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Abstract. Interpretability has become a critical requirement in modern deep learning applications
for renewable energy forecasting, especially in complex and safety-critical contexts such as
offshore wind power systems. To simultaneously improve predictive accuracy and model
transparency, this study proposes an explainable hybrid deep learning framework — VFE-IVY A-
CNN-BiGRU - for offshore wind speed forecasting. The model begins with feature selection via
Pearson Correlation (PCs) to identify the most relevant meteorological variables from a full set of
candidates, thereby enhancing input quality and reducing redundancy. The selected features are
then passed through a robust preprocessing module (VFE), which integrates Variational Mode
Decomposition (VMD) and Fuzzy Entropy (FE). VMD decomposes the original wind speed
sequence into intrinsic mode functions (IMFs), capturing multi-scale temporal structures, while
FE quantifies the complexity of each IMF to filter out noise-dominated components. The
reconstructed sub-sequences are first processed through a Convolutional Neural Network (CNN)
to capture temporal local dependencies, and then passed into a Bidirectional Gated Recurrent Unit
(BiGRU), which effectively learns time dependencies in both forward and backward directions.
To further enhance model performance, the Ivy Algorithm (IVYA) is employed to optimize
hyperparameters adaptively, improving convergence and generalization. To improve
interpretability, SHapley Additive exPlanations (SHAP) are utilized to quantify the contribution
of each meteorological feature to the model's output, revealing both dominant drivers (e.g., gust
speed) and interaction patterns across seasons. The proposed framework is evaluated using
seasonal offshore wind datasets (spring, summer, autumn, and winter) sourced from a wind power
site along the Guangdong coastline, China, and contrasted with six leading benchmark models.
Empirical findings reveal that the proposed VFE-IVYA-CNN-BiGRU consistently outperforms
existing methods in terms of accuracy, robustness, and interpretability. The integration of SHAP-
based explanations ensures model transparency, making the approach a reliable tool for intelligent
control and decision support in offshore wind farm operations.

Keywords: Offshore wind speed forecasting, VMD decomposition, fuzzy entropy, Ivy algorithm,
CNN-BiGRU, SHAP interpretability.

1. Introduction

With the continuous depletion of fossil fuel resources and the growing environmental pressures
associated with their use, the development of clean and sustainable energy has become a global
priority. Among various renewable options, offshore wind power has attracted significant
attention due to its abundant installation space, greater wind stability, and larger turbine capacity.
In China, it plays a central role in the national strategy of “integrating land-sea development and
accelerating marine power construction” [1-3]. According to the Global Wind Energy Council
(GWEC), global offshore wind capacity reached 78.52 GW by the end of 2024 and is expected to
rise to 380 GW by 2030 [4].

Despite its rapid growth, large-scale grid integration of offshore wind remains challenging
because wind speed exhibits strong variability, intermittency, and nonlinear behavior. Accurate
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short-term forecasting is therefore crucial for secure grid operation, economic dispatch, and
efficient utilization of wind resources. Generally, forecasting tasks are categorized into short-,
medium-, and long-term horizons, among which high-precision short-term forecasting is
particularly vital for real-time operation and control [5, 6].
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Fig. 1. Global cumulative installed offshore wind capacity (GW)

Over the past decades, numerous techniques have been proposed to forecast wind speed, which
are typically categorized into three main groups: physics-based models, statistical methods, and
data-driven approaches. Physics-based models, particularly numerical weather prediction (NWP),
are based on the equations of atmospheric dynamics and thermodynamics. These models simulate
wind behavior by solving partial differential equations under defined boundary and initial
conditions. Although NWP models offer high spatiotemporal resolution and theoretical rigor, they
require significant computational resources and are highly sensitive to initialization errors,
rendering them less suitable for ultra-short-term forecasting tasks where timeliness and
adaptability are critical [7, 8].

Statistical methods, such as autoregressive (AR), moving average (MA), and their extended
versions including ARMA and ARIMA, model wind speed as linear time series [9-11]. These
models are computationally efficient and easy to interpret but inherently limited in capturing the
nonlinear and nonstationary characteristics of wind speed data. Hybrid extensions such as
ARIMA-GARCH have been proposed to incorporate volatility modeling, yet they still struggle
with the multiscale fluctuations observed in real-world wind speed series.

To overcome these constraints, machine learning (ML) methods have emerged as attractive
alternatives, owing to their capability to capture intricate nonlinear patterns without the need for
predefined physical formulations. Techniques like support vector machines (SVM) [12], extreme
learning machines (ELM) [13], Artificial Neural Network (ANN) [14], Naive Bayes model and
random forests (RF) [15] have shown promising results in wind speed prediction, outperforming
traditional statistical approaches in terms of prediction accuracy. However, shallow ML models
generally require feature engineering and may not generalize well in high-dimensional or highly
volatile environments. Their inability to learn hierarchical representations from raw data
constrains their forecasting robustness, particularly under multiscale and nonstationary conditions
[16].

In recent developments, deep learning has gained prominence in time series forecasting, owing
to its ability to perform hierarchical feature representation and enable end-to-end model training.
Deep neural networks (DNN), convolutional neural networks (CNN), Generative Adversarial
Network (GAN), long short-term memory (LSTM), and gated recurrent units (GRU) have found
extensive application in forecasting tasks related to wind speed and wind power.

CNNs are effective at extracting local patterns and temporal correlations, while RNNs and
their variants capture sequential dependencies. Among them, GRU and its bidirectional version
(BiGRU) are particularly suitable for wind time series modeling, offering a balance between
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model complexity and temporal representation power. Compared to LSTM, BiGRU employs
fewer parameters and demonstrates faster convergence with comparable forecasting accuracy,
making it a competitive choice for real-time and large-scale applications [17-23].

Despite their strengths, deep learning models often face challenges in learning from raw wind
speed sequences due to their high-frequency oscillations, seasonal heterogeneity, and embedded
noise. To mitigate this issue, signal decomposition techniques are frequently introduced as a
preprocessing step to improve signal smoothness and regularity. Wavelet transform (WT) [24],
empirical mode decomposition (EMD) [25, 26], Ensemble Empirical Mode Decomposition
(EEMD) and variational mode decomposition (VMD) [27] are among the most widely used
methods in this context. WT provides multiresolution analysis but requires a predefined mother
wavelet, potentially limiting adaptability. EMD and EEMD is capable of adaptively extracting
intrinsic mode functions (IMFs); nevertheless, traditional methods are susceptible to problems like
mode mixing and edge distortion. In contrast, Variational Mode Decomposition (VMD) reframes
the decomposition task as a constrained optimization framework based on variational methods and
generates band-limited IMFs with better mode separation and noise suppression capabilities,
thereby enhancing signal interpretability and downstream model learnability [28, 29].

To further enhance the quality of decomposed components, entropy-based complexity
measures such as approximate entropy (AE) [30], permutation entropy (PE) and sample entropy
(SE) [31], and fuzzy entropy (FE) [32, 33] have been adopted. These methods evaluate the
irregularity and unpredictability of time series components, aiding in the selection of informative
IMFs. Compared with AE and SE, FE demonstrates superior robustness to noise and sensitivity
to subtle variations. By reconstructing subsequences based on FE similarity, redundant or low-
information components can be filtered out, improving model efficiency and generalization while
retaining essential dynamic characteristics.

In parallel, the performance of deep neural networks is heavily influenced by hyperparameter
configurations such as learning rate, batch size, number of layers, and hidden units. Manual tuning
is time-consuming and prone to suboptimal configurations. To address this, metaheuristic
optimization algorithms have been introduced, including genetic algorithms (GA) [34], particle
swarm optimization (PSO) [35], gray wolf optimizer (GWO) [36], and more recently, the ivy
algorithm (IVYA) [37]. Inspired by biological behavior of ivy plants, IVYA balances exploration
and exploitation by modeling population evolution through coordinated propagation and light-
seeking strategies. Empirical studies have shown that IVYA achieves faster convergence and
better global optimization capability than traditional heuristics, making it well-suited for complex
neural network hyperparameter tuning.

While improving forecasting accuracy remains a central objective, recent research has
increasingly emphasized the interpretability of predictive models, particularly in energy
forecasting scenarios where decisions must remain transparent and trustworthy. Despite their
strong predictive capability, deep learning models are often criticized as “black boxes,” motivating
the adoption of explainable artificial intelligence (XAI) techniques. Among them, SHAP provides
a unified, game-theoretic framework for quantifying feature contributions at both global and
instance levels, offering insights into the meteorological drivers of forecast outcomes and their
seasonal interactions [38, 39].

Recent progress in signal decomposition, deep learning architectures, optimization algorithms,
and interpretability tools has markedly improved wind speed forecasting performance.
Nevertheless, combining these advances into a single framework that achieves both high accuracy
and interpretability remains challenging. To address this gap, this paper proposes an explainable
hybrid model for offshore wind speed prediction that integrates signal decomposition and filtering,
deep sequence modeling, automated hyperparameter tuning, and SHAP-based interpretability.

The model is evaluated using offshore wind datasets from Guangdong, China, across four
seasons and compared with six advanced baselines. Experimental results demonstrate significant
gains in forecasting accuracy and model transparency.

The main contributions of this work are summarized as follows:
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(1) A correlation-based feature selection strategy is employed to extract nine dominant
meteorological variables, reducing input dimensionality and improving learning efficiency.

(2) A VFE module is designed to decompose wind speed signals and retain components with
higher complexity and predictive value, alleviating nonlinearity and noise.

(3) A CNN-BiGRU hybrid network is constructed to jointly capture local temporal features
and bidirectional dependencies, enabling robust sequence representation.

(4) The Ivy Algorithm (IVYA) is adopted for automated hyperparameter tuning, enhancing
convergence speed and predictive stability.

(5) SHAP is used to interpret the contribution of each meteorological feature, providing both
global and local insights into the model’s decision-making process.

2. Methods
2.1. VMD and fuzzy entropy-based signal processing

To capture the complex, non-stationary, and nonlinear characteristics present in offshore wind
speed data, this study adopts a two-stage preprocessing technique combining Variational Mode
Decomposition (VMD) and Fuzzy Entropy (FE), hereafter referred to as VFE.

By applying VMD, K intrinsic mode function (IMF) {u,(t)}¥_, can be derived from the
original wind speed signal f(t) through adaptive decomposition, each with compact bandwidth
around an adaptive center frequency w;.. To achieve accurate signal reconstruction, the variational
formulation Eq. (1) aims to constrain the overall bandwidth of the extracted modes as much as
possible [40]:

S. t.zk: u(t) = £(t),

where, 0, is the time derivative, * denotes convolution, and §(t) is Dirac function. To address this
optimization task under constraints, a Lagrange multiplier A(t) and penalty term « are introduced,
yielding the augmented Lagrangian:
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The decomposition quality being highly sensitive to the penalty factor & and mode number K:
inappropriate settings may lead to under- or over-decomposition, impacting model performance.

After decomposition, FE is employed to evaluate the complexity of each IMF. Unlike sample
entropy, FE uses an exponential membership function to quantify the similarity between phase
space vectors [41]. Given a time series X = {x,X;,..., xy}, the fuzzy similarity is defined as

Eq. (3):

di;\"
D;; = exp [— (T) ], 3)

where d;; is the Chebyshev distance, 7 is the similarity tolerance, and n is the fuzzy power. The
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FE is computed by comparing the average similarity of vectors of dimension m and m + 1:

R >

N-m+1 p(m+1)
Zi_]’=1 Dij

FE(m,r,n) = ln( “4)

A higher FE value indicates greater irregularity and complexity. In this work, IMFs with higher
FE are retained for prediction, while low-entropy components are discarded to reduce noise and
computation burden.

By combining the adaptive decomposition capability of VMD and the complexity filtering
power of FE, the VFE module enhances the signal quality and preserves meaningful temporal
features for downstream prediction.

2.2. Ivy algorithm (IVYA)

Inspired by the adaptive growth and climbing patterns of ivy plants, the Ivy Algorithm (IVYA)
was introduced as a meta-heuristic optimization strategy by Ghasemi et al. (2024) [42]. By
simulating the biological mechanisms of ivy propagation — including coordinated expansion,
adaptive search, and competition for sunlight — IVYA offers an effective strategy for solving
complex, high-dimensional optimization problems.

IVYA models the ivy’s growth process using discrete-time dynamic equations and
evolutionary rules. Its optimization framework consists of five major stages: (1) population
initialization, (2) coordinated growth, (3) light-seeking movement, (4) expansion and adaptation,
and (5) survivor selection. These components work together to guide the population toward global
optima through both exploration and exploitation mechanisms. The IVYA’s process flow is
depicted in Fig. 2.

Population initialization. Eq. (5) is employed to initialize the IVY A population with random
positions distributed throughout the search space:

I; = Lyin + rand(1, D)O U gy — Imin), i =1, ..., Npop, (5)

where, a vector with dimension D of uniformly distributed random numbers is represented by
rand(1, D). Npop is the number of populations.

Coordinated growth. It is postulated that the growth rate Gv of ivy plants varies as a function
of time. Drawing upon extensive experimental data, a corresponding difference equation
describing the growth rate Gv;(t) of individual members I; is derived:

AGv;(t + 1) = rand’O(N(1,D)) © AGv,(¢), (6)

where the vectors AGv;(t) and AGv;(t + 1) represent the growth rate of a discrete-time system,
rand denotes a uniformly distributed real number within the range [0, 1], while N(1, D) indicates
a normally distributed random vector of dimension D.

Light-seeking movement. Young ivy is often guided to grow toward nearby trees or established
ivy that has secured a support structure, allowing access to sunlight and promoting population
sustainability.

The Eq. (7-8) describes how Ivy I; uses I;; to move logically in the direction of the radiant
source:

Y =L+ INQ,D)OU; — ;) + N(1,D)OAGY;, i=1.2,..,Npop, (7)
LOUnmax — Imin)s Iter =1,
AGv: = {randz(D(N(l,D))(DAGvi, Iter > 1. ®)
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Expansion and adaptation. Following a global search, member I; locates the closest and most
influential neighbor [;; within the solution space, and [; tries to follow the best member of the
population I, to find the best candidate solution. This phase is represented by the Eq. (9):

IPY = Ipeq@(rand(1, D) + N(1, D)OAGV). ®

| Initialize IVYA population and parameters ‘

| Calculate initial population by Eq.(5) |

| Calculate AGv; by Eq.(8) |

Calculate the fitness of population and sort the members

No

| Select the member |

Iter +1

+
r Compute # and AGv; ]
v

| Update the population and fitness, compute AGv}°" I

v

Merge the population and select the optimal population |

v

| End of iteration ]47

v

| Show the optimal solution ‘
Fig. 2. Flowchart of the IVYA

Iter

Eq. (10) is applied to compute the present growth rate of member I]**", AGv**" (which is
exactly similar to the formula used to calculate AGv;):

Ale'neW = Iinew ® (Imax - Imin)- (10)

Survivor selection. In order to simulate the alternating stages, namely “climb” and “expand”,
the method is used. If the objective value f(I;) for member I; falls below the product of f (I;es¢)

and parameter § = Qtﬂ, Eq. (7) is used to expand the branch and leaf width of the ivy tree.

Otherwise, the upward growth and climbing behavior of the ivy is guided by Eq. (9).
2.3. Convolutional neural network (CNN)

Due to their effectiveness in capturing local temporal patterns from structured inputs,
Convolutional Neural Networks (CNNs) have become a prevalent choice for feature extraction
tasks. The CNN architecture typically consists of three primary layers: the input layer, a series of
hidden layers (including convolution and pooling operations), and the output layer [43, 44]. The
CNN’s structure is shown as Fig. 3.

The core component of a CNN is its convolutional layer, which utilizes learnable filters to
derive significant local characteristics from the input. This process is mathematically described in

Eq. (11):
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o _ -1 ® ®
% —"(Z Xioxwy ) (11)

LEM

where xi(l_l) denotes the feature map fed from the preceding layer, Wi(].l)

bj(l) is the bias term, * denotes convolution operation, ¢(+) is the nonlinear activation function

is convolutional kernel,

(commonly ReLU).

Following convolution, a pooling layer — specifically, max pooling — is applied to reduce
dimensionality and suppress noise, preserving dominant features while mitigating overfitting. The
pooling operation is defined as:

x].(l) = down(xj(l_l)), (12)
where down(-) represents the pooling function applied to the output feature map.

The final layer is typically fully connected, which aggregates extracted features and maps them
to the target prediction.

This study uses CNN primarily to capture short-term temporal dependencies in preprocessed
wind speed components, providing an effective input representation for subsequent temporal
modeling.

E
[T -
_og /\.\ Flatten l:l Output
i i e R =)
] Fully
Input Convolution Pooling I:l O connected

layer
Fig. 3. Architecture of the CNN

2.4. Bidirectional gated recurrent unit (BiGRU)

To effectively model temporal relationships in sequential data, the BiGRU is employed.
Compared to LSTM, the GRU architecture achieves similar performance while simplifying the
gating mechanism by using fewer components [45, 46]. Its structure revolves around two essential
components — the reset and update gates — which are visualized in Fig. 4(a).

The mathematical formulation of a GRU unit is as follows:

1y = o(Wpxy + Uphe_yq), (13)
Ze = o(W,x; + Uzh_y), (14)
ht = tanh(rt o Uht—l + Wxt), (15)
he=(1—2z)oh+2z 0he_,. (16)

Egs. (13-16) are related to each other and cannot be used alone. 1; is reset gate. z; is update
gate. h, is candidate hidden layer state, reflecting the input information. h, is the output of the
hidden layer. o and tanh are the Sigmoid function and activation function, respectively; W,., U,,
W,, U,, W, U are all training parameter matrices.

BiGRU extends the GRU by processing the input sequence in both forward and backward
directions, capturing richer temporal dependencies. As shown in Fig. 4(b), it consists of two
parallel GRUs: one traversing the sequence from past to future, the other in reverse.
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The output at time t is computed as:
he = We - b + W, - b + b, (17)

where hgf ) and hgb) are the forward and backward hidden states, Wy, W), are the corresponding
output weights, bis the bias term.

Compared with LSTM, BiGRU offers similar accuracy with fewer parameters and faster
training convergence, thereby rendering it suitable for applications involving real-time
forecasting. In this work, BiGRU is employed after CNN to model both forward- and
backward-influenced temporal patterns in the offshore wind speed sequence, enhancing prediction
robustness.

hes he Output layer

Tt
Forward
GRU layer

Z

E T 6

@ S
5

Backward
GRU layer

@ Input layer
a) b)
Fig. 4. Architectures of a) GRU and b) BiGRU
2.5. SHAP Theory

SHAP (SHapley Additive exPlanations) is an explainable Al method based on cooperative
game theory, designed to quantify the impact of each feature input on the prediction results
produced by the model. It attributes the prediction of a model f(x) to the sum of feature
contributions, where each feature’s effect is measured by its Shapley value [47, 48].

For a given instance x, the model output f(x) is defined using Eq. (18):

M
f(x) = ¢o +Z¢i. (18)
i=1

where ¢, represents the expected output over the entire dataset, and ¢; denotes the marginal
contribution of the ith feature.
The Shapley value ¢; of feature i is defined as Eq. (19):

ISIECAFT =181 = 1)!
|F|!

o =

SCF\{i}

[FESU{ih =S (19)

In this context, F is the complete set of the features, while S refers to a subset of F that excludes
the specific feature i. The f(S) represents the model’s output based solely on the features
contained in S.

This formula computes the average marginal contribution of feature i over all possible subsets
S, ensuring fairness and consistency in feature attribution. In practical implementation, SHAP
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approximates these values through sampling and model-specific explainers, such as TreeSHAP or
KernelSHAP.

The key advantages of SHAP lie in its solid theoretical foundation and practical utility. It
ensures consistency, meaning that if a feature has a greater impact on the output, its SHAP value
will not be lower than that of a less influential feature. SHAP also provides local accuracy by
ensuring that the sum of all feature attributions equals the difference between the model prediction
and the expected output. Furthermore, by aggregating individual explanations across multiple
instances, SHAP enables global interpretability, offering insights into overall feature importance
and interaction effects, which is valuable for high-stakes applications like wind power forecasting.

3. Forecasting framework construction
3.1. Architecture of the CNN-BiGRU network

The CNN model alternates between convolutional and pooling layers, utilizing local
connectivity and weight sharing to efficiently extract temporal features from the original signal.
This process enables the network to automatically learn local patterns and form a dense,
informative feature representation. Given its ability for automatic feature extraction and
compatibility with sequential data, CNN is applied to capture temporal dependencies in offshore
wind speed time series.

In the BiGRU component, the input data is processed bidirectionally using Gated Recurrent
Units (GRUs). This allows the network to get temporal dependencies from both future and past
contexts, enhancing its capacity to model the entire sequence structure. The reuse of weights
across time steps enhances model expressiveness without increasing the number of parameters,
which helps mitigate underfitting. Considering the volatility and uncertainty of offshore wind
speed, combining CNN and BiGRU allows the model to achieve both efficient feature extraction
and effective temporal modeling. The structure of the CNN-BiGRU model is illustrated in Fig. 5.
The structure can be described as follows:

Input Layer: The input is structured as a two-dimensional matrix of size, where corresponds
to the temporal dimension of the sequence, and indicates the feature dimensionality per time step.
The CNN module first processes this data to extract temporal patterns.

Convolutional Layer: 1D convolutional layers are used to extract temporal features. Each has
a kernel size of 2 with a stride of 1, and the number of filters is set to 32 and 64 respectively. ReLU
is used as the activation function, introducing non-linearity and accelerating convergence by
zeroing out negative activations.

Pooling Layer: A max-pooling layer follows each convolutional layer to reduce dimensionality
and eliminate less informative features. The pooling size is 2x1 with a stride of 2. The output of
the pooling layers is flattened into a time sequence format suitable for BIGRU processing.

BiGRU Layer: The extracted features are then input into the BIGRU network, which processes
the sequence bidirectionally to capture comprehensive temporal dependencies. A Dropout layer is
added within the BiGRU to prevent overfitting by randomly deactivating some units during
training. The final output is passed through a fully connected layer to generate the predicted wind
speed.

Optimization and Training: The Adam optimizer is employed for training due to its adaptive
learning rate capabilities. The number of training epochs is set between 1 and 200, and the initial
learning rate ranges from 0.001 to 0.01. A learning rate decay factor of 0.1 is applied to ensure
stable convergence. The configurations are chosen to achieve a trade-off between training speed
and the model’s ability to generalize.

The specific configurations of the CNN-BiGRU model, including convolutional kernel sizes,
number of filters, dropout rate, and optimization settings, are detailed in Table 1. These settings
are based on standard practices in deep learning for time series modeling and have been refined
to ensure effective temporal feature extraction, training stability, and model generalization.

JOURNAL OF MEASUREMENTS IN ENGINEERING 9
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Particular attention has been paid to adapting the convolution and pooling parameters to the 1D
structure of time series data, as well as to selecting appropriate ranges for hyperparameter tuning.

— CNN-BiGRU

O ConvIiD MaxPolling

MaxPolling

ConvlD MaxPolling

Input Convolutional layer Flatten BiGRU layer FC layer Output
layer layer

Fig. 5. Architecture of the CNN-BiGRU

Table 1. Hyperparameter configurations of the proposed model

Module Parameter Value / Search range
Number of convolutional layers 2
Number of filters (per layer) [32, 64]
Filter size 3x1
Activation function ReLU
CNN Number of pooling layers 2
Pooling type Max pooling
Pooling kernel size 2x1
Pooling stride 2
Padding Same
Number of BiGRU layers 1 (bidirectional)
Number of hidden units [32, 200]
Dropout rate 0.2
Batch size [8, 64]
. Learning rate [0.001, 0.01]
BiGRU Learning rate decay factor 0.1
Activation function (hidden state) Tanh
Optimizer Adam
Loss function Mean Squared Error (MSE)
Number of epochs 100
Population size 10
Maximum number of iterations 30
IVYA Optimization dimension 4 (convolutional filters, learning rate,
batch size, and number of hidden units)
Fitness function Validation RMSE

3.2. Forecasting model formulation

The modeling process of the proposed VFE-IVY A-CNN-BiGRU framework for offshore wind
speed forecasting consists of three main stages, as illustrated in Fig. 6. The steps are detailed as
follows:

(1) Data Acquisition and Preprocessing.

Historical offshore wind speed data are collected on a daily basis. The raw dataset is first
cleaned by removing zero-value records and interpolating missing entries [49]. To avoid
information leakage, the dataset is then chronologically partitioned into training and testing
subsets, after which all preprocessing procedures are performed. Subsequently, min-max
normalization is fitted on the training subset, and the learned scaling parameters are applied to the
testing data to ensure proper time-ordered validation, as shown in Eq. (20):
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¥ = X~ Xmin ’ (20)

Xmax — Xmin

where x denotes the original data; x,,,, and X,,;, represent the maximum and minimum values of
x, respectively, while x’ refers to the normalized result after transformation.

In addition to normalization, Pearson Correlation (PCs) is used to measure linear relationships
among features. This step assists in filtering relevant meteorological variables before entering the
VFE module while minimizing the risk of collinearity-driven leakage across target-related
predictors.

IVYA

e

.
RA T A A

W

| nitialize IVYA population and parameters |

ejep paads puim

210YSJJ0 [BILIOISIY UIEIGO

e e e

| Calculate initial by Eq.(5) | Data preproce-

— ssing use PCC R ;\
Caleulate the fitness of and sort the members |
H CNN
[

v

=Iter +1

Iter

Compute § and AGy;

| Update the population and fitness, compute AGv}" |
v

Convolution  Max_pooling
layer layer

Merge the and select the optimal | Bi Output layer
End of iteration GRU Forvard
GRU layer
Show the optimal solution Bickiasd

GRU layer

Input layer

Fig. 6. Flowchart of the proposed VFE-IVYA-CNN-BiGRU framework

(2) Signal Decomposition and Feature Processing.

Step 2.1: For the training subset, the normalized wind speed series is decomposed using the
VFE module, which combines VMD and FE. VMD adaptively separates the signal into several
IMFs, each capturing specific frequency content and a residual (RES), helping to reduce signal
non-stationarity. The decomposition parameters derived from the training set are then applied to
process the testing subset to ensure consistency and prevent data leakage.

Step 2.2: FE is computed for each IMF component in the training subset to assess its
complexity. Based on the entropy values, IMFs are reconstructed to form a new sequence that
emphasizes informative structures and suppresses noise-dominated components. The
reconstruction scheme is applied consistently to the testing subset using the thresholds determined
from the training data.

Step 2.3: CNN is employed to extract localized temporal features, producing a high-
dimensional feature matrix. This matrix is then input into the BiGRU layer to capture temporal
dependencies from both forward and backward directions.

(3) Model Training and Prediction.

Step 3.1: Key hyperparameters of the CNN-BiGRU architecture are optimized using the Ivy
Algorithm (IVYA), including the number of convolutional filters, learning rate, batch size, and
number of hidden units.

Step 3.2: With the optimized hyperparameters, the feature-enriched dataset is used to train the
CNN-BiGRU architecture. The trained model is then used to predict wind speed values on the test
set. Each reconstructed component is predicted independently.

Step 3.3: Finally, the predicted sub-sequences are aggregated and then inverse normalized to
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restore the original scaleto yield the complete offshore wind speed forecast. The model
performance is evaluated using standard error metrics, and results are compared against
benchmark models.

3.3. Evaluation metrics

To assess how closely the VFE-IVYA-CNN-BiGRU model’s predictions align with actual
wind speed values, this study applies four commonly used evaluation metrics: R2, RMSE, MAE,
and MAPE [50]. These indicators help in analyzing the predictive reliability and error magnitude
of the model. The expression is shown as Eq. (21-24):

1 N
RMSE = J—Z (pi — )% 21)
NLui-,
1w ’
MAPE = —Z Pi”Pil 100 %, (22)
N L i
=1
1 N
MAE = Nzlpi _— (23)

17\]1 ,
_ Lt (i —p)®

R?>=1 —
Ziv=1(pi - P)?

24

where p; is the true value of the ith sample; p; is the predicted value of the ith sample; p; is the
average of all the samples; N represents the number of predicted samples.

4. Case study and results
4.1. Dataset description

This study employs data collected from an offshore wind farm in Guangdong Province, China,
during the one-year period spanning from the beginning to the end of 2022 (January 1 to
December 31). Wind speed and associated meteorological variables were recorded at 30-minute
intervals, forming the basis for seasonal prediction analysis. The dataset includes ten
meteorological factors: wind direction (WDIR), gust speed (GSP), wave height (WVHT), dew
point temperature (DPT), dominant wave period (DWP), sea level pressure (SLPR), air
temperature (ATMP), sea surface temperature (SST), average wave period (AWP), and actual
wind speed (AWS).

For seasonal evaluation, the full-year dataset is divided into four subsets corresponding to
distinct time frames: Winter (January 1-31), Spring (April 1-30), Summer (July 1-31), Autumn
(October 1-31). Each seasonal subset is further split into training (70 %) and testing (30 %) sets.
The number of samples per season varies slightly due to the differing lengths of each month: 1488
(Winter), 1436 (Spring), 1474 (Summer), and 1484 (Autumn). Data preprocessing includes zero-
value removal, interpolation for missing values, and min-max normalization.

The seasonal variations in offshore wind speed are illustrated in Fig. 7, where the temporal
trends across the four seasons show distinct fluctuations and amplitudes, reflecting meteorological
seasonality and variability. Table 2 provides a statistical overview of wind speed across different
seasons, reporting values such as the mean, median, range (maximum and minimum), standard
deviation, skewness, and kurtosis.

All experiments were conducted using a computing platform operating under Windows 11,
powered by an Intel Core 19-12900H CPU and supported with 16 GB of RAM. The
implementation of the model was carried out using Python 3.10, with TensorFlow 2.14 serving as
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the underlying deep neural modeling toolkit. All baseline and proposed models were trained under
identical training budgets, input window sizes, batch settings, optimizer schedules, and stopping
criteria to ensure a fair comparison. Computational metrics such as convergence curves and
latency are not included to maintain focus on forecasting performance and interpretability.

I5F
——  Winter(Iraining)

Winter(Testing)
10

st

15F
~——— Spring(Training)
Spring(lesting)

V-L'% ‘ '
NI r R\

—— Summer(Training)
Summer(Testing)

=3

Wind Speed (m/s)

——  Autumn(Training)
1o Autumn(Testing)
300 00 600 %00 1000 1200 1400
Time (30min)
Fig. 7. Original offshore wind speed data in four seasons
Table 2. Statistical descriptions of seasonal wind speed datasets
Data set Data length | Max | Min | Median | Mean | Std-Dev | Kurtosis | Skewness

All (m/s) 1488 14.710.89| 7.1 7.075| 2.623 —0.145 0.194

Winter | Training (m/s) 1041 133]/0.89] 69 6941 2.670 | —0.562 0.078
Testing (m/s) 447 147 1.4 7.2 7.388 | 2.483 0.858 0.592

All (m/s) 1436 14.8 1 0.94 6.3 6.241 | 2.333 —0.343 0.113

Spring | Training (m/s) 1005 148094 6.0 |6.106| 2.576 | —0.649 0.213
Testing (m/s) 431 109 1.7 6.5 |6.557| 1.585 0.465 0.038

All (m/s) 1474 124 1.1 53 |5.480| 1.817 | —0.011 0.268

Summer | Training (m/s) 1031 124 1.1 53 |5.450 | 1.869 0.107 0.357
Testing (m/s) 443 9.8 | 14 5.5 5.550 | 1.687 -0.459 0.012

All (m/s) 1484 12.5|1.15 5.1 5.286 | 2.178 -0.307 0.368

Autumn | Training (m/s) 1038 114]1.15] 48 |4.720] 1.730 | -0.160 0.161
Testing (m/s) 446 125136 6.8 [6.602| 2.518 | —0.829 —0.273

4.2. Meteorological feature analysis

Offshore wind speed is influenced by nine marine meteorological parameters, including
WDIR, GSP, WVHT, DWP, AWP, SLPR, ATMP, SST and DPT. To quantitatively assess the
relationships between these factors and wind speed, Pearson Correlation (PCs) analysis is
employed.

The PCs between each meteorological variable and the actual offshore wind speed is calculated
by Eq. (25):

r= NY Xy — X X Ny 25)
YN 2 — 02 n Y v - (B, )2

where the correlation coefficient r ranges from [—1, 1], when it is greater than 0, the stronger the
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correlation, the larger the value; n is the total number of dataset; x is the meteorological factor
data; y is the offshore wind speed data [51].
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Fig. 8. Feature correlation heatmap (Winter)

The correlation heatmap of the winter dataset is visualized in Fig. 8, clearly showing that gust
speed (GSP) exhibits the highest positive correlation with wind speed, followed by SLPR and
DPT. To generalize this analysis, Table 3 presents the PCs values between wind speed and all nine
features across the four seasonal datasets.

Based on the PCs results, the top six variables with the highest absolute correlation values
were selected for each seasonal subset as input features for the prediction model. These selected
variables are listed in Table 4. Notably, GSP consistently ranks highest across all seasons,
indicating its dominant influence on wind speed variation. Other features, such as SLPR, DPT,
and WDIR, also show moderate and seasonally consistent correlations.

Table 3. Pearson correlation between wind speed and meteorological features

Datasets | WDIR | GSP | WVHT | DWP | AWP | SLPR | ATMP | SST | DPT
Winter | 0.199 | 0.989 | 0.014 | 0.011 | 0.012 | 0.600 | 0.139 | 0.001 | 0.141
Spring | 0.118 | 0.984 | 0.007 | 0.003 | 0.005 | 0.108 | 0.540 | 0.001 | 0.554

Summer | 0.375 | 0.989 | 0.044 | 0.046 | 0.045 | 0.173 | 0.685 | 0.162 | 0.687

Autumn | 0.213 | 0.984 | 0.056 | 0.056 | 0.058 | 0.228 | 0.020 | 0.030 | 0.028

14

Table 4. Selected input features after PCs-based screening

Datasets The input features retained after PCs screening

Winter | WDIR | GSP | WVHT | SLPR | ATMP | DPT

Spring | WDIR | GSP | WVHT | SLPR | ATMP | DPT

Summer | WDIR | GSP | SLPR | ATMP SST DPT

Autumn | WDIR | GSP | WVHT | DWP | AWP | SLPR
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4.3. Wind speed decomposition via VMD

In order to improve the stability and predictability of the offshore wind speed time series, VMD
serves to break down the raw input sequence into a set of IMFs, each representing distinct
oscillatory patterns embedded in the original data. A critical parameter in VMD is the
decomposition level K, which determines the number of modes. If K is set too low, under-
decomposition may occur, failing to capture the full signal complexity; conversely, an excessively
high K may result in mode aliasing.

To determine an appropriate value of K, the center frequency method is adopted. Winter
dataset is exemplified, Table 5 presents the center frequencies of the IMFs for K =2 to K = 9.
When K = 8 and K = 9, the highest center frequency stabilizes at 0.463, indicating convergence.
Hence, the optimal decomposition level is set to K = 8.

The results of VMD decomposition for winter, spring, summer, and autumn are shown in
Fig. 9. The offshore wind speed signals are effectively decomposed into low- and high-frequency
components, which serve as the basis for further reconstruction and prediction.

Winter

1000

o S0
ime 6
(30""‘,, )

8 8
Summer \/V\W\/\ ot

Time P 600

iy 400

Fig. 9. VMD-based decomposition of wind speed series in four seasons
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Table 5. IMF center frequencies across different K settings (Winter)

IMF1 IMF2 | IMF3 | IMF4 | IMFS5 | IMF6 | IMF7 | IMF8 | IMF9
0.323x10-3 | 0.255 - - - - - - -
0.313x10-3 | 0.009 | 0.333 -
0.275x10-3 | 0.009 | 0.254 | 0.373 -
0.232x10-3 | 0.008 | 0.038 | 0.254 | 0.374 -
0.212x10-3 | 0.008 | 0.038 | 0.249 | 0.322 | 0.378 -
0.167x10-3 | 0.008 | 0.033 | 0.084 | 0.255 | 0.372 | 0.461 - -
0.114x10-3 | 0.008 | 0.033 | 0.084 | 0.250 | 0.322 | 0.377 | 0.463 -
0.078x10-3 | 0.008 | 0.032 | 0.082 | 0.152 | 0.254 | 0.324 | 0.377 | 0.463

O |0 || |n AW |R

4.4. Wind speed reconstruction via fuzzy entropy

After VMD decomposition, the offshore wind speed time series is represented as a set of IMF
components. Directly predicting all components may lead to increased computational complexity
and error accumulation. To address this, the Fuzzy Entropy (FE) of each component is calculated
to quantify its complexity. Components with similar FE values are grouped and reconstructed,
reducing redundancy while preserving key dynamic patterns.

Based on the FE evaluation, IMFs with similar entropy levels were grouped to form low-, mid-
and high-complexity components. Lower-entropy IMFs typically exhibited more regular
oscillations, whereas higher-entropy IMFs contained richer dynamical variations and contributed
more predictive information. This FE-guided reconstruction ensures that the retained components
reflect distinct temporal behaviors while suppressing noise-dominated signals.

0.8

o
>

Fuzzy Entropy
o
=

—e— Winter
—— Spring
—&— Summer
—*—  Autumn

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8
Intrinsic mode function(IMFs)

Fig. 10. Fuzzy entropy analysis results for seasonal datasets

The FE values and seasonal differences are visualized in Fig. 10, which shows that complexity
varies by season and IMF component. Taking the winter dataset as an example, this reconstruction
result illustrated in Fig. 11, enables the generation of three clear sub-sequences with
distinguishable frequency characteristics. Compared with the original full IMF set, the
reconstructed sequences offer lower dimensionality and improved interpretability, which
contributes to more robust and accurate prediction. It should be noted that the fuzzy entropy (FE)
values of the IMFs differ across the four seasonal datasets. This variation arises because
wind-speed time series exhibit distinct turbulence intensities and fluctuation characteristics under
different seasonal meteorological conditions. Since FE measures the irregularity and complexity
of a signal, the resulting entropy values naturally reflect these seasonal dynamics rather than
remaining uniform across all datasets.

4.5. Comparison of forecasting techniques
To thoroughly evaluate the proposed VFE-IVY A-CNN-BiGRU model, this study conducts a
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comparative assessment against five benchmark forecasting models: BIGRU, TCN, Transformer,
CNN-BiGRU, IVYA-CNN-BiGRU, VMD-IVYA-CNN-BiGRU and VFE-IVYA-CNN-
Transformer. The models are tested on four seasonal offshore wind speed datasets — winter, spring,
summer, and autumn — and evaluated using MAE, RMSE, MAPE, and the coefficient of
determination R?. Quantitative results are reported in Table 6 and visualized in Figs. 12-19.

Fig. 11. Reconstructed wind speed signal after FE-based IMF filtering (Winter)

Among the four seasonal datasets, the winter results most clearly demonstrate the performance
advantages of the proposed VFE-IVYA-CNN-BiGRU model. Winter wind speed series exhibit
strong periodicity coupled with moderate low-frequency fluctuations, making this season an
essential benchmark for evaluating multi-scale feature extraction and temporal-dependency
modeling. On this dataset, the proposed model achieves an R? exceeding 0.97, significantly
outperforming BiGRU (= 0.8860), TCN (= 0.8803), Transformer (= 0.8753), and CNN-BiGRU
(= 0.9037), corresponding to a relative improvement of approximately 8.9-11.3 %. The reduction
in error metrics is even more pronounced: compared with the basic BiGRU, the proposed
architecture reduces MAE by more than 55 % and RMSE by nearly 60 %, indicating substantially
enhanced accuracy in capturing both the amplitude variation and temporal evolution of winter
wind speed. Even against stronger convolution-based baselines such as CNN-BiGRU and
IVYA-CNN-BiGRU, MAE and RMSE still decrease by 40-50 % and 45-55%, respectively,
demonstrating the synergistic benefits introduced by VFE decomposition and IVYA-enhanced
convolution for representing localized structures and high-frequency fluctuations. Furthermore,
relative to more advanced hybrid approaches — such as VMD-IVYA-CNN-BiGRU and
VFE-IVYA-CNN-Transformer — the proposed model maintains clear superiority, achieving
15-25 % reductions in RMSE and 20-35 % reductions in MAPE. These improvements further
highlight the decisive role of the BIGRU component in modeling long-range dependencies within
winter’s quasi-stationary wind patterns.

The winter ablation results show a clear stepwise improvement as each module is added.
Starting from the BiGRU baseline (R? ~ 0.8860), introducing CNN reduces MAE and RMSE by
roughly 20-30 %, while replacing CNN with IVYA brings a further 10-15 % reduction. Adding
VMD provides another 15-20% improvement in RMSE through more effective mode separation.
With VFE incorporated, the model reaches R? > 0.97 and achieves over 55 % and 60 % decreases
in MAE and RMSE compared with BiGRU, confirming that each component contributes
incremental and complementary gains.

By contrast, the spring, summer, and autumn datasets exhibit stronger irregularity and
transitional seasonal characteristics, resulting in relatively narrower performance gaps among
models. Nevertheless, the proposed method remains the top performer across all evaluation
metrics, typically reducing RMSE by 10-20 % and MAPE by 10-25 % compared with the next-
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best model. In particular, for the highly non-stationary and fluctuation-intensive summer dataset,
the proposed model improves R? by more than 30 % relative to BiGRU, confirming its strong
adaptability under chaotic wind conditions. Overall, the winter experiments provide the clearest
quantitative evidence of the method’ s core advantages: VFE ensures high-fidelity mode
separation and mitigates modal mixing; IVYA-CNN enhances the extraction of local and
high-frequency structures; and BiGRU delivers robust long-term dependency modeling. The
synergistic integration of these components enables the proposed model to achieve the highest
forecasting accuracy across all seasons, with winter exhibiting particularly substantial
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Fig. 12. Results from six forecasting approaches (Winter)
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Fig. 13. Results from six forecasting approaches (Spring)
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These statistical gains are corroborated by the time-series prediction plots (Figs. 12-15), where
the proposed model demonstrates significantly better temporal alignment with ground truth,
especially around peaks, troughs, and inflection zones. In winter and autumn, where daily
amplitude varies widely, the model accurately follows trend direction without lag — whereas other
models, especially BIGRU and CNN-BiGRU, show smoothing effects or phase shift. In summer,
the proposed model shows reduced overfitting and higher responsiveness to random fluctuations,

18
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which is particularly evident in fast-changing segments.
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Fig. 14. Results from six forecasting approaches (Summer)
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Fig. 15. Results from six forecasting approaches (Autumn)

Visual evaluations from radar plots (Figs. 16-19) further emphasize the model's advantage.
The VFE-IVYA-CNN-BiGRU consistently occupies the innermost region, indicating minimum
error across all axes (MAE, RMSE, MAPE). In bar plots, the percentage decrease in MAE reaches
up to 57.5 %, and MAPE up to 55.1 %, compared to the weakest models. Moreover, scatter-fitting
plots reveal denser clustering near the identity line with a steeper slope closer to unity and reduced
spread, reflecting both reduced bias and variance. The residual distribution is significantly
narrower, especially in high-variance seasons, further confirming better model reliability.

The consistent improvement of the proposed model is attributed to the synergistic integration
of three key components. The original signal is decomposed into a set of intrinsic mode functions
(IMFs) using VMD, isolating multiscale oscillations and reducing non-stationarity. Fuzzy Entropy
quantifies the complexity of each IMF, allowing the model to suppress low-informative or noise-
prone components. This process produces a reconstructed sequence with a higher signal-to-noise
ratio, which enhances learning stability. Finally, IVYA adaptively optimizes the model’s
architecture — including convolutional depth, recurrent capacity, and learning parameters —
resulting in efficient convergence and enhanced generalization across seasonal regimes.
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In summary, the VFE-IVY A-CNN-BiGRU model exhibits not only lower average forecasting
error but also superior temporal alignment, reduced sensitivity to extreme values, and better fit in
noisy or high-variance conditions. Its performance advantage is both statistically significant and
structurally grounded, enabling robust offshore wind speed forecasting across all seasonal

contexts.
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Fig. 16. Comparative forecasting accuracy of six models (Winter)
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Fig. 18. Comparative forecasting accuracy of six models (Summer)
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Fig. 19. Comparative forecasting accuracy of six models (Autumn)

To further rule out the possibility of target leakage or artificially inflated performance caused
by highly collinear meteorological variables, an additional ablation experiment was conducted on
the winter dataset using the proposed VFE-IVY A-CNN-BiGRU model. In this test, the gust-speed
variable (GSP), which exhibits the strongest correlation with wind speed, was removed from the
input set. Excluding GSP led to a clear degradation in forecasting accuracy, with R? decreasing to
0.9322, MAE increasing to 0.4729 m/s, RMSE rising to 0.6536 m/s, and MAPE increasing to
7.864 %. This consistent deterioration confirms that the gust-related variable provides genuine
predictive information rather than leaking future values or duplicating the target signal. The results
further demonstrate that the proposed framework effectively captures physically meaningful
meteorological drivers, and that the performance gains attributed to gust-related features arise
from true model learning rather than from spurious correlations or unintended data leakage.

5. Model interpretability via SHAP
To enhance the interpretability and transparency of the VFE-IVYA-CNN-BiGRU model in
offshore wind speed forecasting and assess the influence of each meteorological input variable on

the model’s predictive behavior, SHAP (SHapley Additive exPlanations) was utilized. Visual
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analyses, including SHAP summary plots and mean absolute SHAP value bar charts, were
produced for four representative months — January, April, July, and October — capturing seasonal
variations across winter, spring, summer, and autumn, as illustrated in Figs. 20-21. These
visualizations offer both global and instance-level insights into feature influence, facilitating a
better understanding of model decision pathways under varying atmospheric conditions.

Table 6. Forecasting performance comparison of all models in four seasons

Models R? MAE (m/s) | RMSE (m/s) | MAPE

BiGRU 0.8860 0.6179 0.8438 10.1441
TCN 0.8803 0.6408 0.8647 10.4430

Transformer 0.8735 0.5973 0.8887 9.8472

Winter CNN-BiGRU 0.9037 0.5679 0.7753 9.2069
IVYA-CNN-BiGRU 0.9138 0.5350 0.7336 8.9219
VMD-IVYA-CNN-BiGRU 0.9416 0.4439 0.6040 7.3820
VFE-IVYA-CNN-Transformer | 0.9569 0.3690 0.5185 6.3588
VFE-IVYA-CNN-BiGRU 0.9799 0.2625 0.3540 4.5538

BiGRU 0.7942 0.5215 0.7125 8.4240

TCN 0.7242 0.6002 0.8248 9.7519

Transformer 0.7562 0.5876 0.7755 9.0019

Spring CNN—BiGRU 0.8120 0.4983 0.6810 8.1204
IVYA-CNN-BiGRU 0.8213 0.4861 0.6639 7.9653
VMD-IVYA-CNN-BiGRU 0.9304 0.3068 0.4143 5.2021
VFE-IVYA-CNN-Transformer | 0.9186 0.3333 0.4480 5.5608
VFE-IVYA-CNN-BiGRU 0.9613 0.2346 0.3091 3.8962

BiGRU 0.7015 0.6791 0.9141 14.1265

TCN 0.6237 0.7810 1.0262 16.0545

Transformer 0.6706 0.7352 0.9602 15.1340

Summer CNN-BiGRU 0.7138 0.6660 0.8949 13.9299
IVYA-CNN-BiGRU 0.7211 0.6534 0.8835 13.6726
VMD-IVYA-CNN-BiGRU 0.8618 0.4628 0.6220 9.5977
VFE-IVYA-CNN-Transformer | 0.8827 0.4304 0.5729 8.8016
VFE-IVYA-CNN-BiGRU 0.9221 0.3616 0.4668 7.3373

BiGRU 0.7312 0.9635 1.2855 19.1504

TCN 0.6061 1.2333 1.5560 23.2109

Transformer 0.7008 1.0431 1.3561 20.8920

Autumn CNN-BiGRU 0.7640 0.8678 1.2045 17.2027
IVYA-CNN-BiGRU 0.8009 0.7746 1.1061 17.1277
VMD-IVYA-CNN-BiGRU 0.8879 0.5961 0.8302 12.9817
VFE-IVYA-CNN-Transformer | 0.8023 0.8444 1.1024 16.4985
VFE-IVYA-CNN-BiGRU 0.9248 0.4788 0.6799 10.4956

In this study, we adopt the DeepSHAP variant of the SHAP framework, which is suitable for
deep neural network architectures. To avoid data leakage, the SHAP background dataset is
constructed exclusively from the training subset, using 200 randomly sampled instances to
approximate the expected background distribution. SHAP values are computed on 100
representative samples from the test set to balance interpretability and computational efficiency.
All SHAP computations are performed using the official SHAP Python package on a workstation
equipped with an NVIDIA RTX 3080 GPU and Intel i9 processor. The SHAP analysis is
performed on the sliding-window input representation of each sub-model. Each meteorological
variable appears as multiple lagged instances within the window (e.g., gust(t—1), gust(t-2), ...).
SHAP assigns an attribution value to every lagged instance. To obtain a unified and physically
meaningful importance measure for each meteorological variable, we aggregate the per-lag
attributions by computing the mean absolute SHAP value across all time steps. Therefore, the
reported SHAP results correspond to feature-level contributions, reflecting how each
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meteorological variable influences the final wind-speed prediction after passing through the full

VFE-IVYA-CNN-BiGRU modeling pipeline.
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Fig. 20. Mean absolute SHAP values for feature importance
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Fig. 21. SHAP summary plot of feature impacts

Across all seasonal datasets, gust speed (GSP) consistently ranked as the most influential
feature, exhibiting the highest mean SHAP values. In the winter case, for example, GSP reached
an average SHAP contribution exceeding 2.25, which is nearly an order of magnitude larger than
those of dew point temperature (DPT, ~0.25) and air temperature (ATMP, ~0.12). The SHAP
summary plot revealed a strongly monotonic positive relationship between GSP magnitude and
its SHAP attribution: red markers, representing higher GSP values, are mostly concentrated on the
right side of the SHAP distribution, suggesting a strong positive influence on predicted wind
speed, whereas lower GSP values (in blue) generally lead to reduced predictions. This behavior is
physically consistent with meteorological principles and persists across all seasonal contexts.

Thermal variables such as DPT and ATMP exhibited secondary but seasonally modulated
effects. In spring, for instance, the SHAP values of both features increased, with high DPT and
ATMP levels slightly elevating wind speed predictions. This suggests a potential interaction

24 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635



AN EXPLAINABLE HYBRID DEEP LEARNING FRAMEWORK FOR OFFSHORE WIND SPEED FORECASTING.
PEIFANG LIU, JIANG GUO, YE ZoU, NANA GAO

between thermodynamic factors and boundary-layer wind development during transitional
periods. The color gradients in the SHAP plots — ranging from blue (low feature value) to red
(high value) — further illustrate that mid-range DPT values tend to have minimal impact, while
higher values contribute positively, albeit with increased sample-wise variance. This pattern
indicates that the influence of temperature variables is likely non-linear and conditional on other
atmospheric parameters such as sea-level pressure or humidity.

SLPR and WDIR, though showing relatively low average SHAP values, displayed episodic
high contributions in specific cases — particularly in the autumn dataset. Their dispersed SHAP
distributions, combined with red and blue color interleaving, imply non-monotonic and
interaction-driven effects. For example, both high and low SLPR values can enhance or reduce
wind speed predictions depending on the prevailing synoptic context. Notably, in some autumn
samples, low SLPR values contributed negatively with SHAP values below —1.2, while high SLPR
values slightly increased predictions, reflecting the known meteorological behavior where sharp
pressure gradients (e.g., near frontal systems or cyclonic events) induce stronger winds.

In the summer dataset, a general decline in SHAP intensity was observed for most features,
indicating reduced feature influence under relatively stable atmospheric conditions. Nevertheless,
GSP remained the dominant contributor, continuing to exhibit a positive and consistent
relationship with the output. Interestingly, sea surface temperature (SST) emerged as a top-six
feature during summer and autumn. Though its average SHAP values were modest (< 0.10), the
presence of red-tinted SHAP points with slight positive impact suggests a possible secondary role
in modulating wind dynamics, potentially linked to large-scale thermal forcing or ocean-
atmosphere coupling.

The autumn dataset exhibited the broadest dispersion of SHAP values across features,
implying a higher degree of variability in the contribution of secondary variables. GSP remained
the dominant driver (mean SHAP = 1.75), but SLPR and WDIR demonstrated greater sample-
level variation than in other seasons. This variability aligns with the season’s complex synoptic
patterns, including frontal passages and typhoon-related systems. For example, low SLPR values
(blue) corresponded with reduced wind speed predictions, while high SLPR values (red) slightly
elevated model outputs, in line with the physical mechanism of wind generation under steep
pressure gradients.

In terms of global feature importance, bar charts consistently identified the same hierarchy
across seasons: GSP ranked first, followed by thermal variables (DPT, ATMP), then pressure and
direction (SLPR, WDIR). Wave-related variables (WVHT, AWP, DWP) displayed negligible
average SHAP values (< 0.05), indicating minimal overall influence. However, the scattered
distribution of their SHAP values in the summary plots suggests episodic relevance, likely under
specific conditions such as storm surges or high swell events near the coast.

To further enhance interpretability and address the dynamic contribution of meteorological
variables, this study incorporates time-resolved SHAP heatmaps for four representative seasonal
datasets (winter, spring, summer, and autumn). Unlike aggregated SHAP importance scores, the
time-resolved representation reveals how the influence of each input feature evolves across the
sliding temporal window. Fig. 22 presents the seasonal SHAP heatmaps. A highly consistent
pattern is observed across all seasons: GSP (gust speed) exhibits the strongest contribution with
clear oscillatory structures over time, indicating its dominant role in driving short-term variability
in offshore wind dynamics. This is meteorologically reasonable, as gust activity directly affects
turbulence intensity and short-horizon wind speed fluctuations. Secondary features, such as
ATMP, DPT, and SLPR, show weaker but smoother temporal contributions. These variables are
mainly associated with synoptic-scale or mesoscale processes (e.g., temperature gradients,
pressure fields), thus introducing more gradual variability in the prediction. Lower-ranked
variables (e.g., WDIR, WVHT, SST, AWP, DWP) contribute only marginally and display
minimal temporal fluctuations, consistent with their weaker physical relation to instantaneous
wind speed.

Overall, the SHAP analysis confirms that the VFE-IVYA-CNN-BiGRU model aligns well
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with established meteorological understanding. Its predictions rely predominantly on physically
interpretable variables such as gust speed, air temperature, and pressure, while also capturing non-
linear and interaction effects that emerge under complex atmospheric conditions. The model's
capacity to prioritize meaningful signals and modulate lesser features conditionally contributes to
its superior performance. Importantly, such transparent behavior reinforces confidence in the
model’s reliability and facilitates its deployment in real-world offshore wind forecasting systems,
particularly in safety-critical or operation-sensitive applications. In this framework, SHAP values
are computed directly on the original meteorological inputs, ensuring that the resulting attributions
preserve their physical interpretability. Since each sub-model receives both the meteorological
variables and the corresponding historical subcomponent as inputs, the SHAP results naturally
reflect how meteorological drivers (e.g., gust, pressure, humidity) influence wind variations at
different temporal scales. Consequently, the interpretability is not compromised by the
preprocessing stage but rather enhanced, as the decomposition explicitly separates the physical
scales of interest.
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Fig. 22. Time-resolved SHAP heatmap for feature contributions
6. Conclusions

To tackle the issues of nonlinear patterns, temporal instability, and insufficient interpretability
in offshore wind speed forecasting, a new hybrid deep learning architecture, VFE-IVY A-CNN-
BiGRU, was developed in this work. The model begins with feature selection using Pearson
Correlation (PCs), which identifies the most relevant predictors from a set of nine meteorological
variables. Subsequently, a robust preprocessing module (VFE), is designed to denoise the raw
signal and reconstruct informative subcomponents. A CNN-BiGRU network is then employed to
jointly extract temporal features, while the Ivy Algorithm (IVYA) adaptively optimizes key
hyperparameters, leading to improved convergence and generalization across varying
meteorological regimes.

Comprehensive experiments were conducted on real-world offshore wind datasets covering
four representative seasons. The proposed model consistently outperformed five baseline methods
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across all evaluation metrics. Compared with the baseline BiGRU, the VFE-IVY A-CNN-BiGRU
achieved average reductions in MAE and RMSE exceeding 50 %, and maintained R? values above
0.96 for all seasons. Visual analyses of prediction curves and residual distributions further
confirmed the model’s ability to capture sharp transitions and irregular wind dynamics with high
precision.

To enhance interpretability and increase model reliability, SHAP analysis was applied to
reveal the internal decision-making process of the model. Results show that GSP was the most
influential feature across all seasonal datasets, followed by temperature-related and
pressure-related variables, depending on the seasonal context. The SHAP summary plots revealed
that the model captures not only dominant monotonic trends but also non-linear and interaction-
driven relationships, thereby aligning with physical meteorological principles and enhancing
interpretability for real-world applications.

Despite the encouraging results, certain limitations remain. The current framework does not
explicitly model temporal dependencies across turbines or stations, which may be crucial for
large-scale wind farm forecasting. Moreover, the interpretability analysis is currently focused on
global and marginal effects, with limited exploration of temporal or localized feature
contributions. Future research will therefore aim to extend the model to spatiotemporal
forecasting, implement real-time adaptive learning for abrupt weather transitions, and integrate
probabilistic forecasting with uncertainty quantification to support decision-making under
uncertainty.

In conclusion, the VFE-IVYA-CNN-BiGRU model offers a structurally integrated,
interpretable, and highly accurate forecasting solution for short-term offshore wind speed
prediction. Its performance, grounded in both data-driven learning and physically meaningful
feature attribution, demonstrates significant potential for deployment in intelligent and reliable
wind energy management system.
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