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Abstract. The dynamics of nonlinear viscoelastic plates and shells is a crucial area of study in 
modern mechanics, materials science, and engineering. This importance stems from the increasing 
demand for accurate modeling and analysis of structures subjected to complex loads, as well as 
the advancement of new materials and technologies. Modern materials, including carbon 
composites, polymers, and multilayer coatings, possess complex viscoelastic properties. Under 
dynamic loads, such as vibrations or impacts, viscoelastic materials exhibit time-dependent 
responses to these loads, necessitating careful consideration of their relaxation and creep 
characteristics. The unique viscoelastic properties allow these materials to adapt to applied loads, 
making them highly desirable for the design of sophisticated devices, such as sensors, membranes, 
and adaptive structures. Furthermore, interactions with external fields – such as electromagnetic 
or thermal forces – enhance the effects of nonlinearities and require the development of new 
modeling approaches. The paper presents the equations of dynamics of geometrically and 
physically nonlinear thin-walled elements. An operator approach based on Rabotnov’s hereditary 
kernels is proposed, which makes it possible to correctly account for relaxation processes. The 
novelty of the work lies in the consideration of the combined effect of geometric and physical 
nonlinearities. To demonstrate the applicability of the model, a numerical example of the 
deflection of a rectangular plate under uniform loading is examined. Graphs of the deflection 
evolution and the influence of thickness and relaxation parameters are presented. 
Keywords: physically nonlinear viscoelasticity, integro-differential equations, nonlinear 
viscoelastic models, viscoelastic plates and shells, viscoelastic materials. 

1. Introduction 

Modern structures, such as aircraft hulls, underwater vehicles, bridge spans, thin-walled tanks, 
and shells in microelectronics, operate under conditions where nonlinear effects become 
dominant. Geometric nonlinearity occurs at large strains characteristic of thin plates and shells. 
For example, under the influence of external dynamic loads, structures can demonstrate significant 
deflections, accounted for by nonlinear equilibrium equations.  

Physical nonlinearity is related to the viscoelastic properties of materials when their response 
depends on time, strain rate, and external factors (temperature, electromagnetic fields, etc.). This 
is especially important for modern polymer composites and nanomaterials. Ignoring these effects 
can lead to significant calculation errors, unacceptable in critical industries such as aviation, 
energy, and space technology. Quite a lot of complex questions of the modern engineering practice 
imply the thorough consideration of the dynamics of viscoelastic shells and plates. Real structures 
are exposed to various dynamic effects that due to accumulation may result in failure by fatigue.  

Models have been developed to assist in predicting the life time of materials that are used in 
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the services. New models can enhance the mass to strength ratio of the buildings which is of 
essence to the aviation and space sector. Vibrations are suppressed by vibration absorbing material 
which is called as Viscoelastic Material, and also used to prevent heat loss. 

Such systems have better functional characteristics that are assisted by models that describe 
their behavior. But above the problems of accounting the structural orthotropy of plates taking 
into account the physical nonlinearity of material still are topical; the problems are mainly of 
interest to problems of viscoelastic properties of material [1-7].  

At the current stage of development in the mechanics of deformable media, primary attention 
is devoted to the numerical modeling of nonlinear viscoelastic processes in CAE systems (Ansys, 
Abaqus, COMSOL) [8-18]. However, fundamental theory remains in demand, as it makes it 
possible to develop new engineering approaches and to correctly interpret the results of numerical 
simulations. 

The modern technologies demand the materials which are characterized by their functioning 
with regard to the complicated impact of many physical factors among them being the 
electromagnetic, thermal, and the mechanical fields. It defines whether the interaction of these 
processes should be studied, as they are important parts of designing and operation of modern 
devices. In recent years, rigorous mathematical methods for analyzing the conjugate fields of 
electrically conductive elements have been intensively developed in the mechanics of deformable 
media [19-26].  

2. Problem statement. fundamental equations 

Assuming the plates and shells are in a plane-stress state and that the Kirchhoff-Love 
hypothesis is valid, the following definitions for strain are accepted, G. Kauderer [2]: 

𝜀௫ = −𝑧 𝜕ଶ𝑊𝜕𝑥ଶ ,      𝜀௫ = −𝑧 𝜕ଶ𝑊𝜕𝑦ଶ ,     𝛾௫௬ = −2𝑧 𝜕ଶ𝑊𝜕𝑥𝜕𝑦 ,     𝛾௫௬ = 𝛾௬௭ = 0, (1)𝜀௭ = − 𝜈଴1 − 𝜈଴ 𝑧∇ଶ𝑊,     𝜀଴ = − 13 ൬1 − 2𝜈଴1 − 𝜈଴ ൰ 𝑧∇ଶ𝑊. (2)

The relationships connecting stresses with strains of the theory of physically nonlinear 
viscoelasticity according to [1] are presented in the following form: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝜎௜௝ − 𝜎଴𝛿௜௝ = 2𝐺଴ሺ1 − 𝜆ଵ𝑅 ∗ሻ ൤1 + ෍ 𝛾ଶ௡(1 − 𝜆ଵ𝑅 ∗)ଶ௡𝜓଴ଶ௡(𝑥,𝑦, 𝑡)ஶ௡ୀଵ ൨ ൫𝜀௜௝ − 𝜀଴𝛿௜௝൯,𝜎௫ − 𝜎௬ = 2𝐺଴(1 − 𝜆ଵ𝑅 ∗) ൤1 + ෍ 𝛾ଶ௡(1 − 𝜆ଵ𝑅 ∗)ଶ௡𝜓଴ଶ௡(𝑥,𝑦, 𝑡)ஶ௡ୀଵ ൨ ൫𝜀௫ − 𝜀௬൯,𝜏௫௬ = 2𝐺଴(1 − 𝜆ଵ𝑅 ∗) ൤1 + ෍ 𝛾ଶ௡(1 − 𝜆ଵ𝑅 ∗)ଶ௡𝜓଴ଶ௡(𝑥,𝑦, 𝑡)ஶ௡ୀଵ ൨ 𝛾௫௬,𝜎଴ = 3𝑘଴(1 − 𝜆ଶ𝐾 ∗) ൤1 + ෍ 𝜒௡(1 − 𝜆ଶ𝐾 ∗)ଶ௡𝜀଴௡ஶ௡ୀଵ ൨ 𝜀଴,

 (3)

൞𝛾(𝜓଴ଶ) = 1 + ෍ 𝛾ଶ௡ஶ௡ୀଵ (1 − 𝜆ଵ𝑅 ∗)ଶ௡𝜓଴ଶ௡,𝜒(𝜀଴) = 1 + ෍ 𝑎𝑒௡(1 − 𝜆ଶ𝐾 ∗)௡𝜀଴௡ஶ௡ୀଵ ,  (4)

where functions 𝛾(𝜓଴ଶ) and  are called the intensity functions of shear strain and elongation strain, 
respectively: 

𝜓଴ଶ = 2√3ට2 3ൗ (𝜀௫ଶ + 𝜀௬ଶ + 𝜀௭ଶ − 𝜀௭𝜀௬ − 𝜀௬𝜀௭ − 𝜀௭𝜀௫) + 1 2ൗ (𝛾௫௬ଶ + 𝛾௬௭ଶ + 𝛾௫௭ଶ ). (5)



NONLINEAR MODELS OF VISCOELASTIC PLATES AND SHELLS.  
RAVSHAN INDIAMINOV, AKRAM NARKULOV, SULTON KHAKBERDIYEV, RUSLAN BUTAYEV, SOBIR KHOLJIGITOV, SHUKHRAT NEMATOV 

750 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479  

Based on Eqs. (1) and (2), we obtain: 𝜓଴ଶ = 𝜆ଶ𝑧ଶ, (6)

where: 𝜆ଶ = 89 ൣ𝜈ଵ(𝑤௫௫ଶ + 𝑤௬௬ଶ ) + 𝜈ଶ𝑤௫௫𝑤௬௬ + 3𝑤௫௬ଶ ൧, 𝜈ଵ = 𝜈଴(1 − 𝜈଴)ଶ + 1,      𝜈ଶ = 2𝜈଴(1 − 𝜈଴)ଶ − 1. (7)

The integral operators are of the following form: 𝐺_ = 𝐺଴(1 − 𝜆ଵ𝑅∗),     𝐾 = 𝐾଴(1 − 𝜆ଶ𝐾∗), (8)𝑅∗𝑓 = න 𝑅(௧
଴ 𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏,     𝐾∗𝑓 = න 𝐾(௧

଴ 𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏, (9)

where 𝑅(𝑡 − 𝜏), 𝐾(𝑡 − 𝜏) are the heredity kernels: 

𝜆ଵ = 𝐺଴ − 𝐺௜௝𝐺଴ ,     𝜆ଶ = 𝐾଴ − 𝐾௜௝𝐾଴ , (10)

where 𝐺଴, 𝐾଴ are the instantaneous shear modulus and bulk compression modulus, respectively; 𝐺௜௝ 𝐾௜௝ are the long-term elasticity moduli. 
The following identities hold [3]: 

⎩⎨
⎧ 11 − 𝜆ଵ𝑅∗ = 1 + 𝜆ଵГ∗,11 − 𝜆ଶ𝐾∗ = 1 + 𝜆ଶ𝑈∗, (11)

where operators Γ∗ and 𝑈∗ are called resolvent operators. 
From Eq. (3) for stress components, we obtain [1]: 

⎩⎪⎪
⎨⎪
⎪⎧𝜎௫ = 2𝐺଴1 − 𝜈଴ (1 − 𝜆ଵ𝑅∗) ൥𝑧 + ෍𝛾ଶ௡ஶ

௡ୀଵ (1 − 𝜆ଵ𝑅∗)ଶ௡𝜆ଶ௡(𝑥,𝑦, 𝑡)𝑧ଶ௡ାଵ൩ ቆ𝜕ଶ𝑊𝜕𝑥ଶ + 𝜈଴ 𝜕ଶ𝑊𝜕𝑦ଶ ቇ ,
𝜎௬ = 2𝐺଴1 − 𝜈଴ (1 − 𝜆ଵ𝑅∗) ൥𝑧 + ෍𝛾ଶ௡ஶ

௡ୀଵ (1 − 𝜆ଵ𝑅∗)ଶ௡𝜆ଶ௡(𝑥,𝑦, 𝑡)𝑧ଶ௡ାଵ൩ ቆ𝜕ଶ𝑊𝜕𝑦ଶ + 𝜈଴ 𝜕ଶ𝑊𝜕𝑥ଶ ቇ ,
𝜎௫௬ = 2𝐺଴(1 − 𝜆ଵ𝑅∗) ൤𝑧 + ෍ 𝛾ଶ௡ஶ௡ୀଵ (1 − 𝜆ଵ𝑅∗)ଶ௡𝜆ଶ௡(𝑥,𝑦, 𝑡)𝑧ଶ௡ାଵ൨ 𝜕ଶ𝑊𝜕𝑥𝜕𝑦 ,

 (12)

where 𝜈଴ is Poisson’s ratio.  
Stress functions are determined by the Airy formulas: 

𝜎௫ = 𝑁௫ℎ = 𝜕ଶΦ𝜕𝑦ଶ ,      𝜎௬ = 𝑁௬ℎ = 𝜕ଶΦ𝜕𝑥ଶ ,       𝜏 = − 𝜕ଶΦ𝜕𝑥𝜕𝑦. (13)

where ℎ is the height (thickness) of the plate. 
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3. Solution methods 

Internal forces are determined by the following formulas: 

⎩⎪⎨
⎪⎧𝑀௫ = න 𝜎௫𝑧𝑑𝑧௛ ଶ⁄

ି௛ ଶ⁄ ,     𝑀௬ = න 𝜎௬𝑧𝑑𝑧௛ ଶ⁄
ି௛ ଶ⁄ ,     𝑀௫௬ = −𝑀௬௫ = න 𝜏𝑧𝑑𝑧௛ ଶ⁄

ି௛ ଶ⁄ ,
𝑄௫ = න 𝜏௫௭𝑑𝑧௛ ଶ⁄

ି௛ ଶ⁄ ,     𝑄௬ = න 𝜏௬௭𝑑𝑧௛ ଶ⁄
ି௛ ଶ⁄ .  (14)

Based on Eq. (12), for the moments, we have: 

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑀௫ = −𝐷଴(1 − 𝜆ଵ𝑅∗) ൥1 + ෍ 2௡𝛾ଶ௡ℎଶ௡3ଶ௡ିଵ(2𝑛 + 3) (1 − 𝜆ଵ𝑅∗)ଶ௡ஶ

௡ୀଵ 𝐹ଶ௡(𝑥, 𝑦, 𝑡)൩ ቆ𝜕ଶ𝑊𝜕𝑥ଶ + 𝜈଴ 𝜕ଶ𝑊𝜕𝑦ଶ ቇ ,
𝑀௬ = −𝐷଴(1 − 𝜆ଵ𝑅∗) ൥1 + ෍ 2௡𝛾ଶ௡ℎଶ௡3ଶ௡ିଵ(2𝑛 + 3) (1 − 𝜆ଵ𝑅∗)ଶ௡ஶ

௡ୀଵ 𝐹ଶ௡(𝑥,𝑦, 𝑡)൩ ቆ𝜕ଶ𝑊𝜕𝑦ଶ + 𝜈଴ 𝜕ଶ𝑊𝜕𝑥ଶ ቇ ,
𝑀௫௬ = −𝐷଴(1 − 𝜈଴)(1 − 𝜆ଶ𝑅∗) ൥1 + ෍ 2௡𝛾ଶ௡ℎଶ௡3ଶ௡ିଵ(2𝑛 + 3) (1 − 𝜆ଵ𝑅∗)ଶ௡ஶ

௡ୀଵ 𝐹ଶ௡(𝑥,𝑦, 𝑡)൩ 𝜕ଶ𝑊𝜕𝑥𝜕𝑦 ,
 (15)

where: 𝐹ଶ(𝑥,𝑦, 𝑡) = 𝜈ଵ൫𝑤௫௫ଶ + 𝑤௬௬ଶ ൯ + 𝜈ଶ𝑤௫௫𝑤௬௬ + 3𝑤௫௬ଶ , (16)

and 𝐷଴ = ீబ௛య଺(ଵି௩బ) is the cylindrical rigidity. 
Equilibrium equations through internal forces are presented in the following form [4]: 𝜕ଶ𝑀௫𝜕𝑥ଶ + 2𝜕ଶ𝑀௫௬𝜕𝑥𝜕𝑦 + 𝜕ଶ𝑀௬𝜕𝑦ଶ + 𝐾௫𝑁௫ + 𝐾௬𝑁௬ + 𝜕𝜕𝑥 ൬𝑁௫ 𝜕𝑊𝜕𝑥 + 𝑁௫௬ 𝜕𝑊𝜕𝑦 ൰       + 𝜕𝜕𝑥 ൬𝑁௫௬ 𝜕𝑊𝜕𝑥 + 𝑁௬ 𝜕𝑊𝜕𝑦 ൰ + 𝑞(𝑥,𝑦, 𝑡) − 𝛾ℎ𝑔 𝜕ଶ𝑊𝜕𝑡ଶ = 0, (17)

⎩⎪⎨
⎪⎧𝜕𝑁௫𝜕𝑥 + 𝜕𝑁௫௬𝜕𝑦 = 0,𝜕𝑁௬𝜕𝑦 + 𝜕𝑁௫௬𝜕𝑥 = 0, (18)

where 𝑁௫ = ℎ𝜎௫; 𝑁௬ = ℎ𝜎௬. 
Substituting Eqs. (15) into (17) and bearing in mind Eq. (18), we obtain: 

𝛻ସ𝑊 + ෍ 2௡𝛾ଶ௡ℎଶ௡3ଶ௡ିଵ(2𝑛 + 3) ൛𝛻ସ𝑊(1 − 𝜆ଵ𝑅∗)ଶ௡𝐹(𝑥,𝑦, 𝑡)ஶ௡ୀଵ         +2 𝜕𝜕𝑥 𝛻ଶ𝑊(1 − 𝜆ଵ𝑅∗)ଶ௡𝐹௫(𝑥,𝑦, 𝑡) + 2 𝜕𝜕𝑦 ∇ଶ𝑊(1 − 𝜆ଵ𝑅∗)ଶ௡𝐹௬(𝑥,𝑦, 𝑡) (19)

      +𝑊௫௫(1 − 𝜆ଵ𝑅∗)ଶ௡ൣ𝐹௫௫(𝑥,𝑦, 𝑡) + 𝐹௫௬(𝑥,𝑦, 𝑡)൧       +𝑊௬௬(1 − 𝜆ଵ𝑅∗)ଶ௡ൣ𝐹௬௬(𝑥,𝑦, 𝑡) + 𝑣଴𝐹௫௫(𝑥,𝑦, 𝑡)൧ + 2(1 − 𝑣଴)𝑊௫௬(1− 𝜆ଵ𝑅∗)ଶ௡𝐹௫௬(𝑥,𝑦, 𝑡)ൟ = − ℎ𝐷଴ (1 + 𝜆ଵΓ∗) ቈ𝐿(𝑊,Φ) + ∇௞ଶΦ + 𝑞(𝑥,𝑦, 𝑡)ℎ + 𝛾𝑔 𝜕ଶ𝑊𝑔𝑡ଶ ቉, 
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where 𝐹(𝑥,𝑦, 𝑡) = 𝐹ଶ௡(𝑥,𝑦, 𝑡); 𝐿(𝑊,Φ) = డమௐడ௫మ ⋅ డమ஍డ௬మ + డమௐడ௬మ ⋅ డమ஍డ௫మ − 2 డమௐడ௫డ௬ ⋅ డమ஍డ௫డ௬. 
The relationships between strains and stresses according to [1] are written in in the following 

form: 

⎩⎪⎪⎨
⎪⎪⎧𝜀௜௝ − 𝜀଴𝛿௜௝ = 12𝐺଴ (1 + 𝜆ଵГ∗)൫𝜎௜௝ − 𝜎଴𝛿௜௝൯ ቈ1 + ෍ 𝑔ଶ௡(1 + 𝜆ଵГ∗)ଶ௡ ൬𝜏଴𝐺଴൰ஶ௡ୀଵ

ଶ௡቉ ,𝜀଴ = 13𝑘଴ ((1 + 𝜆ଶ𝑈∗)𝜎଴ ൤1 + ෍ 𝐾௡(1 + 𝜆ଶ𝑈∗)௡ ൬ 𝜎଴3𝑘଴൰ஶ௡ୀଵ
௡൨ ,𝜎଴ = 13 ൫𝜎௫ + 𝜎௬൯,     𝜏଴ଶ = 16 ൣ(𝜎௫ − 𝜎௬)ଶ + 𝜎௬ଶ + 𝜎௫ଶ + 𝜏௫௬ଶ ൧ = 𝐹଴ଶ(𝑥,𝑦),

 (20)

where 𝜏଴- is the intensity of shear stresses, 𝜀௜௝, 𝜎௜௝ are the components of strain and stress tensors, 
respectively: 𝛿௜௝ = ൜1,     𝑖 = 𝑗,0,     𝑖 ≠ 𝑗. 

The equation of continuity of strains of the middle surface has the following form: 𝜕ଶ𝜀௫𝜕𝑦ଶ + 𝜕ଶ𝜀௬𝜕𝑥ଶ − 𝜕ଶ𝛾௫௬𝜕𝑥𝜕𝑦 = −12 𝐿(𝑊,𝑊) − ∇௞ଶ𝑊 (21)

where: 

⎩⎪⎨
⎪⎧𝐿(𝑊,𝑊) = 2 ൥𝜕ଶ𝑊𝜕𝑥ଶ 𝜕ଶ𝑊𝜕𝑦ଶ − ቆ𝜕ଶ𝑊𝜕𝑥𝜕𝑦ቇଶ൩ ,
∇௞ଶ= 𝐾௫ 𝜕ଶ𝜕𝑦ଶ + 𝐾௬ 𝜕ଶ𝜕𝑥ଶ .  (22)

The stress functions are determined by the Airy Eq. (13). 
Substituting Eq. (20) into Eq. (21), keeping in mind Eq. (13), the strain compatibility equation 

can be represented as: 

∇ଶ ൝1 + 𝜆ଵ𝑈∗9𝐾଴ + 1 + 𝜆ଵГ∗3𝐺଴ + 1 + 𝜆ଵГ∗3𝐺଴ ෍ቈ 𝐺଴3𝐾଴ ൬1 + 𝜆ଵ𝑈∗1 + 𝜆ଵГ∗ ൰௡ ൬ 𝜎଴3𝐾଴൰௡ஶ
௡ୀଵ  

      + 𝑔ଶ௡3𝐺଴ (1 + 𝜆ଵГ∗)ଶ௡ ൬𝜏଴𝐺଴൰ଶ௡቉ ∇ଶΦቋ − 1 + 𝜆ଵГ∗3𝐺଴ ෍ 𝑔ଶ௡3𝐺଴ଶ௡ ቈ𝜕ଶΦ𝜕𝑦ଶ 𝜕ଶ𝜕𝑦ଶ + 𝜕ଶΦ𝜕𝑥ଶ 𝜕ଶ𝜕𝑥ଶஶ
௡ୀଵ  

       −2 𝜕ଶΦ𝜕𝑥𝜕𝑦 𝜕ଶ𝜕𝑥𝜕𝑦቉ (1 + 𝜆ଵГ∗)ଶ௡𝐹଴ଶ௡(𝑥,𝑦) = −12 𝐿(𝑊,𝑊) − 𝐾௫ 𝜕ଶ𝑊𝜕𝑦ଶ − 𝐾௬ 𝜕ଶ𝑊𝜕𝑥ଶ . 
(23)

Since: 19𝐾∗ + 13𝐺∗ = 3𝐾∗ + 𝐺∗9𝐾∗𝐺∗ = 1𝐸∗ ,      𝐸∗ = 𝐸଴(1 − 𝜆ଵ𝑅ଵ∗) − 𝐸଴1 + 𝜆ଷГଶ∗ , (24)

we obtain: 
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∇ଶ ൝1 + 𝜆ଷГଶ∗1 + 𝜆ଵГ∗ + 𝐸଴෍ቈ𝐾௡(1 + 𝜆ଶ𝑈∗)௡1 + 𝜆ଶГ∗ ⋅ (∇ଶΦ)ଶ9𝐾଴(3𝐾଴)௡ + 𝑔ଶ௡3𝐺଴ (1 + 𝜆ଵГ∗)ଶ௡𝜏଴ଶ௡𝐺଴ଶ௡ ቉ஶ
௡ୀଵ ∇ଶΦൡ 

      − 𝐸଴2𝐺଴෍ 𝑔ଶ௡𝐺଴ଶ௡ ቈ𝜕ଶΦ𝜕𝑦ଶ 𝜕ଶ𝜕𝑥ଶ + 𝜕ଶΦ𝜕𝑥ଶ 𝜕ଶ𝜕𝑦ଶ − 2 𝜕ଶΦ𝜕𝑥𝜕𝑦 𝜕ଶ𝜕𝑥𝜕𝑦቉ஶ
௡ୀଵ (1 + 𝜆ଵГ∗)ଶ௡𝐹଴ଶ௡(𝑥,𝑦, 𝑡) 

      = −𝐸଴(1 − 𝜆ଵ𝑅∗) ቈ12 𝐿(𝑊,𝑊) + 𝐾௫ 𝜕ଶ𝑊𝜕𝑦ଶ + 𝐾௬ 𝜕ଶ𝑊𝜕𝑥ଶ ቉, 𝐹଴ଶ(𝑥,𝑦, 𝑡) = 29 ൥(∇ଶΦ)ଶ + 3ቆ 𝜕ଶΦ𝜕𝑥𝜕𝑦ቇଶ − 3𝜕ଶΦ𝜕𝑥ଶ 𝜕ଶΦ𝜕𝑦ଶ ൩. 
(25)

Immediately the special case results when the mean-stress function 𝐾(𝑠଴) and the intensity 
function of shear stresses 𝑔(𝑡଴ଶ) have the following form: 𝐾(𝑠଴) = 1,      𝑔(𝑡଴ଶ) = 1 + 𝑔ଶ𝑡଴ଶ, (26)

and the elongation function 𝜒(𝜀଴) and the shear function 𝛾(𝜓଴ଶ) = 1 + 𝛾ଶ𝜓଴ଶ can be represented 
in the considered range of stresses with sufficient accuracy: 𝜒(𝜀଴) = 1,      𝛾(𝜓଴ଶ) = 1 + 𝛾ଶ𝜓଴ଶ,       𝛾ଶ = −𝑔ଶ. (27)

For Eqs. (26) and (27), relation Eq. (3) and (20) are written in the following form: 

ቊ𝜎௜௝ − 𝜎଴𝛿௜௝ = 2𝐺଴(1 − 𝜆ଵ𝑅∗)ሾ1 + 𝛾ଶ(1 − 𝜆ଵ𝑅∗)ଶ𝜓଴ଶ(𝑥,𝑦, 𝑡)ሿ൫𝜀௜௝ − 𝜀଴𝛿௜௝൯,𝜎଴ = 3𝑘଴(1 − 𝜆ଶ𝐾∗)𝜀଴,  (28)

⎩⎪⎨
⎪⎧𝜀௜௝ − 𝜀଴𝛿௜௝ = 12𝐺଴ (1 + 𝜆ଵГ∗) ቈ1 + 𝑔ଶ(1 + 𝜆ଵГ∗)ଶ ൬𝜏଴𝐺଴൰ଶ቉ ൫𝜎௜௝ − 𝜎଴𝛿௜௝൯,𝜀଴ = 13𝑘଴ (1 + 𝜆ଶ𝑈∗)𝜎଴.  (29)

Based on Eqs. (13), we obtain: 

⎩⎪⎨
⎪⎧𝑆଴ = 𝜎଴3𝐾଴ = 19𝐾଴ ∇ଶΦ,
𝑡଴ଶ = ൬𝜏଴𝐺଴൰ଶ = 29𝐺଴ଶ ൥(∇ଶΦ)ଶ + 3ቆ 𝜕ଶΦ𝜕𝑥𝜕𝑦ቇଶ − 3𝜕ଶΦ𝜕𝑥ଶ 𝜕ଶΦ𝜕𝑦ଶ ൩ . (30)

4. Discussion of results 

Following A. S. Volmir [4], we assume that the aspect ratio of the plate ℎ = 𝑎 𝑏⁄  lies in the 
range −1 ≤ ℎ ≤ 1. We use Eq. (18) and (31) for  𝐾௫ = 𝐾௬ = 0: 
∇ସ𝑊 ቈ1 + 2𝛾ଶℎଶ15 (1 − 𝜆ଵ𝑅∗)ଶ𝜆(𝑥,𝑦, 𝑡)቉ + 4𝛾ଶℎଶ15 ൤ 𝜕𝜕𝑥 ∇ଶ𝑊(1 − 𝜆ଵ𝑅∗)ଶ𝜆௫(𝑥,𝑦, 𝑡)       + 𝜕𝜕𝑦 ∇ଶ𝑊(1 − 𝜆ଵ𝑅∗)ଶ𝜆௬(𝑥,𝑦, 𝑡) + 0,5𝑊௫௫(1 − 𝜆ଵ𝑅∗)ଶൣ𝜆௫௫(𝑥,𝑦, 𝑡) + 𝑣଴𝜆௬௬(𝑥,𝑦, 𝑡)൧       +0,5𝑊௬௬(1 − 𝜆ଵ𝑅∗)ଶൣ𝜆௬௬(𝑥,𝑦, 𝑡) + 𝑣଴𝜆௫௫(𝑥,𝑦, 𝑡)൧ + (1 − 𝑣଴)𝑊௫௬(1− 𝜆ଵ𝑅∗)ଶ𝜆௫௬(𝑥,𝑦, 𝑡)൧ = −ℎ(1 + 𝜆ଵГ∗)𝐷଴ ቈ𝑞(𝑥,𝑦, 𝑡)ℎ + 𝜆𝑔 𝜕ଶ𝑊𝜕𝑡ଶ + 𝐿(𝑊,Φ) + ∇௞ଶΦ቉, 
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𝜆(𝑥,𝑦, 𝑡) = 𝑣ଵ൫𝑊௫௫ଶ + 𝑊௬௬ଶ ൯ + 𝑣ଶ𝑊௫௫𝑊௬௬ + 3𝑊௫௬ଶ , (31)1 + 𝜆ଷГଶ∗1 + 𝜆ଷГ∗ ∇ସΦ + 2𝛿27 ሾ∇ସΦ(1 + 𝜆ଵГ∗)ଶ𝐹(𝑥,𝑦, 𝑡) + ∇ଶΦ(1 + 𝜆ଵГ∗)ଶ∇ଶ𝐹(𝑥,𝑦, 𝑡)ሿ− ቆ𝜕ଶΦ𝜕𝑦ଶ 𝜕ଶ𝜕𝑥ଶ + 𝜕ଶΦ𝜕𝑥ଶ 𝜕ଶ𝜕𝑦ଶ − 3 𝜕ଶΦ𝜕𝑥𝜕𝑦 𝜕ଶ𝜕𝑥𝜕𝑦ቇ (1 + 𝜆ଵГ∗)ଶ𝐹(𝑥,𝑦, 𝑡)= −𝐸଴(1 − 𝜆ଵ𝑅∗)ሾ𝐿(𝑊,𝑊) + ∇௞ଶ𝑊ሿ, (32)

where 𝐹(𝑥,𝑦, 𝑡) = (∇ଶΦ)ଶ + 3 ቀ డమ஍డ௫డ௬ቁ − 3 డమ஍డ௫మ డమ஍డ௬మ , 𝛿 = ௚మ௄బ(ଷ௄బାீబ)ீబమ ≪ 1 is a physically small 
parameter. 

The solution of Eq. (32) which is the series over small parameter δ, is reduced to the solution 
of the infinite sets of integro-differential equations, the first of which is the equation of 
geometrically nonlinear dynamics of the viscoelastic flexible plates and shells. Let us consider 
some special cases. For a circular cylindrical shell for 𝐾௫ = 0; 𝐾௬ = 1 𝑅⁄  , where 𝑅 is the radius 
of curvature of the middle surface, we obtain the main resolving equations of the dynamics of 
cylindrical shells. To study the dynamics of a spherical shell of radius 𝑅, it is necessary to set 𝐾௫ = 𝐾௬ = ଵோ. For the case of a plate, 𝐾௫ = 𝐾௬ = 0. When integrating the equations of motion, 
certain boundary and initial conditions are required. These boundary and initial conditions for 
different cases of loading are given in [4]. For the operators contained in Eqs. (31) and (32), it is 
appropriate to use the Yu. N. Rabotnov integral operators [3], with kernels of the known form of 
a fractional-exponential function: 

𝐾(𝑡 − 𝜏) = 𝐸ఈ(−𝛽, 𝑡 − 𝜏) = (𝑡 − 𝜏)ఈ෍ (−𝛽)௡(𝑡 − 𝜏)௡(ଵାఈ)Гሾ(𝑛 + 1)(𝛼 + 1)ሿ ,ஶ௡ୀ଴  −1 < 𝛼 < 0,     0 < 𝛽 < ∞. (33)

For the Yu. N. Rabotnov operators [3], the following relations hold: 

𝐸ఈ∗(𝑥) ⋅ 𝐸∗(𝑦) = 1𝑥 − 𝑦 ሾ𝐸ఈ∗(𝑥) − 𝐸ఈ∗(𝑦)ሿ,     𝐸ఈ∗(𝛽, 𝑡) = 𝜕Э∗(𝛽, 𝑡)𝜕𝛽 , 1 + 𝜇ଵ𝐸ఈ∗(𝜆)1 + 𝜇ଶ𝐸ఈ∗(𝜆) − 1 + (𝜇ଵ + 𝜇ଶ)𝐸ఈ∗(𝜆 − 𝜇ଶ). (34)

The given formulas may be applied to the solution of particular equations of the dynamics of 
the flexible plates and shells (the material of which has the nonlinear viscoelastic property). 

Numerical Example. To demonstrate the capabilities of the model, let us consider a rectangular 
plate of dimensions 𝑎 × 𝑏 = 1×1 m and thickness ℎ = 0.01 m, clamped along its edges. The 
material is a viscoelastic polymer characterized by an instantaneous elastic modulus  𝐸଴ = 2.5×109 Pa, Poisson’s ratio 𝜈 = 0.3, and a longterm modulus 𝐸ஶ = 1.2×109 Pa. The applied 
load is a uniform pressure of 𝑞 = 1×105 Pa. The deflections at the center of the plate were 
calculated over time using the fractional-exponential Rabotnov kernel to describe the relaxation 
behavior. Main results of the numerical simulation. Fig. 1 shows the time evolution of the central 
deflection of the viscoelastic plate for different thicknesses. The deflection initially increases 
rapidly and then approaches a quasi-stationary level, which reflects the characteristic relaxation 
behavior. With increasing plate thickness, the deflection decreases in a nonlinear manner. Fig. 2 
presents a comparison between the linear and nonlinear models. Geometrical nonlinearity leads to 
a reduction in the deflection amplitude by about 10-15 % compared with the linear model. Fig. 3 
illustrates the effect of the relaxation parameter 𝛼. As 𝛼 increases, the plate stabilizes more 
quickly and reaches its quasi-stationary deflection level sooner. 
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Fig. 1. Evolution of viscoelastic plate  

deflection over time 

 
Fig. 2. Comparison of linear and  

nonlinear models 

 
Fig. 3. Influence of relaxation parameter 𝛼 on deflection 

The obtained results demonstrate the significant influence of both geometric and physical 
nonlinearities. Geometric nonlinearity stabilizes the system by limiting deflections under large 
loads. Physical nonlinearity (viscoelasticity) causes a gradual increase in deflection over time, 
which is consistent with experimentally observed creep and relaxation effects. Unlike classical 
models, the proposed approach makes it possible to account for the combined action of both types 
of nonlinearities. This is particularly important for polymer composites that are widely used in 
aerospace engineering and microelectronics. A comparison with numerical simulations performed 
in CAE packages (Ansys, Abaqus) shows qualitative agreement with the system’s behavior, 
thereby confirming the applicability of the proposed model. The scientific novelty of the study 
can be summarized as follows: a generalization of the classical equations of thin plate dynamics 
is proposed, taking into account the simultaneous influence of geometric and physical 
nonlinearities; an operator approach based on Rabotnov’s kernels is employed, enabling the 
description of a wide range of relaxation effects; the applicability of the models is demonstrated 
through a numerical example, which enhances the practical significance of the work. 

5. Conclusion 

Analysis of dynamics of physical nonlinear viscoelastic plates and shells is required to resolve 
current engineering-related problems. New models and calculation techniques enable application 
to more accurate predict existing of structures in working operation conditions, stability and 
reliability of complex structures and also development of high technology production with 
unparalleled properties. This fact predestines the research in this field to become the essential 
contribution in the growing of the fundamental science and application of engineering creating 
new possibilities of innovation within different spheres. Aerospace vehicles and microelectronic 
shell are modern structures that have to operate under high mechanical stresses, temperature, and 
the effect of electromagnetic disturbance. In this case, one will have to take into account non-linear 
effects and viscoelastic nature of materials. The consequences of ignoring such factors may result 
in major errors during calculations hence they are not acceptable in industries where things are so 
crucial. Modeling of the dynamics of viscoelastic plates and shells uses numerical approximations 
that would describe adequately the geometric and physical nonlinearity and address the 
phenomena of material viscosity. High-tech structures involving crane shafts, composite shells, 
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and composite sandwich structures, shallow and thick shells are important in design of non-linear 
viscoelastic plates and shells through numerical modeling. It is possible to solve the complex 
dynamic issues and make predictions in material behavior with different operational conditions 
by using the finite difference techniques, linearizing predictions, and the discrete orthogonalizing. 
The proposed model makes it possible to account for both geometric and physical nonlinearities 
in the analysis of viscoelastic plates and shells. The numerical example confirmed the significant 
influence of thickness and relaxation parameters on the deflections. The limitations of the study 
are related to the use of simplified geometry and a homogeneous material. Future research should 
address multilayer composites, the influence of thermal and electromagnetic fields. 

6. Future scope 

The work gives hope to new advancement of nonlinear viscoelastic models that take into 
account the complicated loading and heating operations. Much concern is to be put under 
modeling multilayer composite plates and shells with varying physical and mechanical properties 
of layers. One of the future perspectives is the implementation of the created models into finite 
element computational kits Ansys and COMSOL Multiphysics. The analysis of sensor and 
actuator systems should be extended to cover electromagnetic and piezoelectric effects of research 
as well. One should also take dynamics under loading of a high frequency where inertial and wave 
influences in the structural stability are evident. In future, I can concentrate on studying the fatigue 
capacity of viscoelastic plates and shells under thermomechanical shaking alleviation. There is a 
need to come up with analytical and numerical techniques to solve three dimensional nonlinear 
viscoelastic problems with the assumption of large deformations. One of the promising directions 
is the designing of the mathematical models of service life prediction of structural elements under 
extreme operating conditions. The derived designs apply to aerospace structure, microelectronic 
devices and robotic systems. The given way of the research will help to develop new properties 
of materials and technologies with unsurpassed adaptive and damping characteristics. 
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