
 

 JOURNAL OF VIBROENGINEERING 1 

Crashworthiness design of automotive double-cell 
thin-walled tubes under oblique loading based on data 
mining 

Hongbin Tang1, Xue Bai2, Ledan Liu3 
1, 3National key Laboratory of Advanced Vehicle Integration and Control, Changchun, China  
1, 3FAW Global R&D Center, Changchun, China  
2Jilin University, Changchun, China 
3Corresponding author 
E-mail: 1tanghongbin@faw.com.cn, 2xuebai24@mails.jlu.edu.cn, 3tanghongbin@faw.com.cn 
Received 13 August 2025; accepted 23 December 2025; published online 11 February 2026 
DOI https://doi.org/10.21595/jve.2025.25270 

Copyright © 2026 Hongbin Tang, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. The deformation behavior of automotive double-cell thin-walled tubes under oblique 
loading is inherently complex. To address this crashworthiness design challenge, this study 
employs a decision-tree-based data-mining method to guide the structural design of thin-walled 
tubes. In contrast to conventional black-box optimization approaches, the proposed approach not 
only accomplishes structural optimization but, more importantly, derives design rules for the 
tubes, enabling critical parameter identification and design domain reduction. By analyzing the 
crashworthiness responses of double-cell tubes under oblique loading, the method establishes an 
interpretable linkage between design variables and crashworthiness performance, thereby 
providing engineers with design guidance. The results show that the optimization design 
efficiency based on data mining improved by nearly 10 times relative to traditional methods, 
highlighting its potential to significantly reduce design time and development cost.  
Keywords: data mining, thin-walled tube, crashworthiness, decision tree. 

1. Introduction 

Thin-walled tubes are widely used in the design of energy-absorbing structures for vehicles 
and trains to ensure structural crashworthiness [1]. During collisions, thin-walled tubes undergo 
plastic deformation, effectively converting kinetic energy into internal energy, thereby 
demonstrating excellent energy absorption characteristics. Among various configurations, 
multi-cell thin-walled tubes have been widely studied due to their great performance in energy 
absorption. Studies have shown that, compared with square tubes [2] and even foam-filled tubes 
[3], multi-cell tubes have better energy absorption performance. Under axial loading conditions, 
multi-cell structures can absorb more impact energy than traditional thin-walled structures of the 
same mass. 

Although thin-walled tubes exhibit excellent energy absorption capabilities under axial 
crushing, in actual vehicle frontal collision scenarios [4], the thin-walled structures longitudinally 
arranged at the front of the vehicle are usually subject to different degrees of oblique load [5, 6], 
as illustrated in Fig. 1. Researches have shown that the deformation mode and energy absorption 
efficiency of thin-walled tubes are significantly affected by changes in the oblique loading angle. 
Particularly, when tubes are subjected to oblique load and the loading angle exceeds the critical 
value, the progressive crush mode of tubes will transform into the global bending collapse mode, 
resulting in a sharp decline in energy absorption [7, 8]. Therefore, the impact of oblique loads on 
the crashworthiness of thin-walled tubes should not be overlooked during the design process. 

To address the challenges posed by oblique loads, researchers have employed experiments, 
numerical simulations, and theoretical models to investigate the deformation mechanisms and 
energy absorption performance of thin-walled tubes. Experimental and simulation studies provide 
insights into deformation modes and the effects of key parameters [5, 8, 10, 11]. Meanwhile, 
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researchers have proposed theoretical models by modifying existing axial or bending deformation 
formulas to establish predictive equations that explain the complex coupled deformation of thin-
walled beams under oblique loads [6, 12, 13]. However, the geometric complexity of multi-cell 
thin-walled tubes increases the difficulty of these theoretical derivations, thereby reducing their 
predictive accuracy. 

 
Fig. 1. Schematic of oblique loads in the actual collision conditions [9] 

In performance-driven parameter design of thin-walled tubes, traditional optimization 
algorithms [14-16] typically treat the structural design as a black-box problem [17], generating 
optimal solutions through automatic search processes. Fang et al. [18] successfully achieved 
optimal design of multi-cell tubes under oblique loads by combining Kriging models and multi-
objective particle swarm optimization.  Liu et al. [19] established a surrogate model of the 
crashworthiness indices with respect to the design variables by SVM. And multi-objective 
optimization of square carbon fiber reinforced plastic tubes for crashworthiness has been realized 
in their study. However, due to the uncertainty of these methods, the final designs often fall into 
infeasible parameter spaces. Moreover, traditional optimization approaches can’t reveal the 
interactions between design variables and responses, making it difficult to derive useful design 
rules that could assist engineers in developing similar structures. 

To overcome the limitations of traditional methods, this study employs a data mining method 
based on decision trees, using the multi-angle crashworthiness design of double-cell thin-walled 
tubes as a case study. Through data mining, the study reveals the implicit relationships between 
thin-walled tube design variables and crashworthiness performance, and explicitly presents these 
correlations. In the way, key design parameters influencing crashworthiness and the range of the 
values of these key parameters can be determined quantitatively. Furthermore, this study compares 
the optimal design of double-cell thin-walled tubes based on the reduced design domain obtained 
through data mining with the original design domain. By comparing the two methods, the 
effectiveness of the data mining method in improving design efficiency is validated. 

2. Research problem 

In frontal crash situations, the thin-walled structures arranged longitudinally at the front of the 
vehicle (such as the front longitudinal beams) are often subjected to loads from different angles. 
Variations in the direction of these loads introduce significant uncertainty into the deformation 
modes, often leading to coupling between compression and bending or overall structural 
instability. This unpredictability reduces the energy absorption efficiency of thin-walled tubes and 
increases the risk of occupant injury [20]. 

This deformation instability is illustrated in Fig. 2, Fig. 3 and Table 1, which compare the 
deformation modes of aluminum double-cell thin-walled tubes under different oblique loading 
angles [9]. It can be observed that when the oblique load angle is small, the thin-walled tube 
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exhibits an axial progressive compression deformation mode. At this point, the collision force 
rapidly rises, then slightly drops, and subsequently fluctuates around a certain lateral value, 
indicating that the thin-walled tube has good energy absorption performance. As the oblique angle 
increases, the deformation mode shifts progressively toward global bending, with the collision 
force rising to a peak before rapidly decreasing. The energy absorption performance of the 
thin-walled beam decreases. Table 1 further shows that when the oblique loading angle increases 
from 10° to 20°, the energy absorption of the double-cell thin-walled tube decreases by 77.76 %, 
and the initial peak force decreases by 18.15 %, quantitatively demonstrating that the energy 
absorption capacity of the structure declines with increasing oblique loading angle. This structural 
deformation instability complicates the study of the collision resistance performance of 
thin-walled tubes under oblique load. 

 
a) 𝛼 ൌ 0° 

 
b) 𝛼 ൌ 10° 

 
c) 𝛼 ൌ 20° 

Fig. 2. Deformation mode of FE model of double-cell thin-walled tube under oblique angles [9] 

 
a) 𝛼 ൌ 0° 

 
b) 𝛼 ൌ 10° 

 
c) 𝛼 ൌ 20° 

Fig. 3. Force-displacement curves of the numerical model  
of double-cell thin-walled tube under different loading angles [9] 

Table 1. Energy absorbed and initial peak force by double-cell thin-walled tube  
under different load angles [9] 𝛼 Energy absorbed / kJ Initial peak force / kN 

0° 7.25 90.38 
10° 7.24 54.22 
20° 1.61 44.38 

Researches have shown that exhibit better impact resistance than single-cell thin-walled tubes. 
However, they also demonstrate greater deformation instability under oblique loading [9]. As 
illustrated in Fig. 4, with an increasing number of unit cells, the global bending mode emerges at 
smaller oblique load angles, indicating that the deformation stability of multi-cell thin-walled 
beams decreases with an increase in the number of unit cells. This increase in deformation 
instability further complicates the study of multi-angle collision resistance performance for 
multi-cell thin-walled tubes. 

3. Method  

This study uses a data mining method based on decision trees. Through the decision tree 
algorithm, data mining is performed on the dataset of research object to obtain the implicit 
relationship between the design parameters of the study object and the target response and display 
this relationship, identifying the key parameters in the dataset that affect the response of the study 
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object. Meanwhile, the design range of the key parameters is quantitatively determined according 
to the design objectives, thereby reducing the design domain of the study object. The general 
process of this method is shown in the figure. The general workflow of the proposed method is 
illustrated in Fig. 5. 

 
Fig. 4. Comparison of deformation modes with four multi-cell tubes under different load angles [9] 

 
Fig. 5. Research framework 

3.1. Dataset construction and preprocessing 

Before initiating the study, it is necessary to analyze the research subjects, establish 
corresponding datasets, and perform data preprocessing suitable for decision tree-based data 
mining. Specifically, first establish an accurate finite element model to simulate the research 
conditions. Analyze the design problem, determine the design variables and their ranges of 
variation.  Then, apply the experimental design (DOE) method based on the Hammersley sampling 
criterion in the design space to construct a test matrix, generate design samples that uniformly 
cover the design space, and create the corresponding finite element models in batch. During the 
sampling process, the 𝑝th 𝑛-dimensional Hammersley sampling point is calculated by the 
following equation [21]: 

𝑥௡ሺ𝑝ሻ ൌ ቆ𝑝𝑁 ,𝜑ோభሺ𝑝ሻ,𝜑ோమሺ𝑝ሻ, … ,𝜑ோഏషభሺ𝑝ሻቇ ,      𝑝 ൌ 0,1,2, … ,𝑁 − 1, (1)
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where 𝑁 is the total number of samples, 𝑝 is the index of the sample (a non-negative integer), and 𝑅 is a prime number, often selected from values such as 2, 3, 5, 7, etc., to improve the uniformity 
of the sequence. The function 𝜑ሺ𝑝ሻ is the inverse basis function of the Hammersley sequence, 
which transforms the index into an evenly distributed point in the parameter space. 

Before the data mining model training, the joint probability distribution of input features 
should be determined. Due to the randomness of uncertainty in engineering design and 
manufacturing, we use the Gaussian distribution as the default PDF if there is no prior knowledge 
of the interval distribution (e.g. [𝐴௜௝஼௅,𝐴௜௝஼௎]), where 𝐴௜௝௠ = (𝐴௜௝஼௅ + 𝐴௜௝஼௎)/2 is defined as the mean 
[22]. The 3-sigma rule, which covers most parts of a Gaussian distribution, is adopted over the 
whole interval range with the PDF defined as: 

𝑓൫𝐴௜௝൯ = 𝐶 • 𝑁൭𝐴௜௝௠,ቆ൫𝐴௜௝஼௎ − 𝐴௜௝஼௅൯/23 ቇଶ൱, (2)

where 𝑁( ) is the normal distribution, and 𝐶 = 1/0.997 is a normalization factor to adjust the 
probability within an interval to 1. 

In addition, the crashworthiness responses of each design sample are obtained from finite 
element simulations and subsequently preprocessed through a grading classification using the 
following equation: 

𝑦௜ = ൞class 1 , 𝑦௜ ≤  𝑐ଵ,class 2 , 𝑐ଵ < 𝑦௜ ≤  𝑐ଶ,. . .class 𝑘 , 𝑐௞ିଵ < 𝑦௜ ≤  𝑐௞, (3)

where 𝑦௜ is the response, 𝑖 is the number of response, 𝑘 is the number of categories, 𝑐௞ିଵ is the 
lower limit of the class 𝑘 and 𝑐௞ is the upper limit. To adapt to the subsequent decision tree 
algorithm, category labels are assigned to the responses of each sample according to actual 
engineering requirements. 

3.2. Data mining model 

In this study, a data mining model based on the decision tree algorithm is developed to analyze 
the dataset of research subject to achieve critical parameter identification and design domain 
reduction. The decision tree algorithm is one of the most widely used algorithms in data mining 
and is highly effective in addressing classification problems. The algorithm exhibits strong 
interpretability. By learning from a design dataset generated from simulations, this method 
uncovers the implicit interrelations between the design variables and the responses and presents 
these relationships explicitly, which helps designers better understand the design problem and 
make informed design decisions when developing similar products. 

Structurally, a decision tree consists of a root node, internal nodes corresponding to 
feature-based decision points, and leaf nodes representing classification outcomes, as illustrated 
in Fig. 6. Each path from the root to a leaf encodes a specific classification rule. 

The specific steps for classification using the decision tree algorithm are as follows. Identify 
the optimal feature from the samples in the dataset as the root node for classification. Then, 
evaluate the features and classifications in the data based on the classification criteria of the root 
node. If the attributes of the data to be classified are the same as those of other nodes, they are 
considered to belong to the same type; if different, they can be regarded as a new node [23]. This 
process is recursively repeated until the entire tree is constructed. 

There are various types of decision tree algorithms. To account for the uncertainty in 
engineering design, this study employs the decision tree algorithm for uncertain data (DTUD) 
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proposed by Du et al. [22] to construct the data mining model. The DTUD shares a similar 
structure with conventional decision trees. Its key distinction lies in incorporating a probabilistic 
mechanism into the node-splitting process. In this framework, each sample is no longer treated as 
a deterministic point but as an uncertain region within the feature space, typically represented as 
an interval and assumed to follow a specific probability density function. 

 
Fig. 6. A typical decision tree architecture 

In this study, information gain, gain ratio, and Gini index are adopted as candidate criteria for 
node splitting during DTUD training. 

Information gain is derived from information entropy and quantifies the increase in dataset 
purity before and after splitting. The corresponding calculation formula is given as follows [24]: 

𝐺𝑎𝑖𝑛(𝐷,𝑎) = 𝐸𝑛𝑡(𝐷) −෍ |𝐷௩||𝐷|௏௩ୀଵ 𝐸𝑛𝑡(𝐷௩), (4)

where 𝐷 is the dataset, 𝐸𝑛𝑡(𝐷) is entropy of the target variable, 𝜈 is the number of branches, and 𝐷௩ is a part of the primary data whose characteristic value is 𝑎௩. Also |𝐷| means the size of 𝐷. 
Gain ratio corrects the bias of information gain toward multi-valued attributes by introducing 

the intrinsic value (IV) of the attribute. The corresponding formula is given as follows: 

𝐺𝑎𝑖𝑛௥௔௧௜௢(஽,௔) = 𝐺𝑎𝑖𝑛(𝐷,𝑎)𝐼𝑉(𝑎) . (5)

Gini index quantifies the probability that a randomly selected sample from the dataset would 
be incorrectly classified. Gini index for a data subset 𝐷 is defined as follows: 

𝐺𝑖𝑛𝑖(𝐷) = 1 −෍ 𝑝௞ଶ|𝒴|௞ୀଵ , (6)

where 𝑝௞ denotes the probability that a sample belongs to class 𝑘. For an attribute 𝑎, the 
corresponding Gini index is computed as follows: 

𝐺𝑖𝑛𝑖_𝑖𝑛𝑑𝑒𝑥(𝐷,𝑎) = ෍ |𝐷௩||𝐷|௏௩ୀଵ 𝐺𝑖𝑛𝑖(𝐷௩). (7)

3.3. Design rule analysis 

The results of the decision tree usually contain multiple branches. To obtain the design path 
corresponding to the “target level,” it is necessary to select from the branches where the leaf nodes 
are at the “target level.” If there are multiple branches with leaf nodes at the “target level,” the 
decision path with a higher probability of classification as the “target level” and containing more 
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data should be selected as the design rule, which implies better robustness [16]. 
By analyzing the selected design rule, key parameter identification (CPI) and design domain 

reduction (DDR) are effectively achieved. In accordance with the decision tree algorithm, the 
feature attribute that maximizes the splitting criterion at each partitioning stage is selected to 
obtain the highest gain in classification purity. As a result, the attributes appearing along a design 
path are recognized as having the strongest influence on the classification of the target responses. 
These attributes are defined as key design variables, and their relative importance decreases 
progressively from the upper to the lower nodes of the path. 

Each design rule also conveys explicit information regarding the variable ranges, indicating 
that within these ranges, the probability of the final design achieving the target performance level 
is greater. These ranges are employed as the reduced design domain, within which the subsequent 
optimization of the key variables is conducted. Conversely, variables absent from the design paths 
exhibit limited influence on response classification and can be fixed according to engineering 
experience and practical design requirements, thereby reducing unnecessary tuning of non-critical 
variables. 

For design rules of multiple responses, a comprehensive synthesis of the design rules extracted 
for different responses is conducted. Variables that appear in design rules are identified as key 
parameters influencing multiple responses simultaneously. The intersection of their respective 
design domains defines the reduced design domain, which satisfies multiple response objectives 
and provides a focused and efficient foundation for subsequent design. 

4. Case study: multi-angle crashworthiness design of double-cell thin-walled tubes 

In this study, the crashworthiness of double-cell thin-walled tubes under oblique loading is 
investigated as a design case to evaluate the effectiveness of the proposed data mining approach. 
The extracted design rule is subsequently applied to the optimization design, and the results are 
compared with those obtained from the original design domain, thereby verifying the effectiveness 
of this data mining method in improving design efficiency. 

4.1. Data preparation for crashworthiness analysis of double-cell thin-walled tubes 

To investigate the crashworthiness of double-cell thin-walled tubes under oblique loading, a 
finite element (FE) model, as illustrated in Fig. 7(a), was developed to construct a multi-angle 
crashworthiness dataset for subsequent data mining analysis. 

The cross-section of the double-cell tube is shown in Fig. 7(b). The total structure height of 
the multi-cell tube is ℎ. The total length and width of the cross-section are 𝑙 and 𝑤. The thickness 
of the rectangular wall outside the cross-section is 𝑡. 𝑡௬ are the thicknesses of the intermediate ribs 
parallel to the 𝑦-axis, respectively. 𝛿௫ represents the offset ratio of the intermediate ribs parallel 
to the 𝑥-axis relative to the central axis of the cross-section, respectively. Referring to previous 
studies, the general geometric parameter design ranges for automotive double-cell tubes are listed 
in Table 2. The value range of 𝑙 and 𝑤 is set to 30-90 mm, the value range of 𝑡 and 𝑡௬ is set to 
1.0-5.0 mm, the value range of 𝛿௫ is –0.3-0.3, and the value range of ℎ is set to 150-300 mm. The 
value range of 𝛼 is 0-40° to ensure covering enough oblique loads. 

The material properties of aluminum alloy AA6063-T5 can be well fitted to the actual material 
curve using the parametric curve calculated by the following equation [21]: 

𝜀 = 𝛿𝐸 + 𝜀଴ ൬ 𝛿𝑓଴.ଶ൰௡, (8)

where 𝐸 is the elastic modulus, 𝜀଴ is the residual strain which generally set as 𝜀଴ = 0.002, 𝑓଴.ଶ is 
the stress corresponding to the residual strain which generally the equivalent yield stress 
corresponding to the residual strain and 𝑛 is the strain hardening index. Referring to previous 
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research [9], this study only selected 𝑓଴.ଶ as the material parameter variable, with a range set from 
200 to 800 MPa, as shown in Table 2. 𝐸 and 𝑛 were set as fixed values (𝐸 = 71 GPa and 𝑛 = 30). 

To ensure that the design parameters are uniformly sampled across their entire range of values, 
an experimental design (DOE) method based on Hammersley sampling criteria was used to 
establish a test matrix. A total of 800 design cases are generated, and corresponding finite element 
models are developed to simulate their crash responses. The simulation results form a complete 
dataset for further data mining. 

 
a) 

 
b) 

Fig. 7. a) FE model of double-cell tubes; b) structures description of double-cell tubes [9] 

4.2. Data preprocessing for crashworthiness analysis of double-cell thin-walled tubes 

As an energy-absorbing structure, thin-walled tubes should absorb as much energy as possible 
per unit mass. Therefore, the specific energy absorption (SEA) is selected as a target response and 
is maximized in crashworthiness optimization. Meanwhile, the peak crushing force (PCF) reflects 
the severity of the collision, which is highly correlated with occupant injury. Therefore, PCF is 
selected as another target response and minimized in the optimization problem [25]. 

SEA is the ratio of the amount of energy absorbed to the mass of tube during the crushing 
process. SEA can be calculated as follows [26]: 

𝑆𝐸𝐴 = ׬ 𝑃ௗ଴ (𝑥)𝑑𝑥𝑚 , (9)

where 𝑃(𝑥) is the instantaneous crushing force, 𝑑 is the crush displacement, 𝑚 is the mass of the 
tube. 

PCF is the maximum crush force measured during the crushing process of the tube, as 
expressed as follows [27]: 𝑃𝐶𝐹 = max(𝑃(𝑥)). (10)

Before using decision trees for data mining on a dataset, it is necessary to classify and label 
the target responses based on safety regulations or the experience of designers. In this study, 
considering the design objectives of maximizing SEA and minimizing PCF, and with reference to 
the crashworthiness responses of the initial design (SEA = 163.56 kJ, PCF = 500.09 kN), the 
classifications are as follows: for SEA, values in the range SEA > 150 J/kg are labeled as “good”; 
100 < SEA ≤ 150 J/kg as “intermediate”; and 0 < SEA ≤ 100 J/kg as “poor.” For PCF, values in 
the range 0 < PCF ≤ 500 N are labeled as “good”; 500 < PCF ≤ 600 N as “intermediate”; and 
PCF > 600 N as “poor.” 
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4.3. Data mining model for double-cell thin-walled tubes 

In this study, data mining models based on the DTUD algorithm were developed to achieve 
the design rule analysis of SEA and PCF for double-cell thin-walled tubes, respectively. Both 
models were trained through five-fold cross-validation, and a grid search was performed across 
candidate splitting criteria (information gain, gain ratio, and Gini index) and maximum tree depths 
ranging from 3 to 9 to identify the optimal model configuration. 

After cross-validation, the optimal parameters for the SEA model were as follows: the splitting 
criterion was the gain ratio, and the maximum tree depth was 6. The model achieved an average 
accuracy of 0.8656 and an average Brier score of 0.0699 across the five folds. On the independent 
test set (𝑛 = 160), the accuracy and Brier score were 0.8562 and 0.0706, respectively. The optimal 
SEA decision tree is illustrated in Fig. 8. 

 
Fig. 8. SEA decision tree. The denotation of the leaf node: Label (the number of designs  

in this leaf/the number of designs incorrectly classified) 

For the PCF model, the optimal parameters were as follows: the splitting criterion was the Gini 
index, and the maximum tree depth was 5. The model achieved an average accuracy of 0.8922 
and an average Brier score of 0.0532 during cross-validation, and an accuracy of 0.8938 with a 
Brier score of 0.0506 on the independent test set. The optimal PCF decision tree is illustrated in 
Fig. 9. 

 
Fig. 9. PCF decision tree 

To enhance the statistical robustness of performance estimation, bootstrap resampling (1000 
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iterations) was applied to derive 95 % confidence intervals for both metrics. For the SEA model, 
the 95 % confidence intervals for accuracy and Brier score were [0.8438, 0.9375] and [0.0335, 
0.0718], respectively. For the PCF model, the corresponding intervals were [0.8750, 0.9313] and 
[0.0345, 0.0593]. 

Based on the above evaluation results, both the SEA and PCF models achieved accuracies 
exceeding 85 % and Brier scores below 0.1, demonstrating strong performance in prediction 
accuracy and statistical robustness. These results establish a reliable foundation for subsequent 
analyses. 

4.4. Data mining of crashworthiness of double-cell thin-walled tubes 

Based on the dataset comprising the design variables and corresponding responses of the 
double-cell thin-walled tubes, this study utilized the DTUD algorithm for data mining to analyze 
the design rules of the double-cell tubes, thereby identifying the critical design parameters 
influencing its crashworthiness and the corresponding reduced design domain. 

By applying the DTUD algorithm to the dataset, decision trees for SEA and PCF were 
obtained, as illustrated in Fig. 8 and Fig. 9. Design variables are tested at non-leaf nodes, and 
structural performance is labeled at leaf nodes (g = “good,” m = “intermediate,” p = “poor”). The 
node splitting criteria are displayed along the path. 

The SEA decision tree is illustrated in Fig. 8, with several branches (labeled a1 to a23). To 
enhance the collision resistance of thin-walled beams under oblique loads, it is desirable for SEA 
to be as large as possible, corresponding to the “good” classification path (a10, a12). To improve 
robustness, it is advisable to select paths with a high probability of being classified as “good” and 
containing a significant amount of data. The optimal path is marked in red (a12) in Fig. 8. Analysis 
of a12 yields the following design rules for a larger SEA: Load angle ≤ 14.67°, 𝑓଴.ଶ > 645.2 MPa, 𝑡 > 1.92 mm, 𝑤 ≤ 83.0 mm. It is confirmed that f₀.₂, t, and w are the critical design parameters, 
with their influence on SEA decreasing in that order. 

Similarly, the PCF decision tree is illustrated in Fig. 9, with several branches (labeled b1 to 
b13). To improve the crashworthiness of thin-walled tubes under oblique loads, it is desirable for 
the PCF to be as small as possible, corresponding to the “good” classification path (marked in 
green). To enhance robustness, the path with a higher probability of being classified as “good” 
and containing more data should be selected. The optimal path is marked in red(b5) in Fig. 9. 
Analysis of b5 yields the following design rules for a smaller PCF: 𝑡 ≤ 3.65 mm, Load  
angle > 9.78°. It is confirmed that t are the critical design parameters. 

Table 2. Comparison between the original design domain  
and the reduced design domain based on data mining 

Design variables Original design domain Reduced design domain after data mining 
Lower limit Upper limit Lower limit Upper limit 𝑡 / mm 1 5 1.92 3.65 𝑓଴.ଶ / MPa 200 800 645.2 800 𝑤 / mm 30 90 30 83.0 𝑙 / mm 30 90 50 ℎ / mm 150 300 150 𝛿௫ –0.3 0.3 0 𝑡௬ / mm 1 5 1 

Based on the above analyses, this study aims to achieve double-cell tube design with excellent 
crashworthiness (SEA and PCF) under conditions where Load angle < 15°. Based on the results 
of the SEA and PCF decision tree, the three design variables 𝑡, 𝑓଴.ଶ, and 𝑤 on design rules a12 and 
b5 are identified as critical design parameters. Among these, 𝑡 has the most significant impact on 
the collision resistance of double-cell tubes, followed by 𝑓଴.ଶ, and 𝑤. Consequently, future design 
efforts should focus on these parameters. Additionally, based on the decision tree, the intersection 
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of the parameter ranges obtained for a6 and b18 is taken to obtain a reduced range of values, as 
shown in Table 2, thereby achieving design domain reduction (DDR). The other four design 
variables (𝑙, ℎ, 𝛿௫, and 𝑡௬) have no significant impact on the sizes of SEA and PCF. These can be 
selected with appropriate values based on engineering requirements, thereby reducing the effort 
invested in non-critical design parameters during the design process. 

4.5. Comparison of design based on data mining driven design domain reduction and 
original design domain 

To validate the performance of the data mining methods in improving design efficiency in this 
study, based on the above analysis, multi-objective optimization was conducted separately in the 
original design domain (ODD) and the reduced design domain (RDD) obtained through data 
mining for the multi-angle crashworthiness design of double-cell thin-walled beams. The results 
of the optimized designs were then compared. 

First, it is necessary to establish prediction models for SEA and PCF. Using the dataset 
generated by finite element simulations, construct polynomial surrogate models for SEA and PCF. 
A random selection of 60 points was used for error analysis to validate the accuracy of the 
surrogate models. Fig. 10 shows the comparison between the predicted values and simulation 
results of SEA and PCF, and the predicted values are generally close to the actual values. The 𝑅ଶ 
value of the SEA surrogate model is 0.8627, and that of the PCF model is 0.9774. Both are greater 
than 0.85, which meets the requirements of the corresponding error analysis indicators. These 
surrogate models can replace finite element simulations for predicting performance objectives in 
subsequent optimization design. 

 
a) SEA 

 
b) PCF 

Fig. 10. Prediction results of RSM model 

Based on the third-order polynomial surrogate models of SEA and PCF, the Non-dominated 
Sorting Genetic Algorithm II (NSGA-II) was adopted to perform multi-objective optimization in 
the original design domain (ODD) and the reduced design domain (RDD) obtained through data 
mining, to obtain the Pareto optimal solution sets. In this study, the population size of the NSGA-II 
algorithm was set to 50, the number of generations was 50, and the crossover probability was 0.9. 

In theory, any point on the Pareto front can be regarded as an optimal point, but SEA increases 
usually cause PCF to increase as well, and an excessively high PCF may lead to high impact 
acceleration, which is unfavorable for passenger safety. Therefore, the TOPSIS method was used 
to assign weights to performance objectives based on actual engineering requirements and select 
the optimal solution from the Pareto solution set. In this study, the weights of SEA and PCF were 
0.6 and 0.4, respectively. The optimal design schemes and crashworthiness indicators predicted 
by the RSM model under ODD and RDD are shown in Table 3. Finite element simulations were 
performed based on the design variable values of the optimal schemes, and the results are shown 
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in Fig. 11, Table 3, and Table 4. The results show that the prediction errors of SEA and PCF in 
the optimal design under ODD were –6.82 % and –5.60 %, respectively, while those under RDD 
were –7.85 % and –8.47 %, respectively, all within the allowable range of less than 10 %, 
indicating that the obtained optimal design schemes are reliable. 

Table 3. Optimal results based on ODD and RDD,  
and Crashworthiness metrics predicted by the RSM model 

  ODD RDD 

Design variables 

𝑙 / mm 48 50 𝑤 / mm 30 30 ℎ / mm 150 150 𝛿௫  -0.04 0 𝑡 / mm 3.86 3.65 𝑡௬ / mm 1.01 1 𝑓଴.ଶ / MPa 800 800 

Crashworthiness response (Load Angle = 10°) SEA / (J/g) 217.67 214.33 
PCF / kN 480.78 456.82 

 

 
a) Initial 

 
b) ODD 

 
c) RDD 

Fig. 11. Comparison of deformation modes: Initial design, optimal design based on ODD and RDD 

Table 4. Comparison of optimal results based on ODD and RDD 

 Simulated 
SEA / (J/g) 

Relative to the 
initial value 

Simulated 
PCF / kN 

Relative to the 
initial value 

Iterations required for 
convergence 

Initial 163.56 – 500.09 – – 
ODD 232.51 42.16 % 507.7 –1.52 % 20 
RDD 216.01 32.07 % 432.87 –13.44 % 2 

 

 
a) SEA iteration histories 

 
b) PCF iteration histories 

Fig. 12. The iteration histories of multi-objective optimization in data mining-based  
reduced design domain (RDD) and the original design domain (ODD) 

The simulation results of the optimal design schemes under ODD and RDD are compared with 
the optimal design in the initial dataset, as shown in Table 4. The optimal design scheme obtained 
through multi-objective optimization based on data mining under RDD improved the SEA by 
32.07 % compared to the initial design, while the PCF increased by 13.44  %, indicating that the 
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overall crashworthiness performance of the optimal design under RDD conditions is superior to 
that of the optimal design in the initial dataset and is comparable to the optimization effect under 
ODD conditions. This validates the effectiveness of this decision tree-based data mining method 
for design optimization. 

In addition, the convergence speed of the optimization under ODD and RDD was compared. 
Fig. 12 shows the iteration history of the two optimization methods. As can be seen, under the 
same optimization effects, the data mining-based optimization methods SEA and PCF converged 
in the 2th and 3th iterations, respectively, which was much faster than the ODD-based 
optimization method, which converged after the 20th and 15th iterations. This indicates that the 
data mining method employed in this study can effectively identify critical design parameters and 
design rules, thereby significantly enhancing design efficiency in practical design processes. 

5. Conclusions 

In this study, a decision-tree-based data-mining methodology is developed to address the 
crashworthiness design of automotive dual-cell thin-walled tubes subjected to oblique loading. In 
contrast to conventional parameter-optimization strategies, this method not only enables structural 
optimization but, more importantly, extracts design rules directly from simulation data. This 
capability facilitates critical parameter identification and design domain reduction, thereby 
enhancing the efficiency of the design process. 

This study takes the crashworthiness design of double-cell thin-walled tubes as a case study. 
Geometric and material properties of the tube are defined as design variables, whereas maximizing 
the specific energy absorption and minimizing the peak crushing force are specified as the 
performance objectives. Through data mining of finite-element simulation data, the method 
establishes an interpretable mapping between design variables and crashworthiness responses, 
yielding actionable insights for engineering design. The study identifies three critical design 
parameters (𝑓଴.ଶ, 𝑡,𝑤) and the reduced design domain. 

Furthermore, multi-objective optimization is performed within both the reduced design 
domain derived from data mining and the original domain. The results show that the optimization 
efficiency of the data-mining-based method is nearly ten times higher than that of traditional 
approaches, while ensuring the optimization effect (SEA: +32.07 %, PCF: –13.44 %). This method 
effectively shortens the development cycle and reduces reliance on repeated simulations and crash 
tests, providing a new approach for automotive crashworthiness design. 

The data-driven design philosophy demonstrated in this method is readily extendable to 
complex engineering systems involving multiple objectives and constraints, providing a 
transferable and interpretable solution for crashworthiness-oriented and other performance-critical 
structural design problems. 
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