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Abstract. The dynamics of nonlinear viscoelastic plates and shells is a crucial area of study in
modern mechanics, materials science, and engineering. This importance stems from the increasing
demand for accurate modeling and analysis of structures subjected to complex loads, as well as
the advancement of new materials and technologies. Modern materials, including carbon
composites, polymers, and multilayer coatings, possess complex viscoelastic properties. Under
dynamic loads, such as vibrations or impacts, viscoelastic materials exhibit time-dependent
responses to these loads, necessitating careful consideration of their relaxation and creep
characteristics. The unique viscoelastic properties allow these materials to adapt to applied loads,
making them highly desirable for the design of sophisticated devices, such as sensors, membranes,
and adaptive structures. Furthermore, interactions with external fields — such as electromagnetic
or thermal forces — enhance the effects of nonlinearities and require the development of new
modeling approaches. The paper presents the equations of dynamics of geometrically and
physically nonlinear thin-walled elements. An operator approach based on Rabotnov’s hereditary
kernels is proposed, which makes it possible to correctly account for relaxation processes. The
novelty of the work lies in the consideration of the combined effect of geometric and physical
nonlinearities. To demonstrate the applicability of the model, a numerical example of the
deflection of a rectangular plate under uniform loading is examined. Graphs of the deflection
evolution and the influence of thickness and relaxation parameters are presented.

Keywords: physically nonlinear viscoelasticity, integro-differential equations, nonlinear
viscoelastic models, viscoelastic plates and shells, viscoelastic materials.

1. Introduction

Modern structures, such as aircraft hulls, underwater vehicles, bridge spans, thin-walled tanks,
and shells in microelectronics, operate under conditions where nonlinear effects become
dominant. Geometric nonlinearity occurs at large strains characteristic of thin plates and shells.
For example, under the influence of external dynamic loads, structures can demonstrate significant
deflections, accounted for by nonlinear equilibrium equations.

Physical nonlinearity is related to the viscoelastic properties of materials when their response
depends on time, strain rate, and external factors (temperature, electromagnetic fields, etc.). This
is especially important for modern polymer composites and nanomaterials. Ignoring these effects
can lead to significant calculation errors, unacceptable in critical industries such as aviation,
energy, and space technology. Quite a lot of complex questions of the modern engineering practice
imply the thorough consideration of the dynamics of viscoelastic shells and plates. Real structures
are exposed to various dynamic effects that due to accumulation may result in failure by fatigue.

Models have been developed to assist in predicting the life time of materials that are used in
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the services. New models can enhance the mass to strength ratio of the buildings which is of
essence to the aviation and space sector. Vibrations are suppressed by vibration absorbing material
which is called as Viscoelastic Material, and also used to prevent heat loss.

Such systems have better functional characteristics that are assisted by models that describe
their behavior. But above the problems of accounting the structural orthotropy of plates taking
into account the physical nonlinearity of material still are topical; the problems are mainly of
interest to problems of viscoelastic properties of material [1-7].

At the current stage of development in the mechanics of deformable media, primary attention
is devoted to the numerical modeling of nonlinear viscoelastic processes in CAE systems (Ansys,
Abaqus, COMSOL) [8-18]. However, fundamental theory remains in demand, as it makes it
possible to develop new engineering approaches and to correctly interpret the results of numerical
simulations.

The modern technologies demand the materials which are characterized by their functioning
with regard to the complicated impact of many physical factors among them being the
electromagnetic, thermal, and the mechanical fields. It defines whether the interaction of these
processes should be studied, as they are important parts of designing and operation of modern
devices. In recent years, rigorous mathematical methods for analyzing the conjugate fields of
electrically conductive elements have been intensively developed in the mechanics of deformable
media [19-26].

2. Problem statement. fundamental equations

Assuming the plates and shells are in a plane-stress state and that the Kirchhoff-Love
hypothesis is valid, the following definitions for strain are accepted, G. Kauderer [2]:

0°wW 2°w 0°wW
& = _Zw. Ex = _Za—yz' Yxy = —sz, Yy = Vyz =0, ()
_ VO VZW _ 1 (1 - 2V0> VZW 2
‘gZ_ 1_V0Z ) EO_ 3 1—V0 Z . ()

The relationships connecting stresses with strains of the theory of physically nonlinear
viscoelasticity according to [1] are presented in the following form:
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where functions y(13) and are called the intensity functions of shear strain and elongation strain,
respectively:

2
110(2] = EJZ/:B (S,% + 8321 + gzz - Ezsy - Sygz - Szgx) + 1/2 (Y:?y + ]/;Z + yy?z)- (5)
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Based on Eqs. (1) and (2), we obtain:
W = A’z?, (6)
where:
A2 = g[vl (W2 + W2) + VaWe, Wy, + 33|,

Vo 2v, @)

=———+1, =2 1
T T =) V2T T =)

The integral operators are of the following form:
G =Go(1 - 4R, K=Ky(1—21,K", ®)
t t
R*f=jR(t—T)f(T)dT, K*fzjl((t—r)f(r)dr, )
0 0

where R(t — t), K(t — 1) are the heredity kernels:

GO_G,:]' A KO—K

Al = 2 = Ko U! (10)

Go

where G, K, are the instantaneous shear modulus and bulk compression modulus, respectively;
Gij K;; are the long-term elasticity moduli.
The following identities hold [3]:

1
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where operators I'* and U™ are called resolvent operators.
From Eg. (3) for stress components, we obtain [1]:
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where v, is Poisson’s ratio.
Stress functions are determined by the Airy formulas:

N, 80 N, %0 0% )
XT T Ty YT Taxz YT T oxay

where h is the height (thickness) of the plate.
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3. Solution methods

Internal forces are determined by the following formulas:

h/2 h/2 h/2
M, f 0,zdz, M, =f ayzdz, My, = —M,,, :J- 1zdz,
h/2 -h/2 ~n/2
h/2 h/2 (14)
Q, = f Tezdz, Q) = f 7y,dz.
—h/2 —h/2
Based on Eq. (12), for the moments, we have:
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where:
F2(x,y,t) = vl(wfx + W2) + VaWy Wy, + 3wh, (16)
and Dy = (1 1s the cylindrical rigidity.
Equlllbrlum equatlons through internal forces are presented in the following form [4]:
azM"+zazM"y+azM + KNy + KN, +— i (N W N aW)
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where N, = hoy; Ny, = ho,,.
Substituting Egs. (15) into (17) and bearing in mind Eq. (18), we obtain:
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= ’w 9%®  9*w 9%® ?w  9%®
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where F(x,y,t) = F*"(x,y,t); L(W,®) = o2y T ayr am oxdy  wdy’
The relationships between strains and stresses according to [1] are written in in the following
form:
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where 7,- is the intensity of shear stresses, ¢;;, g;; are the components of strain and stress tensors,
respectively:
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The equation of continuity of strains of the middle surface has the following form:
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The stress functions are determined by the Airy Eq. (13).

Substituting Eq. (20) into Eq. (21), keeping in mind Eq. (13), the strain compatibility equation
can be represented as:

v Z ) G
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we obtain:
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Immediately the special case results when the mean-stress function K(sy) and the intensity
function of shear stresses g(t2) have the following form:

K(sp) =1, g(to) =1+ thOI (26)

and the elongation function y(&,) and the shear function y(y3) = 1 + y,1pZ can be represented
in the considered range of stresses with sufficient accuracy:

x() =1 vy =1+y93 v:=—-0 (27)

For Egs. (26) and (27), relation Eq. (3) and (20) are written in the following form:
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4. Discussion of results

Following A. S. Volmir [4], we assume that the aspect ratio of the plate h = a/b lies in the
range —1 < h < 1. We use Eq. (18) and (31) for K, =K, = 0:

V4W[

4y,h%[ 0
RGO + T [P (= 4R (x,7,0)

]
+@V2W(1 = 4R)2A,(%,,0) + 0,5Wiey (1 — ;R A (x, 7, ©) + voAy, (%, ¥, )]

+0,5W,, (1 — 4,R*)?[A,, (%, ¥, 1) + Vodex (x, ¥, 1) | + (1 — v0) Wpy (1

AR Ay (xy,0)] = — LA [q(x, .0

— 2
D, - T +L(W,®) + V20

'VIBROENGINEERING PROCEDIA. DECEMBER 2025, VOLUME 60 753



NONLINEAR MODELS OF VISCOELASTIC PLATES AND SHELLS.
RAVSHAN INDIAMINOV, AKRAM NARKULOV, SULTON KHAKBERDIYEV, RUSLAN BUTAYEV, SOBIR KHOLJIGITOV, SHUKHRAT NEMATOV
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parameter.

The solution of Eq. (32) which is the series over small parameter 6, is reduced to the solution
of the infinite sets of integro-differential equations, the first of which is the equation of
geometrically nonlinear dynamics of the viscoelastic flexible plates and shells. Let us consider
some special cases. For a circular cylindrical shell for K, = 0; K, = 1/R , where R is the radius
of curvature of the middle surface, we obtain the main resolving equations of the dynamics of
cylindrical shells. To study the dynamics of a spherical shell of radius R, it is necessary to set
K, =K, = %. For the case of a plate, K, = K, = 0. When integrating the equations of motion,
certain boundary and initial conditions are required. These boundary and initial conditions for
different cases of loading are given in [4]. For the operators contained in Eqs. (31) and (32), it is

appropriate to use the Yu. N. Rabotnov integral operators [3], with kernels of the known form of
a fractional-exponential function:

S N G Gl it
Kt-1)=E,(-Bt—-1)=(t—-1) ano MMn+ D@+1D]’ (33)
-1<a<0, 0<B<oo.

For the Yu. N. Rabotnov operators [3], the following relations hold:

2.6,

B0 B0) = T B0~ B0, Balh,0) = g
649

1+ uEx(A) .
T+ 1,E5() 1+ (i + p)Ec(A — pa).

The given formulas may be applied to the solution of particular equations of the dynamics of
the flexible plates and shells (the material of which has the nonlinear viscoelastic property).

Numerical Example. To demonstrate the capabilities of the model, let us consider a rectangular
plate of dimensions a X b = 1x1 m and thickness h = 0.01 m, clamped along its edges. The
material is a viscoelastic polymer characterized by an instantaneous elastic modulus
E, = 2.5x10° Pa, Poisson’s ratio v = 0.3, and a longterm modulus E,, = 1.2x10° Pa. The applied
load is a uniform pressure of ¢ = 1x10° Pa. The deflections at the center of the plate were
calculated over time using the fractional-exponential Rabotnov kernel to describe the relaxation
behavior. Main results of the numerical simulation. Fig. 1 shows the time evolution of the central
deflection of the viscoelastic plate for different thicknesses. The deflection initially increases
rapidly and then approaches a quasi-stationary level, which reflects the characteristic relaxation
behavior. With increasing plate thickness, the deflection decreases in a nonlinear manner. Fig. 2
presents a comparison between the linear and nonlinear models. Geometrical nonlinearity leads to
a reduction in the deflection amplitude by about 10-15 % compared with the linear model. Fig. 3
illustrates the effect of the relaxation parameter a. As a increases, the plate stabilizes more
quickly and reaches its quasi-stationary deflection level sooner.
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T
/
Fig. 1. Evolution of viscoelastic plate Fig. 2. Comparison of linear and
deflection over time nonlinear models

/4

Fig. 3. Influence of relaxation parameter « on deflection

The obtained results demonstrate the significant influence of both geometric and physical
nonlinearities. Geometric nonlinearity stabilizes the system by limiting deflections under large
loads. Physical nonlinearity (viscoelasticity) causes a gradual increase in deflection over time,
which is consistent with experimentally observed creep and relaxation effects. Unlike classical
models, the proposed approach makes it possible to account for the combined action of both types
of nonlinearities. This is particularly important for polymer composites that are widely used in
aerospace engineering and microelectronics. A comparison with numerical simulations performed
in CAE packages (Ansys, Abaqus) shows qualitative agreement with the system’s behavior,
thereby confirming the applicability of the proposed model. The scientific novelty of the study
can be summarized as follows: a generalization of the classical equations of thin plate dynamics
is proposed, taking into account the simultaneous influence of geometric and physical
nonlinearities; an operator approach based on Rabotnov’s kernels is employed, enabling the
description of a wide range of relaxation effects; the applicability of the models is demonstrated
through a numerical example, which enhances the practical significance of the work.

5. Conclusion

Analysis of dynamics of physical nonlinear viscoelastic plates and shells is required to resolve
current engineering-related problems. New models and calculation techniques enable application
to more accurate predict existing of structures in working operation conditions, stability and
reliability of complex structures and also development of high technology production with
unparalleled properties. This fact predestines the research in this field to become the essential
contribution in the growing of the fundamental science and application of engineering creating
new possibilities of innovation within different spheres. Aerospace vehicles and microelectronic
shell are modern structures that have to operate under high mechanical stresses, temperature, and
the effect of electromagnetic disturbance. In this case, one will have to take into account non-linear
effects and viscoelastic nature of materials. The consequences of ignoring such factors may result
in major errors during calculations hence they are not acceptable in industries where things are so
crucial. Modeling of the dynamics of viscoelastic plates and shells uses numerical approximations
that would describe adequately the geometric and physical nonlinearity and address the
phenomena of material viscosity. High-tech structures involving crane shafts, composite shells,
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and composite sandwich structures, shallow and thick shells are important in design of non-linear
viscoelastic plates and shells through numerical modeling. It is possible to solve the complex
dynamic issues and make predictions in material behavior with different operational conditions
by using the finite difference techniques, linearizing predictions, and the discrete orthogonalizing.
The proposed model makes it possible to account for both geometric and physical nonlinearities
in the analysis of viscoelastic plates and shells. The numerical example confirmed the significant
influence of thickness and relaxation parameters on the deflections. The limitations of the study
are related to the use of simplified geometry and a homogeneous material. Future research should
address multilayer composites, the influence of thermal and electromagnetic fields.

6. Future scope

The work gives hope to new advancement of nonlinear viscoelastic models that take into
account the complicated loading and heating operations. Much concern is to be put under
modeling multilayer composite plates and shells with varying physical and mechanical properties
of layers. One of the future perspectives is the implementation of the created models into finite
element computational kits Ansys and COMSOL Multiphysics. The analysis of sensor and
actuator systems should be extended to cover electromagnetic and piezoelectric effects of research
as well. One should also take dynamics under loading of a high frequency where inertial and wave
influences in the structural stability are evident. In future, I can concentrate on studying the fatigue
capacity of viscoelastic plates and shells under thermomechanical shaking alleviation. There is a
need to come up with analytical and numerical techniques to solve three dimensional nonlinear
viscoelastic problems with the assumption of large deformations. One of the promising directions
is the designing of the mathematical models of service life prediction of structural elements under
extreme operating conditions. The derived designs apply to aerospace structure, microelectronic
devices and robotic systems. The given way of the research will help to develop new properties
of materials and technologies with unsurpassed adaptive and damping characteristics.
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