluation index of YOLOv7-SSC model training process based on self-built datasets
5.3. Ablation experiments

The ablation experiment is necessary to check whether the modules introduced in the model
are necessary and whether the influence of each module on the existence of the model is conducive
to model detection. In this study, YOLOV7 served as the benchmark model. Various modules were
integrated into a custom strawberry dataset to evaluate its performance. Four YOLOv7 variants
were compared: YOLOvV7, YOLOv7+ShuffleNetv2, YOLOv7+ShuffleNetv2+Slim-neck, and
YOLOv7+ShuffleNetv2+Slim-neck+ CARAFE.

As shown in Table 3, after replacing the YOLOvV7 backbone network with ShuffleNetv2, the
number of parameters decreased by 46.2 % and FLOPs(G) decreased by 62.1 %. After adding the
lightweight neck structure Slim-neck, the accuracy remained unchanged and the number of
parameters and FLOPs(G) decreased by 7.5 % and 34.1 %, respectively. After the introduction of
the upsampling operator CARAFE, the number of parameters and FLOPs (G) decreased by 37.8 %
and 23.6 %, respectively, while FPS improved by 4.71 %. Compared to YOLOV7, the
YOLOV7-SSC model reduces parameters and FLOPs by 69.0 % and 81.0 %, respectively,
achieves an mAP@0.5 of 99.6 %, and maintains a high FPS of 90.91. Therefore, based on
comprehensive analysis, the YOLOv7-SSC proposed in this paper may be a better detection model
in this study.

Table 3. Compare the performance of each module in YOLOv7-SSC

Index FPS | Params(M) | FLOPs(G) | mAP(%)
YOLOv7 78.7 37.2 105.1 99.6
YOLOv7+ShuffleNetv2 85.5 20.0 39.8 99.6
YOLOvV7+ShuffleNetv2+Slim-neck 86.2 18.5 26.2 99.6
YOLOv7+ShuffleNetv2+Slim-neck+CARAFE (YOLOv7-SSC) | 90.9 11.5 20.0 99.6
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As visualized in Fig. 11, in the first 16 feature maps generated by CARAFE: (a) the input
feature maps before upsampling show relatively blurred and scattered semantic information (such
as strawberry edges and calyx regions); (b) the output feature maps after CARAFE processing
demonstrate more concentrated, brighter activated regions representing small targets with clearer
boundaries, while background noise is effectively suppressed. This significant improvement stems
from CARAFE’s content-aware upsampling mechanism. By dynamically predicting location-
specific kernels based on semantic context, CARAFE expands the receptive field and preserves
fine-grained details-capabilities essential for distinguishing small, occluded strawberries from
complex backgrounds. Consequently, this adaptive feature reconstruction allows the network to
better perceive critical target information, leading to enhanced generalization and accuracy.

Ch0 Chl . Ch2 Ch5 Ch6

Ch9

Chli3 Chl4

~n|

3
\

(a)

Fig. 11. Feature map comparison before and after the CARAFE upsampling module: a) input feature maps
before upsampling; b) output feature maps after upsampling (the first 16 channels)

5.4. Comparison performance of lightweight models

YOLOV7-SSC leads with 90.9 FPS, outperforming other models shown in Table 4. This high
frame rate is critical for real-time applications such as guiding robotic harvesting arms.
EfficientDet-Lite shows moderate speed, while YOLOv8-Nano lags significantly, likely due to its
extreme lightweight design prioritizing parameter efficiency over parallel computation. In
contrast, the RT-DETR model achieves the lowest FPS (35.82), which can be attributed to its more
complex Transformer-based architecture and higher computational footprint, making it less
suitable for high-speed real-time tasks despite its high accuracy.

YOLOv7-SSC has higher parameters but compensates with unmatched speed and accuracy,
reflecting a balance tailored for GPU acceleration. YOLOvVS8-Nano is the most parameter-efficient
model, making it suitable for deployment on ultra-low-power edge devices. EfficientDet-Lite
strikes a middle ground but fails to leverage its moderate parameter count for competitive
performance. RT-DETR, with the highest parameter count, embodies a non-lightweight design
philosophy, prioritizing performance over efficiency.

YOLOV7-SSC incurs higher FLOPs due to its feature-rich architecture, which enhances
precision and speed at the cost of computational demand. YOLOvS8-Nano achieves the lowest
FLOPs, ideal for energy-constrained environments. EfficientDet-Lite underperforms despite
moderate FLOPs, indicating inefficient feature utilization. RT-DETR incurs the highest FLOPs
by a significant margin, consistent with its large model size and complex structure, which results
in superior accuracy but the slowest inference speed.

YOLOv7-SSC achieves the highest accuracy, demonstrating robustness in detecting small,
occluded strawberries in cluttered field environments. RT-DETR matches this top accuracy at
99.6 %, validating the power of its advanced architecture, though at the expense of practical
inference speed. YOLOV8-Nano follows closely at 99.5 %, validating its ability to retain precision
despite extreme light weighting. EfficientDet-Lite lags significantly, rendering it impractical for
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precision-critical agricultural tasks.

YOLOV7-SSC is the top performer for applications requiring high speed and accuracy, such
as automated harvesters or high-throughput sorting systems. Its higher FLOPs and parameters are
justified by GPU-optimized efficiency and precision. YOLOv8-Nano excels in ultra-low-power
edge deployment but sacrifices speed for extreme parameter efficiency. RT-DETR serves as an
accuracy benchmark, demonstrating that even higher architectural complexity can yield marginal
gains, but its low FPS and large size currently limit its practical deployment in real-time
agricultural robotics. EfficientDet-Lite struggles to compete, offering neither the speed of
YOLOvV7-SSC nor the efficiency of YOLOvS8-Nano, with poor accuracy.

5.5. Testing results of different detection models

The obtained data sets were used to train and test different models to identify and detect
strawberries in different growth states. Part of the test results are shown in Fig. 12.

Fig. 12. Detection results of some representative strawberry images using different algorithm detections:
a) EfficientDet-Lite; b) YOLOV8-Nano; ¢c) RT-DETR; d) YOLOvV7; e) YOLOV7-SSC.
Original photos were taken in Xinhua Village, Huainan City, Anhui Province, China,
from March 1 to March 10, 2023, by Yuanmeng Wang, Xinyi Chen, and Ruoqi Wu
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Table 4. Performance of lightweight models

Model Params (M) | FLOPs (G) | FPS | mAP (%)
EfficientDet-Lite 4.2 10.5 78.6 95.7
YOLOv8-Nano 3.0 8.1 53.7 99.5
RT-DETR 41.6 95.2 35.8 99.6
YOLOvV7-SSC 11.5 20.0 90.9 99.6

It can be seen (Fig. 12) from the test results of group (a) that the EfficientDet-Lite model
accurately detects most strawberries with few false positives, albeit with lower confidence scores
for classification. However, it failed to detect smaller, distant, or severely occluded fruits. These
observations align with its lower mAP score presented in Table 4, highlighting the trade-off
between lightweight design and detection performance in complex field environments. Moreover,
ripe strawberries and near-ripe strawberries can be detected using YOLOV8-Nano model with
high scores, as illustrated in group (b). However, the YOLOv8-Nano model exhibits a high rate
of missed detections for strawberries that are occluded, small-scale, or have low contrast with the
background, reflecting the performance ceiling inherent to its extreme lightweight design. As
shown in the test results of group (c¢), RT-DETR demonstrates superior detection accuracy and
localization quality. However, it exhibits missed detections for strawberries that are occluded,
small in scale, or have colors similar to the background. Furthermore, its FPS is significantly lower
than that of the YOLO family models. Consequently, RT-DETR offers no practical advantages
for deployment in agricultural robotic systems. As the baseline model, YOLOv7 demonstrates
powerful detection capabilities. Nevertheless, it exhibits missed detections for smaller-sized
strawberries or those with colors similar to the background shown in the detection results of group
(d). Furthermore, its highest parameter count and computational complexity result in less
competitive detection speed.

Compared with these lightweight models, the improved YOLOV7-SSC model can realize the
high-precision detection of different growth states of strawberry targets shown in the test results
of group (e), which further proves that the network proposed in this study has a good effect on
improving the detection of strawberry maturity. Moreover, the YOLOv7-SSC model exhibits
superior performance in accurately detecting small objects. Therefore, it is highly necessary to
optimize the recognition model based on the characteristics of the detection targets to improve
target detection accuracy.

6. Conclusions

This study proposes YOLOvV7-SSC, a lightweight multi-target detection framework designed
for dense strawberry orchards with significant occlusion and complex backgrounds. By integrating
the ShuffleNetV2 backbone, Slim-neck with GSConv, and CARAFE upsampling modules, the
model achieves an optimal balance between accuracy, speed, and field deployability in
agricultural vision systems.

The experimental results show that compared with the original YOLOv7 model, parameters
and FLOPs(G) of the improved model are reduced by 69.0 % and 81.0 %, respectively, mAP@0.5
18 99.6 % and the FPS is as high as 90.91. Compared with the detector of the same level, it can be
seen that the proposed model YOLOv7-SSC in this paper achieves the most balanced performance
across all indexes, and its lightweight network structure and efficient detection results are more
suitable for the detection task of strawberries maturity. The improved framework can be extended
to other crops and integrated with robotic arms for end-to-end automated harvesting, significantly
reducing labor costs in precision agriculture. Future work will focus on multi-modal fusion for
enhanced ripeness grading and ultra-low-power optimization for microcontroller deployment.
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