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Abstract. Interpretability has become a critical requirement in modern deep learning applications 
for renewable energy forecasting, especially in complex and safety-critical contexts such as 
offshore wind power systems. To simultaneously improve predictive accuracy and model 
transparency, this study proposes an explainable hybrid deep learning framework – VFE-IVYA-
CNN-BiGRU – for offshore wind speed forecasting. The model begins with feature selection via 
Pearson Correlation (PCs) to identify the most relevant meteorological variables from a full set of 
candidates, thereby enhancing input quality and reducing redundancy. The selected features are 
then passed through a robust preprocessing module (VFE), which integrates Variational Mode 
Decomposition (VMD) and Fuzzy Entropy (FE). VMD decomposes the original wind speed 
sequence into intrinsic mode functions (IMFs), capturing multi-scale temporal structures, while 
FE quantifies the complexity of each IMF to filter out noise-dominated components. The 
reconstructed sub-sequences are first processed through a Convolutional Neural Network (CNN) 
to capture temporal local dependencies, and then passed into a Bidirectional Gated Recurrent Unit 
(BiGRU), which effectively learns time dependencies in both forward and backward directions. 
To further enhance model performance, the Ivy Algorithm (IVYA) is employed to optimize 
hyperparameters adaptively, improving convergence and generalization. To improve 
interpretability, SHapley Additive exPlanations (SHAP) are utilized to quantify the contribution 
of each meteorological feature to the model's output, revealing both dominant drivers (e.g., gust 
speed) and interaction patterns across seasons. The proposed framework is evaluated using 
seasonal offshore wind datasets (spring, summer, autumn, and winter) sourced from a wind power 
site along the Guangdong coastline, China, and contrasted with six leading benchmark models. 
Empirical findings reveal that the proposed VFE-IVYA-CNN-BiGRU consistently outperforms 
existing methods in terms of accuracy, robustness, and interpretability. The integration of SHAP-
based explanations ensures model transparency, making the approach a reliable tool for intelligent 
control and decision support in offshore wind farm operations.  
Keywords: Offshore wind speed forecasting, VMD decomposition, fuzzy entropy, Ivy algorithm, 
CNN-BiGRU, SHAP interpretability. 

1. Introduction 

With the continuous depletion of fossil fuel resources and the growing environmental pressures 
associated with their use, the development of clean and sustainable energy has become a global 
priority. Among various renewable options, offshore wind power has attracted significant 
attention due to its abundant installation space, greater wind stability, and larger turbine capacity. 
In China, it plays a central role in the national strategy of “integrating land-sea development and 
accelerating marine power construction” [1-3]. According to the Global Wind Energy Council 
(GWEC), global offshore wind capacity reached 78.52 GW by the end of 2024 and is expected to 
rise to 380 GW by 2030 [4]. 

Despite its rapid growth, large-scale grid integration of offshore wind remains challenging 
because wind speed exhibits strong variability, intermittency, and nonlinear behavior. Accurate 
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short-term forecasting is therefore crucial for secure grid operation, economic dispatch, and 
efficient utilization of wind resources. Generally, forecasting tasks are categorized into short-, 
medium-, and long-term horizons, among which high-precision short-term forecasting is 
particularly vital for real-time operation and control [5, 6]. 

 
Fig. 1. Global cumulative installed offshore wind capacity (GW) 

Over the past decades, numerous techniques have been proposed to forecast wind speed, which 
are typically categorized into three main groups: physics-based models, statistical methods, and 
data-driven approaches. Physics-based models, particularly numerical weather prediction (NWP), 
are based on the equations of atmospheric dynamics and thermodynamics. These models simulate 
wind behavior by solving partial differential equations under defined boundary and initial 
conditions. Although NWP models offer high spatiotemporal resolution and theoretical rigor, they 
require significant computational resources and are highly sensitive to initialization errors, 
rendering them less suitable for ultra-short-term forecasting tasks where timeliness and 
adaptability are critical [7, 8]. 

Statistical methods, such as autoregressive (AR), moving average (MA), and their extended 
versions including ARMA and ARIMA, model wind speed as linear time series [9-11]. These 
models are computationally efficient and easy to interpret but inherently limited in capturing the 
nonlinear and nonstationary characteristics of wind speed data. Hybrid extensions such as 
ARIMA-GARCH have been proposed to incorporate volatility modeling, yet they still struggle 
with the multiscale fluctuations observed in real-world wind speed series. 

To overcome these constraints, machine learning (ML) methods have emerged as attractive 
alternatives, owing to their capability to capture intricate nonlinear patterns without the need for 
predefined physical formulations. Techniques like support vector machines (SVM) [12], extreme 
learning machines (ELM) [13], Artificial Neural Network (ANN) [14], Naive Bayes model and 
random forests (RF) [15] have shown promising results in wind speed prediction, outperforming 
traditional statistical approaches in terms of prediction accuracy. However, shallow ML models 
generally require feature engineering and may not generalize well in high-dimensional or highly 
volatile environments. Their inability to learn hierarchical representations from raw data 
constrains their forecasting robustness, particularly under multiscale and nonstationary conditions 
[16]. 

In recent developments, deep learning has gained prominence in time series forecasting, owing 
to its ability to perform hierarchical feature representation and enable end-to-end model training. 
Deep neural networks (DNN), convolutional neural networks (CNN), Generative Adversarial 
Network (GAN), long short-term memory (LSTM), and gated recurrent units (GRU) have found 
extensive application in forecasting tasks related to wind speed and wind power. 

CNNs are effective at extracting local patterns and temporal correlations, while RNNs and 
their variants capture sequential dependencies. Among them, GRU and its bidirectional version 
(BiGRU) are particularly suitable for wind time series modeling, offering a balance between 
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model complexity and temporal representation power. Compared to LSTM, BiGRU employs 
fewer parameters and demonstrates faster convergence with comparable forecasting accuracy, 
making it a competitive choice for real-time and large-scale applications [17-23]. 

Despite their strengths, deep learning models often face challenges in learning from raw wind 
speed sequences due to their high-frequency oscillations, seasonal heterogeneity, and embedded 
noise. To mitigate this issue, signal decomposition techniques are frequently introduced as a 
preprocessing step to improve signal smoothness and regularity. Wavelet transform (WT) [24], 
empirical mode decomposition (EMD) [25, 26], Ensemble Empirical Mode Decomposition 
(EEMD) and variational mode decomposition (VMD) [27] are among the most widely used 
methods in this context. WT provides multiresolution analysis but requires a predefined mother 
wavelet, potentially limiting adaptability. EMD and EEMD is capable of adaptively extracting 
intrinsic mode functions (IMFs); nevertheless, traditional methods are susceptible to problems like 
mode mixing and edge distortion. In contrast, Variational Mode Decomposition (VMD) reframes 
the decomposition task as a constrained optimization framework based on variational methods and 
generates band-limited IMFs with better mode separation and noise suppression capabilities, 
thereby enhancing signal interpretability and downstream model learnability [28, 29]. 

To further enhance the quality of decomposed components, entropy-based complexity 
measures such as approximate entropy (AE) [30], permutation entropy (PE) and sample entropy 
(SE) [31], and fuzzy entropy (FE) [32, 33] have been adopted. These methods evaluate the 
irregularity and unpredictability of time series components, aiding in the selection of informative 
IMFs. Compared with AE and SE, FE demonstrates superior robustness to noise and sensitivity 
to subtle variations. By reconstructing subsequences based on FE similarity, redundant or low-
information components can be filtered out, improving model efficiency and generalization while 
retaining essential dynamic characteristics. 

In parallel, the performance of deep neural networks is heavily influenced by hyperparameter 
configurations such as learning rate, batch size, number of layers, and hidden units. Manual tuning 
is time-consuming and prone to suboptimal configurations. To address this, metaheuristic 
optimization algorithms have been introduced, including genetic algorithms (GA) [34], particle 
swarm optimization (PSO) [35], gray wolf optimizer (GWO) [36], and more recently, the ivy 
algorithm (IVYA) [37]. Inspired by biological behavior of ivy plants, IVYA balances exploration 
and exploitation by modeling population evolution through coordinated propagation and light-
seeking strategies. Empirical studies have shown that IVYA achieves faster convergence and 
better global optimization capability than traditional heuristics, making it well-suited for complex 
neural network hyperparameter tuning. 

While improving forecasting accuracy remains a central objective, recent research has 
increasingly emphasized the interpretability of predictive models, particularly in energy 
forecasting scenarios where decisions must remain transparent and trustworthy. Despite their 
strong predictive capability, deep learning models are often criticized as “black boxes,” motivating 
the adoption of explainable artificial intelligence (XAI) techniques. Among them, SHAP provides 
a unified, game-theoretic framework for quantifying feature contributions at both global and 
instance levels, offering insights into the meteorological drivers of forecast outcomes and their 
seasonal interactions [38, 39]. 

Recent progress in signal decomposition, deep learning architectures, optimization algorithms, 
and interpretability tools has markedly improved wind speed forecasting performance. 
Nevertheless, combining these advances into a single framework that achieves both high accuracy 
and interpretability remains challenging. To address this gap, this paper proposes an explainable 
hybrid model for offshore wind speed prediction that integrates signal decomposition and filtering, 
deep sequence modeling, automated hyperparameter tuning, and SHAP-based interpretability. 

The model is evaluated using offshore wind datasets from Guangdong, China, across four 
seasons and compared with six advanced baselines. Experimental results demonstrate significant 
gains in forecasting accuracy and model transparency. 

The main contributions of this work are summarized as follows: 



AN EXPLAINABLE HYBRID DEEP LEARNING FRAMEWORK FOR OFFSHORE WIND SPEED FORECASTING.  
PEIFANG LIU, JIANG GUO, YE ZOU, NANA GAO 

4 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

(1) A correlation-based feature selection strategy is employed to extract nine dominant 
meteorological variables, reducing input dimensionality and improving learning efficiency. 

(2) A VFE module is designed to decompose wind speed signals and retain components with 
higher complexity and predictive value, alleviating nonlinearity and noise. 

(3) A CNN-BiGRU hybrid network is constructed to jointly capture local temporal features 
and bidirectional dependencies, enabling robust sequence representation. 

(4) The Ivy Algorithm (IVYA) is adopted for automated hyperparameter tuning, enhancing 
convergence speed and predictive stability. 

(5) SHAP is used to interpret the contribution of each meteorological feature, providing both 
global and local insights into the model’s decision-making process. 

2. Methods 

2.1. VMD and fuzzy entropy-based signal processing 

To capture the complex, non-stationary, and nonlinear characteristics present in offshore wind 
speed data, this study adopts a two-stage preprocessing technique combining Variational Mode 
Decomposition (VMD) and Fuzzy Entropy (FE), hereafter referred to as VFE. 

By applying VMD, 𝐾 intrinsic mode function (IMF) {𝑢௞(𝑡)}௞ୀଵ௄  can be derived from the 
original wind speed signal 𝑓(𝑡) through adaptive decomposition, each with compact bandwidth 
around an adaptive center frequency 𝑤௞. To achieve accurate signal reconstruction, the variational 
formulation Eq. (1) aims to constrain the overall bandwidth of the extracted modes as much as 
possible [40]: 

⎩⎪⎨
⎪⎧ min{௨ೖ},{௪ೖ} ൝෍ฯ𝜕௧ ൤൬𝛿(𝑡) + 𝑗𝜋𝑡൰ ∗ 𝑢௞(𝑡) ⋅ 𝑒ି௝௪ೖ௧൨ฯଶଶ௞ୀଵ ൡ ,
𝑠. 𝑡.෍𝑢௞(𝑡) = 𝑓(𝑡)௞ ,  (1)

where, 𝜕௧ is the time derivative, ∗ denotes convolution, and 𝛿(𝑡) is Dirac function. To address this 
optimization task under constraints, a Lagrange multiplier 𝜆(𝑡) and penalty term 𝛼 are introduced, 
yielding the augmented Lagrangian: 

𝐿 = 𝛼෍ฯ𝜕௧ ൤൬𝛿(𝑡) + 𝑗𝜋𝑡൰ ∗ 𝑢௞(𝑡) ⋅ 𝑒ି௝௪ೖ௧൨ฯଶଶ௄
௞ୀଵ + ะ𝑓(𝑡) −෍𝑢௞(𝑡)௄

௞ୀଵ ะଶ
ଶ

+ ൽ𝜆(𝑡), 𝑓(𝑡) −෍𝑢௞(𝑡)௄
௞ୀଵ ඁ. (2)

The decomposition quality being highly sensitive to the penalty factor 𝛼 and mode number 𝐾: 
inappropriate settings may lead to under- or over-decomposition, impacting model performance. 

After decomposition, FE is employed to evaluate the complexity of each IMF. Unlike sample 
entropy, FE uses an exponential membership function to quantify the similarity between phase 
space vectors [41]. Given a time series 𝑋 = {𝑥ଵ, 𝑥ଶ, . . . , 𝑥ே}, the fuzzy similarity is defined as 
Eq. (3): 

𝐷௜௝ = exp ቈ−ቆ𝑑௜௝𝑟 ቇ௡቉, (3)

where 𝑑௜௝ is the Chebyshev distance, 𝑟 is the similarity tolerance, and 𝑛 is the fuzzy power. The 
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FE is computed by comparing the average similarity of vectors of dimension 𝑚 and 𝑚 + 1: 

𝐹𝐸(𝑚, 𝑟,𝑛) = ln൭ ∑ 𝐷௜௝(௠)ேି௠௜,௝ୀଵ∑ 𝐷௜௝(௠ାଵ)ேି௠ାଵ௜,௝ୀଵ ൱. (4)

A higher FE value indicates greater irregularity and complexity. In this work, IMFs with higher 
FE are retained for prediction, while low-entropy components are discarded to reduce noise and 
computation burden. 

By combining the adaptive decomposition capability of VMD and the complexity filtering 
power of FE, the VFE module enhances the signal quality and preserves meaningful temporal 
features for downstream prediction. 

2.2. Ivy algorithm (IVYA) 

Inspired by the adaptive growth and climbing patterns of ivy plants, the Ivy Algorithm (IVYA) 
was introduced as a meta-heuristic optimization strategy by Ghasemi et al. (2024) [42]. By 
simulating the biological mechanisms of ivy propagation – including coordinated expansion, 
adaptive search, and competition for sunlight – IVYA offers an effective strategy for solving 
complex, high-dimensional optimization problems. 

IVYA models the ivy’s growth process using discrete-time dynamic equations and 
evolutionary rules. Its optimization framework consists of five major stages: (1) population 
initialization, (2) coordinated growth, (3) light-seeking movement, (4) expansion and adaptation, 
and (5) survivor selection. These components work together to guide the population toward global 
optima through both exploration and exploitation mechanisms. The IVYA’s process flow is 
depicted in Fig. 2. 

Population initialization. Eq. (5) is employed to initialize the IVYA population with random 
positions distributed throughout the search space: 𝐼௜ = 𝐼௠௜௡ + rand(1,𝐷)⨀(𝐼௠௔௫ − 𝐼௠௜௡),     𝑖 = 1, … ,𝑁𝑝𝑜𝑝, (5)

where, a vector with dimension 𝐷 of uniformly distributed random numbers is represented by 𝑟𝑎𝑛𝑑(1,𝐷). 𝑁𝑝𝑜𝑝 is the number of populations. 
Coordinated growth. It is postulated that the growth rate 𝐺𝑣 of ivy plants varies as a function 

of time. Drawing upon extensive experimental data, a corresponding difference equation 
describing the growth rate 𝐺𝑣௜(𝑡) of individual members 𝐼௜ is derived: Δ𝐺𝑣௜(𝑡 + 1) = randଶ⨀൫𝑁(1,𝐷)൯ ⊙ Δ𝐺𝑣௜(𝑡), (6)

where the vectors Δ𝐺𝑣௜(𝑡) and Δ𝐺𝑣௜(𝑡 + 1) represent the growth rate of a discrete-time system, rand denotes a uniformly distributed real number within the range [0, 1], while 𝑁(1,𝐷) indicates 
a normally distributed random vector of dimension 𝐷. 

Light-seeking movement. Young ivy is often guided to grow toward nearby trees or established 
ivy that has secured a support structure, allowing access to sunlight and promoting population 
sustainability. 

The Eq. (7-8) describes how Ivy 𝐼௜ uses 𝐼௜௜ to move logically in the direction of the radiant 
source: 𝐼௜௡௘௪ = 𝐼௜ + |𝑁(1,𝐷)|⨀(𝐼௜௜ − 𝐼௜) + 𝑁(1,𝐷)⨀Δ𝐺𝑣௜ ,    𝑖 = 1,2, … ,𝑁𝑝𝑜𝑝, (7)Δ𝐺𝑣௜ = ቊ𝐼௜⨀(𝐼௠௔௫ − 𝐼௠௜௡), 𝐼𝑡𝑒𝑟 = 1,randଶ⨀൫𝑁(1,𝐷)൯⨀Δ𝐺𝑣௜ , 𝐼𝑡𝑒𝑟 > 1. (8)
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Expansion and adaptation. Following a global search, member 𝐼௜ locates the closest and most 
influential neighbor 𝐼௜௜ within the solution space, and 𝐼௜ tries to follow the best member of the 
population 𝐼஻௘௦௧ to find the best candidate solution. This phase is represented by the Eq. (9): 𝐼௜௡௘௪ = 𝐼஻est⨀(𝑟𝑎𝑛𝑑(1,𝐷) + 𝑁(1,𝐷)⨀Δ𝐺𝑣௜). (9)

 
Fig. 2. Flowchart of the IVYA 

Eq. (10) is applied to compute the present growth rate of member 𝐼௜௡௘௪, Δ𝐺𝑣௜௡௘௪ (which is 
exactly similar to the formula used to calculate Δ𝐺𝑣௜): Δ𝐺𝑣௜௡௘௪ = 𝐼௜௡௘௪ ⊗ (𝐼௠௔௫ − 𝐼௠௜௡). (10)

Survivor selection. In order to simulate the alternating stages, namely “climb” and “expand”, 
the method is used. If the objective value 𝑓(𝐼௜) for member 𝐼௜ falls below the product of 𝑓(𝐼௕௘௦௧) 
and parameter 𝛽 = (ଶା௥௔௡ௗ)ଶ , Eq. (7) is used to expand the branch and leaf width of the ivy tree. 
Otherwise, the upward growth and climbing behavior of the ivy is guided by Eq. (9). 

2.3. Convolutional neural network (CNN) 

Due to their effectiveness in capturing local temporal patterns from structured inputs, 
Convolutional Neural Networks (CNNs) have become a prevalent choice for feature extraction 
tasks. The CNN architecture typically consists of three primary layers: the input layer, a series of 
hidden layers (including convolution and pooling operations), and the output layer [43, 44]. The 
CNN’s structure is shown as Fig. 3. 

The core component of a CNN is its convolutional layer, which utilizes learnable filters to 
derive significant local characteristics from the input. This process is mathematically described in 
Eq. (11): 
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𝑥௝(௟) = 𝜎 ቆ෍ 𝑥௜(௟ିଵ)௜∈ெೕ ∗ 𝑤௜௝(௟) + 𝑏௝(௟)ቇ, (11)

where 𝑥௜(௟ିଵ) denotes the feature map fed from the preceding layer, 𝑤௜௝(௟) is convolutional kernel, 𝑏௝(௟) is the bias term, ∗ denotes convolution operation, 𝜎(⋅) is the nonlinear activation function 
(commonly ReLU).  

Following convolution, a pooling layer – specifically, max pooling – is applied to reduce 
dimensionality and suppress noise, preserving dominant features while mitigating overfitting. The 
pooling operation is defined as: 𝑥௝(௟) = 𝑑𝑜𝑤𝑛൫𝑥௝(௟ିଵ)൯, (12)

where 𝑑𝑜𝑤𝑛(⋅) represents the pooling function applied to the output feature map. 
The final layer is typically fully connected, which aggregates extracted features and maps them 

to the target prediction. 
This study uses CNN primarily to capture short-term temporal dependencies in preprocessed 

wind speed components, providing an effective input representation for subsequent temporal 
modeling. 

 
Fig. 3. Architecture of the CNN 

2.4. Bidirectional gated recurrent unit (BiGRU) 

To effectively model temporal relationships in sequential data, the BiGRU is employed. 
Compared to LSTM, the GRU architecture achieves similar performance while simplifying the 
gating mechanism by using fewer components [45, 46]. Its structure revolves around two essential 
components – the reset and update gates – which are visualized in Fig. 4(a). 

The mathematical formulation of a GRU unit is as follows: 𝑟௧ = 𝜎(𝑊௥𝑥௧ + 𝑈௥ℎ௧ିଵ), (13)𝑧௧ = 𝜎(𝑊௭𝑥௧ + 𝑈௭ℎ௧ିଵ), (14)ℎ෨௧ = tanh( 𝑟௧ ∘ 𝑈ℎ௧ିଵ + 𝑊𝑥௧), (15)ℎ௧ = (1 − 𝑧௧) ∘ ℎ෨௧ + 𝑧௧ ∘ ℎ௧ିଵ. (16)

Eqs. (13-16) are related to each other and cannot be used alone. 𝑟௧ is reset gate. 𝑧௧ is update 
gate. ℎ௧෩  is candidate hidden layer state, reflecting the input information. ℎ௧ is the output of the 
hidden layer. 𝜎 and tanh are the Sigmoid function and activation function, respectively; 𝑊௥, 𝑈௥, 𝑊௭, 𝑈௭, 𝑊, 𝑈 are all training parameter matrices. 

BiGRU extends the GRU by processing the input sequence in both forward and backward 
directions, capturing richer temporal dependencies. As shown in Fig. 4(b), it consists of two 
parallel GRUs: one traversing the sequence from past to future, the other in reverse. 
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The output at time 𝑡 is computed as: ℎ௧ = 𝑊௙ ⋅ ℎ௧(௙) + 𝑊௕ ⋅ ℎ௧(௕) + 𝑏, (17)

where ℎ௧(௙) and ℎ௧(௕) are the forward and backward hidden states, 𝑊௙, 𝑊௕ are the corresponding 
output weights, 𝑏is the bias term. 

Compared with LSTM, BiGRU offers similar accuracy with fewer parameters and faster 
training convergence, thereby rendering it suitable for applications involving real-time 
forecasting. In this work, BiGRU is employed after CNN to model both forward- and 
backward-influenced temporal patterns in the offshore wind speed sequence, enhancing prediction 
robustness. 

 
a) 

 
b) 

Fig. 4. Architectures of a) GRU and b) BiGRU 

2.5. SHAP Theory 

SHAP (SHapley Additive exPlanations) is an explainable AI method based on cooperative 
game theory, designed to quantify the impact of each feature input on the prediction results 
produced by the model. It attributes the prediction of a model 𝑓(𝑥) to the sum of feature 
contributions, where each feature’s effect is measured by its Shapley value [47, 48]. 

For a given instance 𝑥, the model output 𝑓(𝑥) is defined using Eq. (18): 

𝑓(𝑥) = 𝜙଴ + ෍𝜙௜ெ
௜ୀଵ , (18)

where 𝜙଴ represents the expected output over the entire dataset, and 𝜙௜ denotes the marginal 
contribution of the 𝑖th feature. 

The Shapley value 𝜙௜ of feature 𝑖 is defined as Eq. (19): 

𝜙௜ = ෍ |𝑆|! (|𝐹| − |𝑆| − 1)!|𝐹|! ሾ𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)ሿௌ⊆ி\{௜} . (19)

In this context, 𝐹 is the complete set of the features, while 𝑆 refers to a subset of 𝐹 that excludes 
the specific feature 𝑖. The 𝑓(𝑆) represents the model’s output based solely on the features 
contained in 𝑆. 

This formula computes the average marginal contribution of feature 𝑖 over all possible subsets 𝑆, ensuring fairness and consistency in feature attribution. In practical implementation, SHAP 
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approximates these values through sampling and model-specific explainers, such as TreeSHAP or 
KernelSHAP. 

The key advantages of SHAP lie in its solid theoretical foundation and practical utility. It 
ensures consistency, meaning that if a feature has a greater impact on the output, its SHAP value 
will not be lower than that of a less influential feature. SHAP also provides local accuracy by 
ensuring that the sum of all feature attributions equals the difference between the model prediction 
and the expected output. Furthermore, by aggregating individual explanations across multiple 
instances, SHAP enables global interpretability, offering insights into overall feature importance 
and interaction effects, which is valuable for high-stakes applications like wind power forecasting. 

3. Forecasting framework construction 

3.1. Architecture of the CNN-BiGRU network 

The CNN model alternates between convolutional and pooling layers, utilizing local 
connectivity and weight sharing to efficiently extract temporal features from the original signal. 
This process enables the network to automatically learn local patterns and form a dense, 
informative feature representation. Given its ability for automatic feature extraction and 
compatibility with sequential data, CNN is applied to capture temporal dependencies in offshore 
wind speed time series. 

In the BiGRU component, the input data is processed bidirectionally using Gated Recurrent 
Units (GRUs). This allows the network to get temporal dependencies from both future and past 
contexts, enhancing its capacity to model the entire sequence structure. The reuse of weights 
across time steps enhances model expressiveness without increasing the number of parameters, 
which helps mitigate underfitting. Considering the volatility and uncertainty of offshore wind 
speed, combining CNN and BiGRU allows the model to achieve both efficient feature extraction 
and effective temporal modeling. The structure of the CNN-BiGRU model is illustrated in Fig. 5. 
The structure can be described as follows: 

Input Layer: The input is structured as a two-dimensional matrix of size, where corresponds 
to the temporal dimension of the sequence, and indicates the feature dimensionality per time step. 
The CNN module first processes this data to extract temporal patterns. 

Convolutional Layer: 1D convolutional layers are used to extract temporal features. Each has 
a kernel size of 2 with a stride of 1, and the number of filters is set to 32 and 64 respectively. ReLU 
is used as the activation function, introducing non-linearity and accelerating convergence by 
zeroing out negative activations. 

Pooling Layer: A max-pooling layer follows each convolutional layer to reduce dimensionality 
and eliminate less informative features. The pooling size is 2×1 with a stride of 2. The output of 
the pooling layers is flattened into a time sequence format suitable for BiGRU processing. 

BiGRU Layer: The extracted features are then input into the BiGRU network, which processes 
the sequence bidirectionally to capture comprehensive temporal dependencies. A Dropout layer is 
added within the BiGRU to prevent overfitting by randomly deactivating some units during 
training. The final output is passed through a fully connected layer to generate the predicted wind 
speed. 

Optimization and Training: The Adam optimizer is employed for training due to its adaptive 
learning rate capabilities. The number of training epochs is set between 1 and 200, and the initial 
learning rate ranges from 0.001 to 0.01. A learning rate decay factor of 0.1 is applied to ensure 
stable convergence. The configurations are chosen to achieve a trade-off between training speed 
and the model’s ability to generalize. 

The specific configurations of the CNN-BiGRU model, including convolutional kernel sizes, 
number of filters, dropout rate, and optimization settings, are detailed in Table 1. These settings 
are based on standard practices in deep learning for time series modeling and have been refined 
to ensure effective temporal feature extraction, training stability, and model generalization. 
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Particular attention has been paid to adapting the convolution and pooling parameters to the 1D 
structure of time series data, as well as to selecting appropriate ranges for hyperparameter tuning. 

 
Fig. 5. Architecture of the CNN-BiGRU 

Table 1. Hyperparameter configurations of the proposed model 
Module Parameter Value / Search range 

CNN 

Number of convolutional layers 2 
Number of filters (per layer) [32, 64] 

Filter size 3×1 
Activation function ReLU 

Number of pooling layers 2 
Pooling type Max pooling 

Pooling kernel size 2 × 1 
Pooling stride 2 

Padding Same 

BiGRU 

Number of BiGRU layers 1 (bidirectional) 
Number of hidden units [32, 200] 

Dropout rate 0.2 
Batch size [8, 64] 

Learning rate [0.001, 0.01] 
Learning rate decay factor 0.1 

Activation function (hidden state) Tanh 
Optimizer Adam 

Loss function Mean Squared Error (MSE) 
Number of epochs 100 

IVYA 

Population size 10 
Maximum number of iterations 30 

Optimization dimension 4 (convolutional filters, learning rate, 
batch size, and number of hidden units) 

Fitness function Validation RMSE 

3.2. Forecasting model formulation 

The modeling process of the proposed VFE-IVYA-CNN-BiGRU framework for offshore wind 
speed forecasting consists of three main stages, as illustrated in Fig. 6. The steps are detailed as 
follows: 

(1) Data Acquisition and Preprocessing. 
Historical offshore wind speed data are collected on a daily basis. The raw dataset is first 

cleaned by removing zero-value records and interpolating missing entries [49]. To avoid 
information leakage, the dataset is then chronologically partitioned into training and testing 
subsets, after which all preprocessing procedures are performed. Subsequently, min-max 
normalization is fitted on the training subset, and the learned scaling parameters are applied to the 
testing data to ensure proper time-ordered validation, as shown in Eq. (20): 
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𝑥ᇱ = 𝑥 − 𝑥௠௜௡𝑥௠௔௫ − 𝑥௠௜௡, (20)

where 𝑥 denotes the original data; 𝑥௠௔௫ and 𝑥௠௜௡ represent the maximum and minimum values of 𝑥, respectively, while 𝑥ᇱ refers to the normalized result after transformation. 
In addition to normalization, Pearson Correlation (PCs) is used to measure linear relationships 

among features. This step assists in filtering relevant meteorological variables before entering the 
VFE module while minimizing the risk of collinearity-driven leakage across target-related 
predictors. 

 
Fig. 6. Flowchart of the proposed VFE-IVYA-CNN-BiGRU framework 

(2) Signal Decomposition and Feature Processing. 
Step 2.1: For the training subset, the normalized wind speed series is decomposed using the 

VFE module, which combines VMD and FE. VMD adaptively separates the signal into several 
IMFs, each capturing specific frequency content and a residual (RES), helping to reduce signal 
non-stationarity. The decomposition parameters derived from the training set are then applied to 
process the testing subset to ensure consistency and prevent data leakage. 

Step 2.2: FE is computed for each IMF component in the training subset to assess its 
complexity. Based on the entropy values, IMFs are reconstructed to form a new sequence that 
emphasizes informative structures and suppresses noise-dominated components. The 
reconstruction scheme is applied consistently to the testing subset using the thresholds determined 
from the training data. 

Step 2.3: CNN is employed to extract localized temporal features, producing a high-
dimensional feature matrix. This matrix is then input into the BiGRU layer to capture temporal 
dependencies from both forward and backward directions. 

(3) Model Training and Prediction. 
Step 3.1: Key hyperparameters of the CNN-BiGRU architecture are optimized using the Ivy 

Algorithm (IVYA), including the number of convolutional filters, learning rate, batch size, and 
number of hidden units. 

Step 3.2: With the optimized hyperparameters, the feature-enriched dataset is used to train the 
CNN-BiGRU architecture. The trained model is then used to predict wind speed values on the test 
set. Each reconstructed component is predicted independently. 

Step 3.3: Finally, the predicted sub-sequences are aggregated and then inverse normalized to 
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restore the original scaleto yield the complete offshore wind speed forecast. The model 
performance is evaluated using standard error metrics, and results are compared against 
benchmark models. 

3.3. Evaluation metrics 

To assess how closely the VFE-IVYA-CNN-BiGRU model’s predictions align with actual 
wind speed values, this study applies four commonly used evaluation metrics: R², RMSE, MAE, 
and MAPE [50]. These indicators help in analyzing the predictive reliability and error magnitude 
of the model. The expression is shown as Eq. (21-24): 

𝑅𝑀𝑆𝐸 = ඨ1𝑁෍ (𝑝௜ − 𝑝௜ᇱ)ଶே௜ୀଵ , (21)

𝑀𝐴𝑃𝐸 = 1𝑁෍ቤ𝑝௜ − 𝑝௜ᇱ𝑝௜ ቤே
௜ୀଵ × 100 %, (22)

𝑀𝐴𝐸 = 1𝑁෍|𝑝௜ − 𝑝௜ᇱ|ே
௜ୀଵ , (23)

𝑅ଶ = 1 −∑ (𝑝௜ᇱ − 𝑝௜)ଶே௜ୀଵ∑ (𝑝௜ − 𝑝̄௟)ଶே௜ୀଵ  (24)

where 𝑝௜ is the true value of the 𝑖th sample; 𝑝௜ᇱ is the predicted value of the 𝑖th sample; 𝑝̄௟ is the 
average of all the samples; 𝑁 represents the number of predicted samples. 

4. Case study and results 

4.1. Dataset description 

This study employs data collected from an offshore wind farm in Guangdong Province, China, 
during the one-year period spanning from the beginning to the end of 2022 (January 1 to 
December 31). Wind speed and associated meteorological variables were recorded at 30-minute 
intervals, forming the basis for seasonal prediction analysis. The dataset includes ten 
meteorological factors: wind direction (WDIR), gust speed (GSP), wave height (WVHT), dew 
point temperature (DPT), dominant wave period (DWP), sea level pressure (SLPR), air 
temperature (ATMP), sea surface temperature (SST), average wave period (AWP), and actual 
wind speed (AWS). 

For seasonal evaluation, the full-year dataset is divided into four subsets corresponding to 
distinct time frames: Winter (January 1-31), Spring (April 1-30), Summer (July 1-31), Autumn 
(October 1-31). Each seasonal subset is further split into training (70 %) and testing (30 %) sets. 
The number of samples per season varies slightly due to the differing lengths of each month: 1488 
(Winter), 1436 (Spring), 1474 (Summer), and 1484 (Autumn). Data preprocessing includes zero-
value removal, interpolation for missing values, and min-max normalization. 

The seasonal variations in offshore wind speed are illustrated in Fig. 7, where the temporal 
trends across the four seasons show distinct fluctuations and amplitudes, reflecting meteorological 
seasonality and variability. Table 2 provides a statistical overview of wind speed across different 
seasons, reporting values such as the mean, median, range (maximum and minimum), standard 
deviation, skewness, and kurtosis. 

All experiments were conducted using a computing platform operating under Windows 11, 
powered by an Intel Core i9-12900H CPU and supported with 16 GB of RAM. The 
implementation of the model was carried out using Python 3.10, with TensorFlow 2.14 serving as 
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the underlying deep neural modeling toolkit. All baseline and proposed models were trained under 
identical training budgets, input window sizes, batch settings, optimizer schedules, and stopping 
criteria to ensure a fair comparison. Computational metrics such as convergence curves and 
latency are not included to maintain focus on forecasting performance and interpretability. 

 
Fig. 7. Original offshore wind speed data in four seasons 

Table 2. Statistical descriptions of seasonal wind speed datasets 
Data set Data length Max Min Median Mean Std-Dev Kurtosis Skewness 

Winter 
All (m/s) 1488 14.7 0.89 7.1 7.075 2.623 –0.145 0.194 

Training (m/s) 1041 13.3 0.89 6.9 6.941 2.670 –0.562 0.078 
Testing (m/s) 447 14.7 1.4 7.2 7.388 2.483 0.858 0.592 

Spring 
All (m/s) 1436 14.8 0.94 6.3 6.241 2.333 –0.343 0.113 

Training (m/s) 1005 14.8 0.94 6.0 6.106 2.576 –0.649 0.213 
Testing (m/s) 431 10.9 1.7 6.5 6.557 1.585 0.465 0.038 

Summer 
All (m/s) 1474 12.4 1.1 5.3 5.480 1.817 –0.011 0.268 

Training (m/s) 1031 12.4 1.1 5.3 5.450 1.869 0.107 0.357 
Testing (m/s) 443 9.8 1.4 5.5 5.550 1.687 –0.459 0.012 

Autumn 
All (m/s) 1484 12.5 1.15 5.1 5.286 2.178 –0.307 0.368 

Training (m/s) 1038 11.4 1.15 4.8 4.720 1.730 –0.160 0.161 
Testing (m/s) 446 12.5 1.36 6.8 6.602 2.518 –0.829 –0.273 

4.2. Meteorological feature analysis 

Offshore wind speed is influenced by nine marine meteorological parameters, including 
WDIR, GSP, WVHT, DWP, AWP, SLPR, ATMP, SST and DPT. To quantitatively assess the 
relationships between these factors and wind speed, Pearson Correlation (PCs) analysis is 
employed. 

The PCs between each meteorological variable and the actual offshore wind speed is calculated 
by Eq. (25): 

𝑟 = 𝑛∑ 𝑥𝑦 − ∑ 𝑥 ∑ 𝑦௡௜ୀଵ௡௜ୀଵ௡௜ୀଵඥ𝑛∑ 𝑥ଶ − (∑ 𝑥௡௜ୀଵ )ଶ௡௜ୀଵ ඥ𝑛∑ 𝑦ଶ − (∑ 𝑦௡௜ୀଵ )ଶ௡௜ୀଵ , (25)

where the correlation coefficient 𝑟 ranges from [–1, 1], when it is greater than 0, the stronger the 
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correlation, the larger the value; 𝑛 is the total number of dataset; 𝑥 is the meteorological factor 
data; 𝑦 is the offshore wind speed data [51]. 

 
Fig. 8. Feature correlation heatmap (Winter) 

The correlation heatmap of the winter dataset is visualized in Fig. 8, clearly showing that gust 
speed (GSP) exhibits the highest positive correlation with wind speed, followed by SLPR and 
DPT. To generalize this analysis, Table 3 presents the PCs values between wind speed and all nine 
features across the four seasonal datasets. 

Based on the PCs results, the top six variables with the highest absolute correlation values 
were selected for each seasonal subset as input features for the prediction model. These selected 
variables are listed in Table 4. Notably, GSP consistently ranks highest across all seasons, 
indicating its dominant influence on wind speed variation. Other features, such as SLPR, DPT, 
and WDIR, also show moderate and seasonally consistent correlations. 

Table 3. Pearson correlation between wind speed and meteorological features 
Datasets WDIR GSP WVHT DWP AWP SLPR ATMP SST DPT 
Winter 0.199 0.989 0.014 0.011 0.012 0.600 0.139 0.001 0.141 
Spring 0.118 0.984 0.007 0.003 0.005 0.108 0.540 0.001 0.554 

Summer 0.375 0.989 0.044 0.046 0.045 0.173 0.685 0.162 0.687 
Autumn 0.213 0.984 0.056 0.056 0.058 0.228 0.020 0.030 0.028 

Table 4. Selected input features after PCs-based screening 
Datasets The input features retained after PCs screening 
Winter WDIR GSP WVHT SLPR ATMP DPT 
Spring WDIR GSP WVHT SLPR ATMP DPT 

Summer WDIR GSP SLPR ATMP SST DPT 
Autumn WDIR GSP WVHT DWP AWP SLPR 
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4.3. Wind speed decomposition via VMD 

In order to improve the stability and predictability of the offshore wind speed time series, VMD 
serves to break down the raw input sequence into a set of IMFs, each representing distinct 
oscillatory patterns embedded in the original data. A critical parameter in VMD is the 
decomposition level 𝐾, which determines the number of modes. If 𝐾 is set too low, under-
decomposition may occur, failing to capture the full signal complexity; conversely, an excessively 
high 𝐾 may result in mode aliasing. 

To determine an appropriate value of 𝐾, the center frequency method is adopted. Winter 
dataset is exemplified, Table 5 presents the center frequencies of the IMFs for 𝐾 = 2 to 𝐾 = 9. 
When 𝐾 = 8 and 𝐾 = 9, the highest center frequency stabilizes at 0.463, indicating convergence. 
Hence, the optimal decomposition level is set to 𝐾 = 8. 

The results of VMD decomposition for winter, spring, summer, and autumn are shown in 
Fig. 9. The offshore wind speed signals are effectively decomposed into low- and high-frequency 
components, which serve as the basis for further reconstruction and prediction. 

 

 
Fig. 9. VMD-based decomposition of wind speed series in four seasons 
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Table 5. IMF center frequencies across different K settings (Winter) 
K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 
2 0.323x10-3 0.255 – – – – – – – 
3 0.313x10-3 0.009 0.333 – – – – – – 
4 0.275x10-3 0.009 0.254 0.373 – – – – – 
5 0.232x10-3 0.008 0.038 0.254 0.374 – – – – 
6 0.212x10-3 0.008 0.038 0.249 0.322 0.378 – – – 
7 0.167x10-3 0.008 0.033 0.084 0.255 0.372 0.461 – – 
8 0.114x10-3 0.008 0.033 0.084 0.250 0.322 0.377 0.463 – 
9 0.078x10-3 0.008 0.032 0.082 0.152 0.254 0.324 0.377 0.463 

4.4. Wind speed reconstruction via fuzzy entropy 

After VMD decomposition, the offshore wind speed time series is represented as a set of IMF 
components. Directly predicting all components may lead to increased computational complexity 
and error accumulation. To address this, the Fuzzy Entropy (FE) of each component is calculated 
to quantify its complexity. Components with similar FE values are grouped and reconstructed, 
reducing redundancy while preserving key dynamic patterns. 

Based on the FE evaluation, IMFs with similar entropy levels were grouped to form low-, mid- 
and high-complexity components. Lower-entropy IMFs typically exhibited more regular 
oscillations, whereas higher-entropy IMFs contained richer dynamical variations and contributed 
more predictive information. This FE-guided reconstruction ensures that the retained components 
reflect distinct temporal behaviors while suppressing noise-dominated signals. 

 
Fig. 10. Fuzzy entropy analysis results for seasonal datasets 

The FE values and seasonal differences are visualized in Fig. 10, which shows that complexity 
varies by season and IMF component. Taking the winter dataset as an example, this reconstruction 
result illustrated in Fig. 11, enables the generation of three clear sub-sequences with 
distinguishable frequency characteristics. Compared with the original full IMF set, the 
reconstructed sequences offer lower dimensionality and improved interpretability, which 
contributes to more robust and accurate prediction. It should be noted that the fuzzy entropy (FE) 
values of the IMFs differ across the four seasonal datasets. This variation arises because 
wind-speed time series exhibit distinct turbulence intensities and fluctuation characteristics under 
different seasonal meteorological conditions. Since FE measures the irregularity and complexity 
of a signal, the resulting entropy values naturally reflect these seasonal dynamics rather than 
remaining uniform across all datasets. 

4.5. Comparison of forecasting techniques 

To thoroughly evaluate the proposed VFE-IVYA-CNN-BiGRU model, this study conducts a 
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comparative assessment against five benchmark forecasting models: BiGRU, TCN, Transformer, 
CNN-BiGRU, IVYA-CNN-BiGRU, VMD-IVYA-CNN-BiGRU and VFE-IVYA-CNN-
Transformer. The models are tested on four seasonal offshore wind speed datasets – winter, spring, 
summer, and autumn – and evaluated using MAE, RMSE, MAPE, and the coefficient of 
determination 𝑅ଶ. Quantitative results are reported in Table 6 and visualized in Figs. 12–19. 

 
Fig. 11. Reconstructed wind speed signal after FE-based IMF filtering (Winter) 

Among the four seasonal datasets, the winter results most clearly demonstrate the performance 
advantages of the proposed VFE-IVYA-CNN-BiGRU model. Winter wind speed series exhibit 
strong periodicity coupled with moderate low-frequency fluctuations, making this season an 
essential benchmark for evaluating multi-scale feature extraction and temporal-dependency 
modeling. On this dataset, the proposed model achieves an 𝑅ଶ exceeding 0.97, significantly 
outperforming BiGRU (≈ 0.8860), TCN (≈ 0.8803), Transformer (≈ 0.8753), and CNN-BiGRU 
(≈ 0.9037), corresponding to a relative improvement of approximately 8.9-11.3 %. The reduction 
in error metrics is even more pronounced: compared with the basic BiGRU, the proposed 
architecture reduces MAE by more than 55 % and RMSE by nearly 60 %, indicating substantially 
enhanced accuracy in capturing both the amplitude variation and temporal evolution of winter 
wind speed. Even against stronger convolution-based baselines such as CNN-BiGRU and 
IVYA-CNN-BiGRU, MAE and RMSE still decrease by 40-50 % and 45-55%, respectively, 
demonstrating the synergistic benefits introduced by VFE decomposition and IVYA-enhanced 
convolution for representing localized structures and high-frequency fluctuations. Furthermore, 
relative to more advanced hybrid approaches – such as VMD-IVYA-CNN-BiGRU and 
VFE-IVYA-CNN-Transformer – the proposed model maintains clear superiority, achieving 
15-25 % reductions in RMSE and 20-35 % reductions in MAPE. These improvements further 
highlight the decisive role of the BiGRU component in modeling long-range dependencies within 
winter’s quasi-stationary wind patterns. 

The winter ablation results show a clear stepwise improvement as each module is added. 
Starting from the BiGRU baseline (𝑅ଶ ൎ 0.8860), introducing CNN reduces MAE and RMSE by 
roughly 20-30 %, while replacing CNN with IVYA brings a further 10-15 % reduction. Adding 
VMD provides another 15–20% improvement in RMSE through more effective mode separation. 
With VFE incorporated, the model reaches 𝑅ଶ > 0.97 and achieves over 55 % and 60 % decreases 
in MAE and RMSE compared with BiGRU, confirming that each component contributes 
incremental and complementary gains. 

By contrast, the spring, summer, and autumn datasets exhibit stronger irregularity and 
transitional seasonal characteristics, resulting in relatively narrower performance gaps among 
models. Nevertheless, the proposed method remains the top performer across all evaluation 
metrics, typically reducing RMSE by 10-20 % and MAPE by 10-25 % compared with the next-
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best model. In particular, for the highly non-stationary and fluctuation-intensive summer dataset, 
the proposed model improves 𝑅ଶ by more than 30 % relative to BiGRU, confirming its strong 
adaptability under chaotic wind conditions. Overall, the winter experiments provide the clearest 
quantitative evidence of the method’ s core advantages: VFE ensures high-fidelity mode 
separation and mitigates modal mixing; IVYA-CNN enhances the extraction of local and 
high-frequency structures; and BiGRU delivers robust long-term dependency modeling. The 
synergistic integration of these components enables the proposed model to achieve the highest 
forecasting accuracy across all seasons, with winter exhibiting particularly substantial 
improvements. 

 
Fig. 12. Results from six forecasting approaches (Winter) 

 
Fig. 13. Results from six forecasting approaches (Spring) 

These statistical gains are corroborated by the time-series prediction plots (Figs. 12-15), where 
the proposed model demonstrates significantly better temporal alignment with ground truth, 
especially around peaks, troughs, and inflection zones. In winter and autumn, where daily 
amplitude varies widely, the model accurately follows trend direction without lag – whereas other 
models, especially BiGRU and CNN-BiGRU, show smoothing effects or phase shift. In summer, 
the proposed model shows reduced overfitting and higher responsiveness to random fluctuations, 
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which is particularly evident in fast-changing segments. 

 
Fig. 14. Results from six forecasting approaches (Summer) 

 
Fig. 15. Results from six forecasting approaches (Autumn) 

Visual evaluations from radar plots (Figs. 16-19) further emphasize the model's advantage. 
The VFE-IVYA-CNN-BiGRU consistently occupies the innermost region, indicating minimum 
error across all axes (MAE, RMSE, MAPE). In bar plots, the percentage decrease in MAE reaches 
up to 57.5 %, and MAPE up to 55.1 %, compared to the weakest models. Moreover, scatter-fitting 
plots reveal denser clustering near the identity line with a steeper slope closer to unity and reduced 
spread, reflecting both reduced bias and variance. The residual distribution is significantly 
narrower, especially in high-variance seasons, further confirming better model reliability. 

The consistent improvement of the proposed model is attributed to the synergistic integration 
of three key components. The original signal is decomposed into a set of intrinsic mode functions 
(IMFs) using VMD, isolating multiscale oscillations and reducing non-stationarity. Fuzzy Entropy 
quantifies the complexity of each IMF, allowing the model to suppress low-informative or noise-
prone components. This process produces a reconstructed sequence with a higher signal-to-noise 
ratio, which enhances learning stability. Finally, IVYA adaptively optimizes the model’s 
architecture – including convolutional depth, recurrent capacity, and learning parameters – 
resulting in efficient convergence and enhanced generalization across seasonal regimes. 
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In summary, the VFE-IVYA-CNN-BiGRU model exhibits not only lower average forecasting 
error but also superior temporal alignment, reduced sensitivity to extreme values, and better fit in 
noisy or high-variance conditions. Its performance advantage is both statistically significant and 
structurally grounded, enabling robust offshore wind speed forecasting across all seasonal 
contexts. 

 

 
Fig. 16. Comparative forecasting accuracy of six models (Winter) 
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Fig. 17. Comparative forecasting accuracy of six models (Spring) 
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Fig. 18. Comparative forecasting accuracy of six models (Summer) 

 

 
Fig. 19. Comparative forecasting accuracy of six models (Autumn) 

To further rule out the possibility of target leakage or artificially inflated performance caused 
by highly collinear meteorological variables, an additional ablation experiment was conducted on 
the winter dataset using the proposed VFE-IVYA-CNN-BiGRU model. In this test, the gust-speed 
variable (GSP), which exhibits the strongest correlation with wind speed, was removed from the 
input set. Excluding GSP led to a clear degradation in forecasting accuracy, with 𝑅ଶ decreasing to 
0.9322, MAE increasing to 0.4729 m/s, RMSE rising to 0.6536 m/s, and MAPE increasing to 
7.864 %. This consistent deterioration confirms that the gust-related variable provides genuine 
predictive information rather than leaking future values or duplicating the target signal. The results 
further demonstrate that the proposed framework effectively captures physically meaningful 
meteorological drivers, and that the performance gains attributed to gust-related features arise 
from true model learning rather than from spurious correlations or unintended data leakage. 

5. Model interpretability via SHAP 

To enhance the interpretability and transparency of the VFE-IVYA-CNN-BiGRU model in 
offshore wind speed forecasting and assess the influence of each meteorological input variable on 
the model’s predictive behavior, SHAP (SHapley Additive exPlanations) was utilized. Visual 



AN EXPLAINABLE HYBRID DEEP LEARNING FRAMEWORK FOR OFFSHORE WIND SPEED FORECASTING.  
PEIFANG LIU, JIANG GUO, YE ZOU, NANA GAO 

 JOURNAL OF MEASUREMENTS IN ENGINEERING 23 

analyses, including SHAP summary plots and mean absolute SHAP value bar charts, were 
produced for four representative months – January, April, July, and October – capturing seasonal 
variations across winter, spring, summer, and autumn, as illustrated in Figs. 20-21. These 
visualizations offer both global and instance-level insights into feature influence, facilitating a 
better understanding of model decision pathways under varying atmospheric conditions. 

Table 6. Forecasting performance comparison of all models in four seasons 
 Models 𝑅ଶ MAE (m/s) RMSE (m/s) MAPE 

Winter 

BiGRU 0.8860  0.6179  0.8438  10.1441  
TCN 0.8803  0.6408  0.8647  10.4430  

Transformer 0.8735  0.5973  0.8887  9.8472  
CNN-BiGRU 0.9037  0.5679  0.7753  9.2069  

IVYA-CNN-BiGRU 0.9138  0.5350  0.7336  8.9219  
VMD-IVYA-CNN-BiGRU 0.9416  0.4439  0.6040  7.3820  

VFE-IVYA-CNN-Transformer 0.9569  0.3690  0.5185  6.3588  
VFE-IVYA-CNN-BiGRU 0.9799  0.2625  0.3540  4.5538  

Spring 

BiGRU 0.7942  0.5215  0.7125  8.4240  
TCN 0.7242  0.6002  0.8248  9.7519  

Transformer 0.7562  0.5876  0.7755  9.0019  
CNN-BiGRU 0.8120  0.4983  0.6810  8.1204  

IVYA-CNN-BiGRU 0.8213  0.4861  0.6639  7.9653  
VMD-IVYA-CNN-BiGRU 0.9304  0.3068  0.4143  5.2021  

VFE-IVYA-CNN-Transformer 0.9186  0.3333  0.4480  5.5608  
VFE-IVYA-CNN-BiGRU 0.9613  0.2346  0.3091  3.8962  

Summer 

BiGRU 0.7015  0.6791  0.9141  14.1265  
TCN 0.6237  0.7810  1.0262  16.0545  

Transformer 0.6706  0.7352  0.9602  15.1340  
CNN-BiGRU 0.7138  0.6660  0.8949  13.9299  

IVYA-CNN-BiGRU 0.7211  0.6534  0.8835  13.6726  
VMD-IVYA-CNN-BiGRU 0.8618  0.4628  0.6220  9.5977  

VFE-IVYA-CNN-Transformer 0.8827  0.4304  0.5729  8.8016  
VFE-IVYA-CNN-BiGRU 0.9221  0.3616  0.4668  7.3373  

Autumn 

BiGRU 0.7312  0.9635  1.2855  19.1504  
TCN 0.6061  1.2333  1.5560  23.2109  

Transformer 0.7008  1.0431  1.3561  20.8920  
CNN-BiGRU 0.7640  0.8678  1.2045  17.2027  

IVYA-CNN-BiGRU 0.8009  0.7746  1.1061  17.1277  
VMD-IVYA-CNN-BiGRU 0.8879  0.5961  0.8302  12.9817  

VFE-IVYA-CNN-Transformer 0.8023  0.8444  1.1024  16.4985  
VFE-IVYA-CNN-BiGRU 0.9248  0.4788  0.6799  10.4956  

In this study, we adopt the DeepSHAP variant of the SHAP framework, which is suitable for 
deep neural network architectures. To avoid data leakage, the SHAP background dataset is 
constructed exclusively from the training subset, using 200 randomly sampled instances to 
approximate the expected background distribution. SHAP values are computed on 100 
representative samples from the test set to balance interpretability and computational efficiency. 
All SHAP computations are performed using the official SHAP Python package on a workstation 
equipped with an NVIDIA RTX 3080 GPU and Intel i9 processor. The SHAP analysis is 
performed on the sliding-window input representation of each sub-model. Each meteorological 
variable appears as multiple lagged instances within the window (e.g., gust(t−1), gust(t−2), …). 
SHAP assigns an attribution value to every lagged instance. To obtain a unified and physically 
meaningful importance measure for each meteorological variable, we aggregate the per-lag 
attributions by computing the mean absolute SHAP value across all time steps. Therefore, the 
reported SHAP results correspond to feature-level contributions, reflecting how each 



AN EXPLAINABLE HYBRID DEEP LEARNING FRAMEWORK FOR OFFSHORE WIND SPEED FORECASTING.  
PEIFANG LIU, JIANG GUO, YE ZOU, NANA GAO 

24 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

meteorological variable influences the final wind-speed prediction after passing through the full 
VFE-IVYA-CNN-BiGRU modeling pipeline. 

 
a) Winter 

 
b) Spring 

 
c) Summer 

 
d) Autumn 

Fig. 20. Mean absolute SHAP values for feature importance 

 
a) Winter 

 
b) Spring 

 
c) Summer 

 
d) Autumn 

Fig. 21. SHAP summary plot of feature impacts 

Across all seasonal datasets, gust speed (GSP) consistently ranked as the most influential 
feature, exhibiting the highest mean SHAP values. In the winter case, for example, GSP reached 
an average SHAP contribution exceeding 2.25, which is nearly an order of magnitude larger than 
those of dew point temperature (DPT, ~0.25) and air temperature (ATMP, ~0.12). The SHAP 
summary plot revealed a strongly monotonic positive relationship between GSP magnitude and 
its SHAP attribution: red markers, representing higher GSP values, are mostly concentrated on the 
right side of the SHAP distribution, suggesting a strong positive influence on predicted wind 
speed, whereas lower GSP values (in blue) generally lead to reduced predictions. This behavior is 
physically consistent with meteorological principles and persists across all seasonal contexts. 

Thermal variables such as DPT and ATMP exhibited secondary but seasonally modulated 
effects. In spring, for instance, the SHAP values of both features increased, with high DPT and 
ATMP levels slightly elevating wind speed predictions. This suggests a potential interaction 
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between thermodynamic factors and boundary-layer wind development during transitional 
periods. The color gradients in the SHAP plots – ranging from blue (low feature value) to red 
(high value) – further illustrate that mid-range DPT values tend to have minimal impact, while 
higher values contribute positively, albeit with increased sample-wise variance. This pattern 
indicates that the influence of temperature variables is likely non-linear and conditional on other 
atmospheric parameters such as sea-level pressure or humidity. 

SLPR and WDIR, though showing relatively low average SHAP values, displayed episodic 
high contributions in specific cases – particularly in the autumn dataset. Their dispersed SHAP 
distributions, combined with red and blue color interleaving, imply non-monotonic and 
interaction-driven effects. For example, both high and low SLPR values can enhance or reduce 
wind speed predictions depending on the prevailing synoptic context. Notably, in some autumn 
samples, low SLPR values contributed negatively with SHAP values below –1.2, while high SLPR 
values slightly increased predictions, reflecting the known meteorological behavior where sharp 
pressure gradients (e.g., near frontal systems or cyclonic events) induce stronger winds. 

In the summer dataset, a general decline in SHAP intensity was observed for most features, 
indicating reduced feature influence under relatively stable atmospheric conditions. Nevertheless, 
GSP remained the dominant contributor, continuing to exhibit a positive and consistent 
relationship with the output. Interestingly, sea surface temperature (SST) emerged as a top-six 
feature during summer and autumn. Though its average SHAP values were modest (< 0.10), the 
presence of red-tinted SHAP points with slight positive impact suggests a possible secondary role 
in modulating wind dynamics, potentially linked to large-scale thermal forcing or ocean-
atmosphere coupling. 

The autumn dataset exhibited the broadest dispersion of SHAP values across features, 
implying a higher degree of variability in the contribution of secondary variables. GSP remained 
the dominant driver (mean SHAP ≈ 1.75), but SLPR and WDIR demonstrated greater sample-
level variation than in other seasons. This variability aligns with the season’s complex synoptic 
patterns, including frontal passages and typhoon-related systems. For example, low SLPR values 
(blue) corresponded with reduced wind speed predictions, while high SLPR values (red) slightly 
elevated model outputs, in line with the physical mechanism of wind generation under steep 
pressure gradients. 

In terms of global feature importance, bar charts consistently identified the same hierarchy 
across seasons: GSP ranked first, followed by thermal variables (DPT, ATMP), then pressure and 
direction (SLPR, WDIR). Wave-related variables (WVHT, AWP, DWP) displayed negligible 
average SHAP values (< 0.05), indicating minimal overall influence. However, the scattered 
distribution of their SHAP values in the summary plots suggests episodic relevance, likely under 
specific conditions such as storm surges or high swell events near the coast. 

To further enhance interpretability and address the dynamic contribution of meteorological 
variables, this study incorporates time-resolved SHAP heatmaps for four representative seasonal 
datasets (winter, spring, summer, and autumn). Unlike aggregated SHAP importance scores, the 
time-resolved representation reveals how the influence of each input feature evolves across the 
sliding temporal window. Fig. 22 presents the seasonal SHAP heatmaps. A highly consistent 
pattern is observed across all seasons: GSP (gust speed) exhibits the strongest contribution with 
clear oscillatory structures over time, indicating its dominant role in driving short-term variability 
in offshore wind dynamics. This is meteorologically reasonable, as gust activity directly affects 
turbulence intensity and short-horizon wind speed fluctuations. Secondary features, such as 
ATMP, DPT, and SLPR, show weaker but smoother temporal contributions. These variables are 
mainly associated with synoptic-scale or mesoscale processes (e.g., temperature gradients, 
pressure fields), thus introducing more gradual variability in the prediction. Lower-ranked 
variables (e.g., WDIR, WVHT, SST, AWP, DWP) contribute only marginally and display 
minimal temporal fluctuations, consistent with their weaker physical relation to instantaneous 
wind speed. 

Overall, the SHAP analysis confirms that the VFE-IVYA-CNN-BiGRU model aligns well 



AN EXPLAINABLE HYBRID DEEP LEARNING FRAMEWORK FOR OFFSHORE WIND SPEED FORECASTING.  
PEIFANG LIU, JIANG GUO, YE ZOU, NANA GAO 

26 ISSN PRINT 2335-2124, ISSN ONLINE 2424-4635  

with established meteorological understanding. Its predictions rely predominantly on physically 
interpretable variables such as gust speed, air temperature, and pressure, while also capturing non-
linear and interaction effects that emerge under complex atmospheric conditions. The model's 
capacity to prioritize meaningful signals and modulate lesser features conditionally contributes to 
its superior performance. Importantly, such transparent behavior reinforces confidence in the 
model’s reliability and facilitates its deployment in real-world offshore wind forecasting systems, 
particularly in safety-critical or operation-sensitive applications. In this framework, SHAP values 
are computed directly on the original meteorological inputs, ensuring that the resulting attributions 
preserve their physical interpretability. Since each sub-model receives both the meteorological 
variables and the corresponding historical subcomponent as inputs, the SHAP results naturally 
reflect how meteorological drivers (e.g., gust, pressure, humidity) influence wind variations at 
different temporal scales. Consequently, the interpretability is not compromised by the 
preprocessing stage but rather enhanced, as the decomposition explicitly separates the physical 
scales of interest. 

 
a) Winter 

 
b) Spring 

 
c) Summer 

 
d) Autumn 

Fig. 22. Time-resolved SHAP heatmap for feature contributions 

6. Conclusions 

To tackle the issues of nonlinear patterns, temporal instability, and insufficient interpretability 
in offshore wind speed forecasting, a new hybrid deep learning architecture, VFE-IVYA-CNN-
BiGRU, was developed in this work. The model begins with feature selection using Pearson 
Correlation (PCs), which identifies the most relevant predictors from a set of nine meteorological 
variables. Subsequently, a robust preprocessing module (VFE), is designed to denoise the raw 
signal and reconstruct informative subcomponents. A CNN-BiGRU network is then employed to 
jointly extract temporal features, while the Ivy Algorithm (IVYA) adaptively optimizes key 
hyperparameters, leading to improved convergence and generalization across varying 
meteorological regimes. 

Comprehensive experiments were conducted on real-world offshore wind datasets covering 
four representative seasons. The proposed model consistently outperformed five baseline methods 
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across all evaluation metrics. Compared with the baseline BiGRU, the VFE-IVYA-CNN-BiGRU 
achieved average reductions in MAE and RMSE exceeding 50 %, and maintained 𝑅ଶ values above 
0.96 for all seasons. Visual analyses of prediction curves and residual distributions further 
confirmed the model’s ability to capture sharp transitions and irregular wind dynamics with high 
precision. 

To enhance interpretability and increase model reliability, SHAP analysis was applied to 
reveal the internal decision-making process of the model. Results show that GSP was the most 
influential feature across all seasonal datasets, followed by temperature-related and 
pressure-related variables, depending on the seasonal context. The SHAP summary plots revealed 
that the model captures not only dominant monotonic trends but also non-linear and interaction-
driven relationships, thereby aligning with physical meteorological principles and enhancing 
interpretability for real-world applications. 

Despite the encouraging results, certain limitations remain. The current framework does not 
explicitly model temporal dependencies across turbines or stations, which may be crucial for 
large-scale wind farm forecasting. Moreover, the interpretability analysis is currently focused on 
global and marginal effects, with limited exploration of temporal or localized feature 
contributions. Future research will therefore aim to extend the model to spatiotemporal 
forecasting, implement real-time adaptive learning for abrupt weather transitions, and integrate 
probabilistic forecasting with uncertainty quantification to support decision-making under 
uncertainty. 

In conclusion, the VFE-IVYA-CNN-BiGRU model offers a structurally integrated, 
interpretable, and highly accurate forecasting solution for short-term offshore wind speed 
prediction. Its performance, grounded in both data-driven learning and physically meaningful 
feature attribution, demonstrates significant potential for deployment in intelligent and reliable 
wind energy management system. 
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