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Abstract. Cross-domain fault diagnosis for rolling bearings under unseen working conditions is a
challenging yet essential task, as the distribution bias significantly degrades the performance of
data-driven methods. Causality-inspired domain generalization aims to address this challenge,
with existing methods primarily focusing on alignment- or gradient-based operations from an
entire signal perspective, which, however, overlooks the risk that biased alignments may induce
spurious correlations and misguide learning. To this end, we reformulate the problem from a more
physical and fine-grained perspective by treating fault-irrelevant frequency bands as confounders
and aiming at localizing causal frequency bands encoded with robust and interpretable
fault-related features to explicitly extract causal features. We propose a frequency band-aware
method with a cyclostationarity-enhanced representation. Specifically, we first introduce a
representation based on spectral correlation density (SCD) for wavelet packet-decomposed
frequency bands. Then, treating cycle frequencies as channels, an adaptive feature extractor is
designed based on a mixture-of-experts (MoE) block with a multi-view router, which integrates
the views of spectrum, frequency band, and entire sample, to adaptively extract features across
samples. In addition, prior knowledge guidance is introduced to enhance robust features. With
cycle frequency-level features of frequency bands, a frequency band-aware attention module
based on a tokenized Transformer, enhanced with an entropy-based sparsity regularization, is
designed to model inter-band dependencies and localize fault-related frequency bands for
diagnosis. Experiments are conducted on Case Western Reserve University (CWRU), Paderborn
University (PU), and Harbin Institute of Technology (HIT) bearing datasets, and the proposed
method shows effectiveness and interpretability across transfer tasks with different spans.

Keywords: rolling bearing, fault diagnosis, multi-source domain generalization, causality,
cyclostationarity.

1. Introduction

Deep learning based rolling bearing fault diagnosis has gained widespread attention in recent
years because of its strong capability of automatic feature extraction, which effectively
circumvents physically modeling for sophisticated rotational mechanical systems and bias arising
from manual feature extraction, e.g., CNN-based [1], autoencoder-based [2], deep belief
network-based [3]. However, these models fail when applied to scenarios involving cross-working
conditions. The underlying reasons stem from disparities in data distribution and limited
availability and diversity of source data in the real-world industry. These two limitations directly
contradict the fundamental premises of the traditional deep learning-based methods trained by the
empirical risk minimization paradigm (ERM): the sufficiency of source data, and the
independently and identically distributed (i.i.d.) condition of source and target data [4]. Recently,
unsupervised domain adaptation has been studied to learn domain-invariant knowledge from the
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view of distribution alignment with unlabeled data of target domains, e.g., correlation alignment
based on deep canonical correlation analysis [5]. However, in real-world industry, machines often
operate in different working conditions, where collecting sufficient fault data and training
condition-specific models is inefficient and costly. Therefore, it is necessary to further extend the
deep learning-based fault diagnosis to achieve the generalization capability of rolling bearing fault
diagnosis for cross-working condition scenarios under unseen ones.

Domain generalization is a branch within transfer learning, aiming at training a model from
source domains with labels and directly generalizing to unseen target domains [6]. This theory
particularly matches real-time fault diagnosis scenarios characterized by complex and frequent
emergence of unseen working conditions. From the perspective of domain generalization, there
are several paradigms proposed, including data augmentation [7-12], feature disentanglement
[13-15], ensemble learning [16, 17], and meta-learning [18-20]. Recently, several studies
[4, 21-28] have introduced causal mechanism as an advanced tool of feature disentanglement into
cross-domain fault diagnosis with the assumption that data is made up of causal features and
non-causal features, and the causal features is the key to achieving domain generalization. These
existing causality-inspired fault diagnosis methods can be divided into two groups: feature
separation [21, 22, 25, 26, 28-31], i.e., identifying and separating causal and non-causal features
during model optimization, and feature purification [4, 27], i.e., obtaining causal features by
removing non-causal features during model optimization. Feature separation introduces a
hypothetical structural causal model based on data generation, with two unobservable variables as
fault-related features and fault-irrelevant features respectively to block the spurious correlation
between state label and working condition. The most popular approaches implementing feature
separation are to design some specific loss functions to align or aggregate fault-related features
and fault-irrelevant features, respectively. On the contrary, feature purification introduces a
hypothetical structural causal model based on model inference. The most common approaches to
implement feature suppression are to employ gradient-based operations, e.g., reversal and
truncation.

However, existing causality-inspired data-driven methods have certain limitations: (1) limited
transparent diagnostic procedure, (2) retention of spurious features, (3) limited capability for
adaptive feature extraction.

— Limited transparent diagnostic procedure. Most existing methods derive from computer
vision and time series processing, in which raw signals are directly fed into black-box feature
extractors and classifiers to fit an abstract input-output relation. Such paradigms do not take the
unique physical characteristics of mechanical monitoring signals, e.g. impulsiveness,
cyclostationarity, into account during the design of the diagnosis model and lack the
interpretability objectively. This leads to difficulty in further fault mechanism analysis and limited
model improvability for future more complex cases. Therefore, we aim to find a more suitable
input feature that is better suited for tracking the physical nature of faults and establishing a
transparent diagnostic model.

— Retention of spurious features. Both feature alignment- and domain adversarial-based
methods are fundamentally constrained by the diversity of source domains. The features obtained
through alignment regularization or adversarial removal are inherently domain-dependent and
biased with spurious features, i.e., the implicitly insignificant non-causal features absorbed as the
common features of source domains. This problem can be attributed to the fact that
domain-invariant features learned from biased data distributions are not necessarily causal and
cannot adapt well to the unseen target domain, especially in cases with large distribution gaps
[32]. [33] employed parallel multi-branch architectures to eliminate spurious features from
multiple views. However, the architectural complexity arising from the large number of branches
causes additional computational overhead, and the sensitivity of the type and number of branches
limits the scenario adaptability.

Through literature review, we noticed that, in computer vision, some studies enhance domain
generalization by identifying confounders from a more specialized view with physically
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interpretable and quantifiable variables, e.g., [32] treated scene context as confounders and used
an attention invariance loss to capture image-level features of objects in the object detection task.
Such physics-informed design clarifies the feature extraction targets and effectively suppresses
confounder effects. This inspires us to rethink and identify confounders in cross-domain fault
diagnosis.

We observe that the confounders in cross condition fault diagnosis primarily include variations
caused by different rotation speed and load, e.g., different amplitude and different
speed-dependent harmonics, environment noise, and sensor noise. To reflect these features from
the complex structure of mechanical signals, the frequency domain is a well-known space with
different mechanisms pertaining to different frequency bands, including fault-induced patterns,
working condition-generated vibrations, and environmental noise [34]. Therefore, we formulate
the problem from a more physical and fine-grained perspective by focusing on frequency bands,
and treat frequency bands associated with environments and working conditions as confounders.
Following this perspective, we aim to develop a module to localize the causal frequency bands
associated with health state while filtering out environment-related frequency bands, to eliminate
spurious features as much as possible, thereby boosting domain generalization and improving
interpretability as well.

— Limited capability for adaptive feature extraction. Most existing models are conventional
static models that apply the same processing to data from different domains. This is not effective
enough because feature patterns are distinct across health states and working conditions. Even
under identical working conditions, slight environmental differences may lead to inconsistent
representations. To activate suitable features for different samples, [27] designed a dynamic
convolution network with attention-guided weights from multiple views to adaptively extract
features across different samples. But the complexity of multi-objective optimization within a
single dynamic convolutional module introduces considerable complexity, making it difficult to
optimize effectively. Therefore, it still lacks a suitable feature extractor for generalization across
working conditions, which is the base for data-driven methods. Recently, [35] proved that a
mixture-of-experts-based model trained with the ERM loss function is more robust to distribution
shifts in target recognition than conventional models, e.g., ResNet50, trained with domain
generalization strategies, as its architecture better aligns with invariant correlations. This
motivates us to design a specific feature extractor based on a mixture-of-experts for
cross-working-condition fault diagnosis to adaptively capture discriminative features from data of
different domains.

Based on the above motivations, we propose a novel frequency band-aware method for
cross-domain fault diagnosis with multi-source domains, incorporating cycle frequency-level
adaptive feature extraction and frequency band-level causal localization. In general, our main
contributions are summarized as follows:

1) A causal-interpretable framework for cross-domain fault diagnosis: A frequency band-
aware framework with cyclostationarity-enhanced representation is proposed to achieve physical
interpretability and domain generalization. This framework integrates two modules: (i) a cycle
frequency-level module to capture the potential fault-related modulation patterns from spectral
correlation density within each frequency band, (ii) a frequency band-level module to focus on
causal frequency bands and suppress the spurious ones sensitive to domain shift.

2) A mixture-of-experts-based feature extractor with multi-view router: An adaptive
cycle-frequency-level feature extractor is designed based on mixture-of-experts, equipped with a
novel multi-view router considering the semantic dependency of cycle frequencies, enabling
sufficient activation across samples from different domains. A prior-knowledge-guided enhancer
is introduced to emphasize robust fault-related features.

3) A frequency band-aware localizer based on tokenized Transformer. A frequency
band-aware localizer is built upon a tokenized Transformer with an entropy-based sparsity
regularization, which extracts the frequency band-level patterns and focuses on causal ones for
generalized fault diagnosis.
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4) Excellent performance: The proposed model is validated on 3 datasets, covering cases of
working-condition transfer with distribution gaps ranging from small to large. Remarkably, the
proposed model achieves the highest overall average accuracy across all datasets, with particular
improvement in large-span transfer tasks.

2. Related work
2.1. Multi-source domain generalization for fault diagnosis

Multi-source domain generalization is a rising perspective for addressing the generalization
challenge in complex industrial environments of rotational mechanical systems by utilizing data
from multiple source domains. Methods based on data augmentation aim to create data of pseudo
domains assisted with source data. Typical methods include direct numerical operations, e.g.,
interpolation [36], and distribution-based combination, e.g., convex combination with
Dirichlet-based Mixup [7]. Moreover, Wang et al. [12] proposed a collaborative domain-cycling
framework with multiple feature domains and employed multiple metrics to filter high-quality
data. However, the semantics evaluation of the augmented data is a challenging threshold for
further investigation. Zheng et al. [37] proposed to use Local Fisher Discriminant Analysis
(LFDA) to first obtain the optimal discriminant structure of each source domain, and then map the
general mean subspace onto the Grassmann manifold as a general feature mapping transformation
kernel for data from different domains. Explicit feature distribution alignment is a popular
regularization view to constrain the model to learn general features from multiple source domains,
e.g., MMD loss [38], triplet loss [39], and central loss [40]. To exploit the advantages of each
source domains, Zhao et al. [16] trained domain-specific branches for each source domain with a
similarity indicator branch to have a comprehensive evaluation. Gao et al. [19] proposed a
meta-learning strategy to simulate the generalization scenario of industrial processes with
meta-test sub-domains divided from source data to enhance learning general representation. Mu
et al. [17] proposed a Theil index-based meta-learning network (TTIMN-GCS), where a
task-orientated Theil index is designed to balance the inequality among meta-tasks to achieve a
more generalized meta-optimization.

2.2. Causality-inspired domain generalization for fault diagnosis

Causality-inspired domain generalization methods can be divided into two groups: feature
separation and feature purification. Feature separation methods typically construct a structural
causal model (SCM) based on the data-generating process, followed by regularization based on
do-calculus to extract causal variables [30, 26, 31]. Guo et al. [23] proposed a causal independence
and sparse shift network (CIS2N), which samples intervention pairs with the same label from
different domains and is trained with a causal independence loss based on independent causal
mechanisms (ICM) and a sparse shifts loss based on sparse mechanism shifts (SMS). Jia et al. [29]
found that solely taking causal factors into account leads to insufficient removal of the spurious
correlation. To address this, they proposed a deep causal factorization network (DCFN), which
adds a domain classification flow to extract non-causal factors. They [25] later extended it to a
causal disentanglement domain generalization model (CDDG) by introducing generative
modeling with a reconstruction loss. Another line of work is based on invariant risk minimization
(IRM) and its variants, which treats data from each environment individually and learns an optimal
classifier on top of a data representation matching all environments [41]. Mo et al. [42] proposed
a sparsity-constrained invariant risk minimization method (SCIRM), which introduces
differentiable sparsity regularizations to learn invariant classifiers across domains with sparse and
effective features. The above works can be classified as class-conditioned methods, focusing on
the invariant distribution of causal features conditioned on health state. However, Cheng et al.
[22] noted that the distribution of causal features with the same label may shift due to the variation
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of bearings. Inspired by causal matching [43], they proposed a three-stage based domain
generalization fault diagnosis method (LOODG) with an object-conditional domain invariant rule
to align features of samples from different working conditions but similar bearing. In addition to
regularization constraints-based approaches, Li et. al. [21] proposed Whitening-Net, which
employs layer normalization (LN) to stabilize the distribution of individual sample and instance
normalization (IN) to eliminate domain specific features. For models established upon feature
purification, Wu et al. [4] proposed an adversarial-causal representation learning network
(ACRLN) with spatial mask domain adversarial strategy using a gradient reversal layer and an
auxiliary branch to remove domain specific features. Ma et al. [27] employed gradient truncation
with the guidance of a binary mask created by domain discriminators to explicitly discard
non-causal features at the layer and channel level. Besides, much research has employed masking
mechanism guided by specific loss functions to purify causal features [44, 45]. Despite these
advances, most existing domain generalization methods operate directly on the entire signal from
an implicit perspective and rely heavily on neural network autonomy, which result in limited
transparency and retention of spurious features.

3. Methodology

We propose a novel model for rolling bearing fault diagnosis under the multi-source domain
generalization setting, as shown in Fig. 1, which consists of three stages: cyclostationarity-
enhanced representation generation, cycle frequency-level adaptive feature extraction, and
frequency band-level causal localization. First, we formulate the multi-source domain
generalization problem for rolling bearing fault diagnosis in Section 3.1. In Section 3.2, we
implement wavelet packet decomposition on the signal to divide it into patches corresponding to
different frequency bands. Within each band, we calculate spectral correlation density to capture
cyclostationarity as the input feature. In Section 3.3, we introduce a MoE block with a multi-view
router to adaptively extract robust and suitable cycle frequency-level features. In Section 3.4, we
introduce a frequency band-aware attention with sparsity regularization to localize causal
frequency bands and suppress non-causal ones through quantifying the importance of frequency
bands. Section 3.5 introduces the optimization objective and indicates the entire workflow.

Cyclostationarity-enhanced Cycle frequency-level Frequency band-level
representation generation ad aptive feature extraction causal localization
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Fig. 1. Framework of the frequency band-aware multi-source domain
generalization method for rolling bearing fault diagnosis
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3.1. Problem definition

The domain generalization problem for rolling bearing fault diagnosis is set to recognize the
health state of rolling bearing under unseen working conditions by acquiring generalizable
knowledge from labeled data under multiple working conditions. In this context, let {D5}5_;
denotes S source domains with each domain DS = {x3, y,S}N_; containing N labeled data, where
x5 € R represents a vibration sample of length L and y; € R is its corresponding label with
C health categories. Let {D*}!_; denotes T unseen domains with each domain D* = {x{,, v }}L,
containing M unlabeled data of the t-th unseen target domain. Due to the distribution shift under
different working conditions, e.g. speed and load, the data distributions differ among source
domains and between source and target domains, i.e., P, # P, with s # s', and P, # P,, where s,
s"€{1,--+,S}. The objective is to make full use of the source data to develop and optimize a
method with good generalization to unseen domains.

3.2. Cyclostationarity-enhanced representation of frequency band

An effective representation is the core of a data-driven model. To establish a transparent
diagnostic model, we choose to feed a representation based on cyclostationarity with spectral
correlation density (SCD) which is a high-dimensional characteristic with the ability to reveal fault
modulation frequencies.

— Frequency band decomposition with wavelet packets. First, to realize from the perspective
of frequency bands, an input univariate time series x is decomposed into P patches
X1.p = {Xq,+, xp} € RP*IW corresponding to wavelet coefficients spanning from low-frequency
to high-frequency bands, where L,, is the length of wavelet coefficients. With a [ level wavelet
packet decomposition, the input univariate time series x is decomposed into 2! patches, and patch
x} € RYw captures the features of analyzed signal in the frequency range of [i X f;/2'*%, (i +
1) X f,/24*1]. Each pair of wavelet coefficients at [ level x.; and x, ., are calculated from x/~?
through low-pass filter h[k] and high-pass filter g[k] respectively as:

1 _ _ -1
xhu(m) = ) hlle—2nJx{ k),

E (1
l _ _ 'l—l
Xpi41(M) = kg [k — 2n]x; 7 (k).

The two filters are constructed with a scaling function ¢ (t) and a selected primary wavelet
function ¥ (t) as:

{h[k] = {p(0), p-1,(D)), @
glkl = @), -1, D)),
where ¢_ () = V2¢(2t — k), which is the scaling function at a finer scale, (-} is the inner
product operator. Note that the two filters are mutually orthogonal with relationship of
glk] = (=1)¥h[1 — k] so that filtered signals through them are independent and represent low
frequency band and high frequency band respectively.

— Cyclostationarity-enhanced representation. For the sake of effectiveness and interpretability,
we choose spectral correlation density as the input feature, as it can effectively characterize the
hidden periodic modulation mechanisms caused by different localized faults of rolling bearing
through spectral correlation peaks, which provides a direct visualization of fault-induced
modulation. As a classical feature of second order cyclostationarity, spectral correlation density is
calculated based on the autocorrelation R, (t,t — ) = E{x(t)x(t — )}, where 7 is the time shift.
As the periodicity, it can be expanded into a Fourier series with cycle frequencies « as:
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R.(t,t—1) = ZQR,‘? (‘r)eﬂ"“(t'%), 3)

. T
where R{(7) = % fOT R (t,t —1)e™’ 2ma(t—3) dt is defined as the cyclic autocorrelation function

of cycle frequency a, indicating modulation strength of cycle frequency «. Then, it can be
calculated by:

R{(x)=E {x(t)x(t — ‘r)e_jzna(t_%)}_ )

Then, the spectral correlation density can be calculated by the Fourier transform of the cyclic
autocorrelation function with respect to the time shift 7 as:

Se(a,f) = f_oo RE(t)e /2™ Tdr = IE{T [x(t)e‘jzn(%)t] - F [x(t - T)ejzn(%)(t_f)]}. (5)

Based on Eq. (5), with the patches x;.,, we obtain the cyclostationarity-enhanced
representation h;.p € RPX¢*S where C denotes the cycle frequency dimension, S denotes the
spectral frequency dimension. Each element of h; indicates the modulation strength of cycle
frequency a on spectral frequency f.

3.3. Cycle frequency-level adaptive feature extraction

— Cycle frequency-level feature extraction via MoE with multi-view router. The adaptive
feature extractor is designed based on a mixture-of-experts (MoE) block, which is a block of
dynamically routed expert networks with each expert implemented by a feed-forward network
(FFN). Specifically, input with the cyclostationarity-enhanced representation hq.p, the feed
forward process is expressed as:

z = LN(R) + furop (LN(R)), (6)

where LN(:) denotes layer normalization used to stabilize the instance distribution, fy,z()
denotes the mixture-of-experts module which is given by:

fuos(R)= ) Gi(h) - FFNi(h) = ) TOR[R(R)] - FEN(h), @)

where R(-) is the router of the gate G(-) calculating logits for assigning features h to different
experts, TOP,[-] is an operation to only activate the top k experts for each feature, specifically, it
sets all other elements in the output vector as zero except for the elements with the largest k logits,
FFN(-) denotes an expert combined with a fully-connected neural network and a nonlinear
activation function, E and k are hyperparameters representing the number of experts and the
number of selected top experts respectively.

For the routing scheme, [35] shows that the cosine router achieves better performance than the
linear router in domain generalization tasks because of its ability to mitigate the representation
collapse issue. Specifically, the cosine router is calculated through cosine similarity among
features and experts. Typically, the routing score for each token is computed as:

T, .
R(h)=Softmax<l Sz Wo - h) ),

AT 8
e I Sg -l Wy - Rl ¥

where S € RPEDP*E represents the one-dimensional feature space for each expert, which assumes
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that each expert is responsible for a group of attributes with similar semantic. However, unlike
visual tokens where each can represent specific attributes individually, e.g. ear, mouth, or leg, in
this context where the tokens are cycle frequencies, the spectrum of single cycle frequency, i.e.,
the slice of the spectral correlation density function at a particular cycle frequency, can hardly
exhibit clear semantic characteristics individually, e.g. fault, harmonic, or noise. The semantic of
single cycle frequency commonly depends on both individual energy and the distribution structure
of cycle frequencies [46, 47], which can be characterized by:

S = {E(@), R ({aj}]f,)}, ©)

where E(a;) = f;mfl"lS“k ()]?df denotes the modulation energy of ay, R ({aj};) denotes the

structural context including harmonic relationship @; = nay, where n represents the n-th
harmonic order, and sideband relationship @ = a; £ §fspase, Where the fouqr, represents the
rotational frequency. Moreover, to activate suitable and sufficient features for each cycle
frequency of samples across different domains, we further evaluate the sample similarity to ensure
that each expert focuses on cycle frequency with similar representation. To this end, we introduce
a high-dimensional expert feature space as Sy € RPEPXPECXPEDXE tg evaluate comprehensively
in routing. Then, for the high-dimensional input feature h, the routing score is calculated from
different dimensions, including spectral frequency (representing cycle frequency-level view),
cycle frequency (representing frequency band-level view), and frequency band (representing
sample-level view), which is expressed as:

R(h) = Softmax (Ti (Rp(h) + Rc(h) + Rs(h))>
R

1 [ MEAN(5)(SE) - (Wp - MEAN(c ) (h))
7x \ [MEAN .0y )| - [Wr - MEAN .5, ()| (10)

= Softmax

MEAN 5,5 (S§) - (Wc - MEAN(s, (h)) MEAN (p oy (SE) - (W, - h) )

" MEAN .5, S| - [We - MEAN g, (]| * IMEAN 0, (S]] - W, -

where Sp € RPEPXPECXPEDXE ig 3 Jearnable matrix representing experts’ features, Rp(h), Rc(h)
and Rg(h) refers to the routing with features of spectral frequency, cycle frequency and frequency
band respectively, MEAN(, (S£) denotes calculating the mean along dimension d to get features
of the rest dimension, W, - MEAN,(h) is the projection function for input features mapping to a
hypersphere, 7 is a learnable parameter used to adjust the sharpness of the probability distribution
to control the routing assignments. Through the above feature extraction, we obtain the cycle
frequency-level feature z € RF*¢*P,

— Auxiliary loss. To avoid the self-reinforcing imbalanced state that a gating network are prone
to converge to, where a few experts are more frequently activated than others, followed [35], we
optimize an importance loss L;,;, calculated with the square of coefficient of variation (CV) of
total routing scores of all features to each expert, to encourage balanced routing scores across
experts, and a load loss £;,,4, calculated with the square of coefficient of variation of total
assignment probabilities of all features to each expert, to encourage balanced assignment to ensure
the sufficient usage of all experts:

_( STD({Zf_; R(h) }E=1) )

imp = MEAN({z{_; R(R)JE_) "
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€ 11— — E 2
load:( STD({Zi=4[1 — ®(mx — R(W))]}e 1)) (12)

MEAN({Z{_,[1 — @(n; — R(WD1}E-y)

where @ is the cumulative distribution function of a Gaussian distribution, 7, is the k-th largest
routing score of each feature used as the threshold and only scores greater than it being assigned.

— Cycle frequency-level feature enhancement guided by prior knowledge. With the cycle
frequency-level feature extracted by the MoE block, we employ a channel attention module
(CAM) along the dimension of cycle frequency to highlight the fault-related cycle frequencies and
enhance the corresponding features. The distribution of the fault-related cycle frequencies satisfies
a sparsity property: the fault-related characteristic frequency and its harmonics are sparsely
distributed at integer multiples of the fundamental frequency, while most other frequencies are
irrelevant and redundant for diagnosis. However, the conventional Sigmoid layer produces smooth
attention scores, which are insufficient for such sparsity. Inspired by [48], we redesign the channel
attention with two branches: a squared ReLU-based branch that suppresses unrelated cycle
frequencies with negative scores and propagates the most useful information flow forward, and a
conventional Sigmoid-based branch that ensures sufficient information flow and keeps the model
from falling into local optima during training. The process is expressed as:

w, = CAM(2) = ReLU%(24p + Zimay) + Sigmoid(zapy + Zmax ),

Zavg = Wi (ReLU (WZ(MEAN(Z)))), Zmax = Wi (ReLU (WZ(MAX(Z)))), (13)
where MAX(+) denotes the maximum operation, W, and W, are the parameter of fully connected
layers.

Although the above design can effectively highlight informative cycle frequencies, we observe
performance degradation when transferring across a large span from high-speed to low-speed
conditions. Through analyzing the attention scores, we find out that fault impacts under high-speed
conditions can trigger strong high-order harmonics, which provide a simple solution for the model.
However, these high-order harmonics become weaker under low-speed conditions as the
dominance of random vibrations over fault impulses [49] and lead the model to mistakenly
recognize fault states as normal. To address this issue, we introduce a regularization term on scores
produced by the channel attention module to encourage the model to pay more attention on low
cycle frequencies while still retaining the ability to learn the discriminative feature from high cycle
frequencies. The regularization term is calculated by:

1 N 1 c-1
Lo =7 Y [z=3 0 =D 182 0)], A=wyn—wiy (14)
N Lup-q11C —14aimy ' '

where w, ; denotes the average score of the i-th group cycle frequencies. This group-wise design
is set to align with the discrete sparsity property of fault-related frequency distribution. The
gradient of this regularization with respect to w, ; is derived as:

0Lmono Z aﬁ aA{l 1 + of . oA}
aWzt N(C - 1) n=1 aAY-l 6w"-

N(C— 1) Zn (et = 0}—8 N1{ar= 03),

(15)

where f* = Y1 eAl 1{A"> 0}. For each part, when A'> 0, the corresponding item becomes
e to w}; and e® i to Wy 11, thereby enforcing a monotonic decrease between adjacent group
scores during backpropagation. When A< 0, the corresponding item will be truncated to control
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the scale of w}; and prevent gradient explosion.
Then, a global average pooling layer (GAP) is used to aggregate each cycle frequency as:

Z=GAP(z-w,) = %Z?_ (z - wyp). (16)

In this way, we obtain the enhanced cycle frequency-level feature Z € RP*C,
3.4. Frequency band-level causal localization

From the perspective of considering frequency bands associated with environments as
confounders, a frequency band-aware module is proposed to localize fault-related frequency bands
and suppress the influence of environment-related frequency bands.

— Localization with self-attention. To implement classification with the extracted features of
frequency bands, inspired by prior work on modeling multiple sub-information in the
classification of time series [50], we adopt a tokenized Transformer based on the self-attention
mechanism of frequency bands. The tokenized Transformer tends to be popular in computer vision
and time series, since it has been proven in [50] that it can reduce the complexity of developing a
good classifier by explicitly modeling the correlation among input elements and lowering the
class-conditioned entropy, which measures the uncertainty of features given that the class label is
known. This means that employing a class token to aggregate features of causal frequency bands
through modeling their correlations lowers the difficulty of classification compared to directly
feeding raw features of frequency bands into a classifier. Additionally, the attention mechanism
helps generate relation intensity graphs to visualize the importance of each frequency band. Here,
we first employ a learnable class token z.;; € R¥*¢ to aggregate the features of causal frequency
bands.

Specifically, we concatenate the class token with the features Z;.p to yield a tokenized bag
Zets = [Zeisr 21, Zp] € ROHPIXC and aggregate fault-related information to update z,; as:

Zgs < MHA(Z,s) = [head,, - head ] Wy, 17)

where W is the parameter of a fully connected layer used to fuse the output of multiple attention
heads, head}, denotes a self-attention head expressed as:

head,, = Attention(Zys W2, Zas WK, Z s W)

Qy . K\T
(ZasWyd) - ZasWi) ).(stwhv), (18)

= Softmax
(g

where WhQ, WK and W are the parameters of the transformation layers. Nystrom attention [51]
is used here to reduce the complexity of computation.

After the Transformer block, we only pass the class token to the classifier to make a prediction.
To guide the learning of fault-related features and causal frequency band, the cross-entropy loss
is used to perform classification with the prediction of classifier G as:

N

1 exp | Ge(zcs,

Ly = Nz _Zyc -log ( C( CISC)) , (19)
n=1 c Zi €xp (Gc(zcls,i))

where y is the class label, N is the batch size.
— Sparsity regularization for causal frequency bands. Beyond the tokenized Transformer, some
spurious frequency bands may remain. Considering the difficulty in convergence and tuning of
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gradient-related methods, e.g., gradient reversal, and the obstacle of obtaining accurate domain
labels, we purify causal frequency bands from another perspective, sparsity. Prior studies [52, 53]
have proven that the health-related frequency bands are much fewer than those related to
environments, and [54] has proven that causal features are much sparser than spurious ones.
Moreover, some studies in causal representation learning have shown that applying sparsity
regularization on the adjacency matrix of features helps prevent the model from overfitting and
spurious solutions [55]. Motivated by these, we introduce an entropy-based sparsity regularization
on the attention scores to encourage only a few frequency bands with significant values while the
rest close to zero. Because, based on the definition of entropy [56], a lower entropy indicates a
more concentrated probability distribution, which leads to a concentrated attention along
frequency bands here. The sparsity regularization is expressed as:

1 N
Lsparsity = Nz L [_ Z Pq log pa]' (20)
n= a

(zaisw ) (zaw)"

= ) denotes the attention probability associated with the a-th

where p, = Softmax<
frequency band.

3.5. Training and inference

Beyond the above regularizations, the overall optimization objective is summarized as:

1
L=Lys+a- E : (Limp + Lload) + .8 “Linono TV Lsparsity’ 21)
where a, f§ and y are the balancing parameters.

The workflow of the proposed method is presented in Table 1.

4. Experiments
4.1. Dataset description

We study the performance of the proposed model with 3 datasets as follows, and their key
attributes are summarized in Table 2, the test rigs are shown in Fig. 2.

Case Western Reserve University Bearing Dataset [57]. This is a vibration signal dataset that
contains vibration signals collected by acceleration sensors from 6205-type ball bearings of 4
individual health states in different severities under 4 working conditions. The 4 health states
include normal (N), inner race fault (IR), outer race fault (OR), and ball fault (B). These faults are
single-point faults produced through electro-discharge machining with fault diameters of 7 mils,
14 mils, and 21 mils. The vibration signals are collected with a 12 kHz sampling frequency.

Paderborn University Bearing Dataset [58]. This is a vibration signal dataset collected by
acceleration sensors from 6203-type ball bearings of 4 health states in different severities under 4
working conditions. We focus on 3 health states: normal (N), inner race fault (IR), and outer race
fault (OR). These faults are single-point faults generated through life-accelerated degradation
processes (e.g., pitting and indentations) with fault diameters ranging from less than 2 mm to more
than 4.5 mm. The vibration signals are collected with a 64 kHz sampling frequency. In our
experiments, to preserve enough revolutions for each sample, we downsample the data to 12 kHz.

Harbin Institute of Technology Bearing Dataset [59]. This is a vibration signal dataset that
contains vibration signals collected by acceleration sensors from ball bearings of 3 individual
health states on a real aeroengine under 25 working conditions. The 3 health states include normal
(N), inner race fault (IR), and outer race fault (OR). These faults are produced through wire cutting
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with a fault depth of 0.5 mm and a fault length of 0.5 mm. The vibration signals are collected with
a 25 kHz sampling frequency.

Table 1. Workflow of the proposed rolling bearing fault diagnosis method
Algorithm: Frequency band-aware multi-source domain generalization method

// Training

Input: Source domain {D*}5_;

Model: Cyclostationarity-enhanced representation module f,, mixture-of-experts block fy, cycle
frequency enhancer fg, band filter f5, classifier G., and class token z.;. Balancing parameters a, £, y.
1 Initialize: model parameters 6y, , 6f,, 05, O, Zcis

2 for training epoch t = 1,2,-+-,T do

3 for batch b = 1,2,:+-, B do

4 Sample one batch xy € RVN*¥*L from {DS}5_;

5 Decompose xy into wavelet packets xy 1.p = {Xy1,*, Xy p} € RV¥PXIw
6 hyq1p € RNXPXCEXS fC(xN,lzP)

7 Zyyp € RNXPXCXD fM(hN,l:P)

8 Zyap € RNXPXC fE(ZN,l:P)

9 Add class token: Z;; € RV*U+PXC 70U 2y 1p

10 Zas € RNXC e fB(chs)

11 Y« Ge(zas)

12 Calculate L;; according to Eq. (19)

13 Calculate Ly, and Lyyqq according to Eq. (11) and (12)
14 Calculate L, according to Eq. (14)

15 Calculate Lgyqyrsity according to Eq. (20)

16 Calculate L according to Eq. (21)

17 Update 0y, , 05, 65, ¢ With back propagation

18 end

19 end

Output: Trained parameters 6y, , 6., 05, 06, Zcis

// Inference

Input: Target domain {D*}7_;

Model: f¢, fy with trained 6y, , fp with trained 8y, fz with trained 6, , classifier G, with trained 8¢,
and trained class token z;.

Output: Diagnosis results of {D*}7_;

Table 2. Detailed configuration of experiment data

Dataset Bearing Case index | Speed (rpm) | Load Health state
Cl1 1797 0-HP
C2 1772 1-HP
CWRU 6205 3 1750 >-HP N, IR, OR, B
C4 1730 3-HP
Pl 1500 1000-N
P2 900 1000-N
PU 6203 ) 1500 1000-N N, IR, OR
P4 1500 400-N
15 balls H1 1500-2500 0-N
30-mm dipper H2 3000-3700 0-N
HIT 65-mm dyyper H3 3800-4100 0-N N, IR, OR
7.5-mm dp,y H4 4200-4500 0-N

4.2. Implementation details

In our experiments, each sample’s vibration data is first resampled using angular resampling,
following [60], to align signals such that each revolution contains an equal number of sampling
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points within each sample. Specifically, each sample consists of 2048 sampling points,
corresponding to 4 revolutions with 512 points per revolution. The Haar wavelet is used as an
example. For each sub-signal of frequency band, we set the number of cycle frequency as 128.
For the MoE block, we set 6 experts, where each expert consists of 2 MLP layers (256 hidden
neurons and a GELU activation) with a learnable similarity matrix of size R?56%256X256 For each
input feature, the multi-view router selects the TOP-1 expert index out of 6 and routes it to the
corresponding one. The multi-head attention mechanism is configured with 8 heads.

aj CWRU dataset b) PU dataset . ¢) HIT dataset
Fig. 2. Test rigs of each dataset

In the training process, an AdamW optimizer is adopted with a weight decay of 3x10 and an
initial learning rate of 1x10*, which decays with a cosine annealing schedule. The balancing
parameters « and f§ follow a cosine-based growth schedule from 0.01 to 1.0 and from 0.01 to 0.1,
respectively, and y is set to be a fixed value of 0.01. For £,,,,,,,, the cycle frequencies are divided
into 16 groups, with each consists of 8 adjacent cycle frequencies. Training in the following
experiments is performed over 300 iterations with a batch size of 128. All experiments are
conducted with Pytorch in Python on an NVIDIA GeForce RTX 2080 Ti GPU.

4.3. Performance comparison experiments

We first test our method in 3 cases with a gradually increasing level of difficulty. In these case
studies, we compare our model with the recent representative baseline methods of multi-source
domain generalization for bearing fault diagnosis: WhiteningNet [21], DGNIS [16], CDDG [25],
ACRLN [4], CIMSDG [27]. In addition, we select an ensemble method using 19 traditional
multi-domain features [61] as the basic baseline to evaluate the difficulty of tasks. To ensure the
reliability and effectiveness of the experiment results, we conduct experiments for each method
five times for each task. The diagnosis performance is indicated with five performance indicators,
which are accuracy, fault recall, fault precision, normal recall, and normal precision, defined as:

TP+TN

A - x 100 %, 22
ceuray =Tp FFN+FP+TN % 22)
1 TP;
Recallfault = Fz m X 100 %, (23)
= ! t
Precisiong,,; = 12 ™ x 100 %, (24)
F i=,11.,’II;Pi + FPi,normal
Recallormal = normal X 100 %, 25
€@ normal TPnormal + FNnormal % ( )
F
1 TP,
Precisi :—Z norma x 100 %. 26
recisiOMnormal F - TPnormal + FPnormal,i % ( )
i=

— Case 1 (Cross-domain transfer on CWRU dataset): With 4 distinct working conditions, we
establish 4 different cross-domain tasks. The data are balanced among 4 health states, with 300
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samples for each health state in each source domain and 300 samples for each health state in each
test domain.

The experimental results of our method, along with the baseline methods, are presented in
Table 3 and Fig. 3. Additionally, the comparison results of the detailed performance on each
sub-dataset for C2+C3+C4—C1 are shown in Fig. 4. Our model achieves the highest overall
average accuracy of 99.33 %. It can be observed that our model and the comparison methods all
perform well with only a small performance gap among them. It is because the vibration data in
the CWRU dataset has already been denoised and the distribution gap is small in this case, thus,
the improvement from adaptive feature extraction with causal localization is not obvious as in the
following cases.

Table 3. Performance under different working conditions in Case 1

Model Fault diagnostic average accuracy (%)
C2+C3+C4—Cl1 | C1+C3+C4—C2 | C1+C2+C4—C3 | C1+C2+C3—C4 | Average

Base 94.39+0.06 99.31+0.05 97.91+0.00 90.75+0.05 95.59
WhiteningNet 91.68+2.01 86.20+1.50 95.59+1.96 93.61+0.91 91.77
DGNIS 83.34+2.09 95.39+0.50 92.84+3.16 96.66+1.25 92.06
CDDG 97.72+2.61 97.12+1.61 99.82+0.13 92.54+0.46 96.80
ACRLN 93.55+3.27 99.48+0.22 99.16+0.44 97.29+1.54 97.37
CIMSDG 95.71+1.54 99.97+0.05 99.97+0.05 99.58+0.39 98.81
Ours 98.68+0.93 99.62+0.34 99.90+0.15 99.12+0.26 99.33

2 g 2 B g
% < A rd W ocNis
W cooe
B ACRIN
W cimMspc
‘ o
CON\V\ 4 j AV % |
's%/% = Q@O"\OQ ’@a,%q Q@&@o ’s%% r.;\a&pw ev/%%% Q\é}(’p“
v v
a) C2+C3+C4—Cl1 b) C1+C3+C4—C2 ¢) C1+C2+C4—C3 d) C1+C2+C3—C4
Fig. 3. Performance comprehensive comparison in Case 1
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Fig. 4. Detailed performance on each sub-dataset of case 1: C2+C3+C4—C1

— Case 2 (Cross-domain transfer from real fault to real fault on PU dataset): With 4 distinct
working conditions, we establish 4 different cross-domain tasks. The experimental protocol
employs 9 sub-datasets, including 3 normal sub-datasets (K001, K002, K003), 3 inner race fault
sub-datasets (K114, K116, KI17), and 3 outer race fault sub-datasets (KA04, KA15, KA16). The
data are balanced among 3 health states, with 1200 samples for each health state in each source
domain and 1200 samples for each health state in each test domain.

The experimental results of our method, along with the baseline methods, are presented in
Table 4 and Fig. 5. Additionally, the comparison results of the detailed performance on each
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sub-dataset for P1+P3+P4—P2 are shown in Fig. 6. Our model achieves high accuracy among all
cases and the highest overall average accuracy of 97.79 %. In the most challenging case
(P1+P3+P4—P2), our model recognizes better in each sub-dataset and reaches a total accuracy of
94.25 % with a 21.84 % improvement over the best compared method. We also observe that our
model has an average accuracy of 72 % on KAI1S5, since the damage type of outer race fault in
KAT1S5 (indentations) is different from K04 and K16 (pitting). Although diagnosis under such
difference is not the focus of this paper, our model can still handle it to a certain extent.

Table 4. Performance under different working conditions in Case 2

Model Fault diagnostic average accuracy (%)
P2+P3+P4—Pl | P1+P3+P4—P2 | P1+P2+P4—P3 | P1+P2+P3—P4 | Average
Base 94.86+0.88 61.99+0.55 93.59+0.07 61.08+0.22 77.88
WhiteningNet 99.61+0.15 62.78+4.29 99.57+0.16 83.01£1.32 86.24
DGNIS 99.64+0.00 70.53+3.60 99.88+0.03 84.47+1.24 88.71
CDDG 99.84+0.07 64.18+1.28 99.61+0.14 83.79+0.67 86.86
ACRLN 99.88+0.07 56.56+2.28 99.83+0.19 92.87+1.10 87.29
CIMSDG 100.0040.00 72.41£1.39 100.00+0.00 88.32+1.42 90.18
Ours 99.90+0.12 94.25+1.72 99.91+0.07 97.11+£0.41 97.79
: o
a) P2+P3+P4—P1 b) P1+P3+P4—P2 ¢) P1+P2+P4—P3 d) P1+P2+P3—P4

Fig. 5. Performance comprehensive comparison in Case 2
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Fig. 6. Detailed performance on each sub-dataset of case 2: P1+P3+P4—P2

PSR L N VS

— Case 3 (Cross-domain transfer from artificial fault to artificial fault on HIT dataset): This
case is designed to evaluate the transfer performance under large-span working conditions. We
establish 4 different cross-domain tasks. The data are balanced among 3 health states, with 270
samples for each health state in each source domain and 270 samples for each health state in each
test domain.

The experimental results of our model, along with the baseline methods, are presented in
Table 5 and Fig. 7. Additionally, the comparison results of the detailed performance on each
sub-dataset for H2+H3+H4—H1 are shown in Fig. 8. Our model achieves high accuracy among
all cases and the highest overall average accuracy of 97.95 % among comparison methods. In the
most challenging case (H2+H3+H4—H1), our model recognizes outer race fault under working
condition of low speed (1500-O) and reaches a total accuracy of 96.79 % with a 6.91 %
15
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improvement over the best compared method. This demonstrates that, even in the case of large-
span transferring from high-speed condition to low-speed condition, our model can handle the
weak fault characteristics and maintain good performance.

Table S. Performance under different working conditions in Case 3

Model Fault diagnostic average accuracy (%)
H2+H3+H4—H1 | HI+H3+H4—H2 | H1+H2+H4—H3 | HI+H2+H3—H4 | Average

Base 66.79+0.20 81.73+0.40 92.92+0.25 83.91+0.11 81.34
WhiteningNet 48.544+5.26 83.17+0.65 96.21+2.31 84.28+2.34 78.05
DGNIS 61.16+£3.17 83.29+1.23 97.24+0.68 85.88+1.96 81.89
CDDG 70.64+0.94 82.63+1.36 97.45+0.15 85.84+1.53 84.14
ACRLN 89.88+3.06 97.53£1.05 99.47+0.36 96.46+3.87 95.84
CIMSDG 63.09+2.85 98.72+0.73 100.00-0.00 97.99+1.24 89.95
Ours 96.79+0.97 97.12+0.42 99.84+0.23 98.03+0.27 97.95
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Fig. 8. Detailed performance on each sub-dataset of case 3: H2+H3+H4—H]1

5. Analysis

In this section, we validate the improvements of the proposed method. For evaluation, we take
the most challenging transfer scenarios from each of the three cases (C2+C3+C4—Cl,
P1+P3+P4—P2, and H2+H3+H4—H]1) as examples, and conduct all ablation experiments for
each method five times to ensure the effectiveness.

— Visualization of frequency band and cycle frequency. The frequency band-level decision-
making mechanism and cycle frequency-level feature extraction make the proposed method
interpretable. Leveraging these mechanisms, we obtain attention maps that highlight the model’s
focus in diagnosis. The attention maps corresponding to the three health states (normal, inner race
fault, outer race fault) in cases (C2+C3+C4—Cl, P1+P3+P4—P2, and H2+H3+H4—H]1) are
visualized in Fig. 9. It can be observed that the proposed method effectively localizes the fault-
related frequency band. At the cycle frequency level, the proposed model highlights the key cycle
frequencies for fault states, while the attention for normal states is relatively uniform. These shows
that the proposed method can purify fault-related features and reveal the fault modulation.
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N | C2+C3+C4—~C1

e

1+P3+

IR| C2+C3+C4—~C1 OR | C2+C3+C4—~C1

IR | H2

Table 6. Physical features used for analyzing frequency band attention rankings

Index Physical features Expression

1 Mean of CSD MCSD = éZa%ZﬂSﬂ
2 Variance of CSD VCSD = %Zu%Zf(lel —15:)?
3 Max of CSD MACSD = MAX[|S,I]

3
4 Skewness of CSD | SKCSD = 23 3,15 = 15:D%/ [ Ea7 £(152] - 15,1)2]

4
5 Kurtosis of CSD | KCSD =25+ 3,(1Su] = 15:0*/] [2 503 5,151~ 15,177
6 Energy of CSD ECSD = ¥ X £1S, [
7 Bandwidth of CSD BCSD = MIN{f: 3 (2 ZalSl?) = 095 - £ (2 8a1S,1?)}
8 | Modulation index of CSD MICSD = MAXIIS, || = MIN[IS,[]/7 515
9 Spectral entropy of CSD SECSD = —Zazf[Ile/(ZaZfIle)] log[Ile/(ZaZflel)]
10 Root mean square RMS = ’%Zn x?
11 Variance Var = %Zn(xi —%)?
12 Peak to peak value PTPV = MAX[x] — MIN|[x]

2
13 Kurtosis Kurt = {% ¥ (x; — %) / /% ¥ G — 92)2] } -3
14 Crest factor CrF = MAX[x]/ %Zn x?
1 2
15 Clearance factor CIF = MAX[X]/(;Zn N Ixil)
16 Impulse factor ImF = MAX[x] /2 Sl
17 Shape factor ShF = /%Zn x? %anxil
3

18 Skewness Skw = rllzn(xl. - 2)3/ /%Zn(xi _ f)zl
19 Shannon entropy ShE = =¥, x?logx?

To further understand the features learned by the model, we make a correlation analysis
between frequency band attention rankings and 19 actual physical features, as listed in Table 6,
including 9 cyclic spectral features and 10 time domain features to identify those representative
patterns learned by the model. From the results shown in Fig. 10, we see that: (1) for the case of
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C2+C3+C4—Cl1, AMICSD, BCSD, SECSD, MACSD are highly correlated with the frequency
band attention rankings and high standard deviation across health states suggests that they may
represent discriminative patterns captured by the model, (2) for the case of P1+P3+P4—P2,
SECSD, AMICSD and SkCSD are highly correlated with the frequency band attention rankings
and time domain features ShF and ShE are discriminative across health states, (3) for the case of
H2+H3+H4—H1, MACSD, VCSD, ECSD, RMS and KCSD are highly correlated with the
frequency band attention rankings and discriminative across health states.

N | C2+C3+C4—~C1 IR| C2+C3+C4—~C1 OR | C2+C3+C4—C1 C2 + C3 + C4 — C1: discriminability
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Fig. 10. The correlation analysis between frequency band attention rankings and actual physical features of
three health states (columns) in three cases (rows). Left: Spearman correlation coefficients p between
frequency band attention rankings and actual physical features. Right: feature scatter plots for each case,
with the top 5 features ranked by MEAN(|p|) X STD(p) highlighted with stars

— Ablation: Prior knowledge’s guidance in cycle frequency-level attention. The proposed
prior-knowledge-guided channel attention module is used to reduce noisy representative features
and redundant information while retaining the informative and relevant ones. Table 7 shows the
ablation results that our designed module achieves the highest accuracy while the traditional one
with Sigmoid obtains the lowest one. Fig. 11 illustrates the detailed performance comparison for
the case H2+H3+H4—H]1 and an example showing the different distributions of cycle frequency
attention scores across the three methods. For the outer race fault under low-speed condition of
1500 rpm, our method achieves a remarkable improvement with an average accuracy of 86 % and
a best-case performance of 97 %. In contrast, the Sigmoid-based approach shows unstable
performance with an average accuracy of 51 %, while the Fusion-based approach almost fails to
recognize the fault in this case with an average accuracy of 23 %. Furthermore, the proposed
method also achieves more accurate and stable recognition for other states across other working
conditions. From Fig. 11(f), it can be observed that our method guides the model to focus more
on the low cycle frequency range with sparse attention, which helps keep the model from falling
into a trivial solution when transferring from high-speed to low-speed conditions. These
demonstrate that prior-knowledge-guided channel attention module makes the informative context
be fully and correctly exploited while suppressing the redundant features, achieving a clear
performance improvement.
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Table 7. Ablation of Prior knowledge’s guidance in cycle frequency-level attention
Prior knowledge’s guidance Sigmoid Fusion Ours
Case 1: C2+C3+C4—C1 | 97.2442.49 | 98.1242.22 | 98.68+1.14
Case 2: P1+P3+P4—P2 | 92.1242.78 | 92.61+1.48 | 94.25+2.11
Case 3: H2+H3+H4—H1 | 84.67+6.04 | 90.16+4.59 | 96.74+0.97
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Fig. 11. Ablation of Prior knowledge's guidance in cycle frequency-level attention: The first row illustrates
the detailed performance of three methods on each sub-dataset of case 3: H2+H3+H4—H1 with a)
Sigmoid, b) Fusion, c¢) Ours. The second row provides an example of an outer race fault with d) raw
vibration signal, e) the corresponding spectral correlation density of the first frequency band after
decomposition, f) distributions of cycle frequency-level attention scores generated by three methods

— Ablation: sparsity regularization on frequency band-level attention. Table 8 shows the results
that the entropy-based sparsity regularization improves the diagnostic accuracy by 3.65 % in
C2+C3+C4—Cl1, 10.95 % in P1+P3+P4—P2, and 2.17 % in H2+H3+H4—H1. We observe that
the sparsity regularization yields a particularly significant improvement in P1+P3+P4—P2, where
the source domains are highly similar with all source data collected under the same operating
speed of 1500 rpm. Such similarity makes the model more prone to falling into a spurious solution,
and the sparsity regularization effectively prevents such degeneration. This demonstrates that the
sparsity regularization on the frequency band-level attention boosts performance.

Table 8. Ablation of sparsity regularization in frequency band-level attention
Sparsity regularization w/o sparsity | w/ sparsity
Case 1: C2+C3+C4—C1 | 95.03+2.94 | 98.68+1.14
Case 2: P1+P3+P4—P2 | 83.30+8.34 | 94.2542.11
Case 3: H2+H3+H4—HI1 | 94.57+£2.60 | 96.74+0.97

Accuracy
(%)

— Ablation: mixture-of-experts with multi-view router. Table 9 shows the comparison of
backbones with FFN, MoE without a multi-view router, and MoE with a multi-view router, all of
which employ the same FFN architecture for fairness. MoE with a multi-view router outperforms
both methods in three cases. We observe that FFN performs well in the simple case (Case 1:
C2+C3+C4—C1), where data distributions are similar, while corrupts in more challenging cases.
MoE with a multi-view router achieves higher accuracy and stability than MoE without a
multi-view router, as it enhances the consistency of feature routing, which enables each expert to
model more semantically coherent features and improve the representation quality. At the same
time, this still preserves the diversity of feature activation across different patterns.

— Expert selection. To further understand the expert selection across different health states and
different working conditions, we record the router selection corresponding to the top 10 % salient
features within the dominant band of each sample, and calculate the expert routing ratio for each
state-domain pair. The distributions of routing ratio for P1+P3+P4—P2 are visualized as an
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example in Fig. 12. We observed that salient features of different samples are extracted by
different experts, and experts show specialization for different health states and different working
conditions. In detail, we see: (1) adaptivity across working conditions: the distributions and
emphasis of expert's routing ratio vary across different working conditions, where similar working
conditions (Domain 1 and Domain 3) exhibit similar routing distribution, whereas distinct working
conditions (Domain 2 and Domain 4) present markedly different expert routing distributions and
emphasis, which indicates the model's adaptive routing under different working conditions;
(2) expert specialization: inner race fault is primarily attended by expert 3 and 6, outer race fault
is mainly attended by expert 4, 5 and 6, while for the normal state, the expert assignments are
more dispersed under different working conditions. The above analysis indicates that the MoE
with a multi-view router extracts features for different samples adaptively.

Table 9. Ablation of backbones

Backbone FFN MO.E wio MOE wi
multi-view router | multi-view router
Aceur Case 1: C2+C3+C4—C1 | 97.24+2.49 98.12+2.22 98.68+1.14
CE; )acy Case 2: PI+P3+P4—>P2 | 92.1242.78 92.61+1.48 94.2542.11
’ Case 3: H2+H3+H4—HI1 | 84.67+6.04 90.16+4.59 96.74+0.97
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Fig. 12. Distribution of routing ratios on three health states and four domains of case 2: P1+P3+P4—P2

— Runtime evaluation. Table 10 presents the runtime/performance evaluation of our model on
case 2: P1+P3+P4—P2, including FLOPs (floating point operations per second), params (number
of parameters), memory usage (sum of parameter storage and intermediate activations during
forward inference), latency, and accuracy. Our model has 39.22M FLOPs and 0.15M parameters,
requiring 394 MB of memory (388 MB for parameters and 6.7 MB for activations). It achieves
10.06 ms latency in a single forward pass and the highest accuracy of 94.25 % in this case. The
low FLOPs and the small number of parameters indicate low computational requirements, while
the MoE-based design leads to a relatively high static memory usage but an average-level
activation memory during inference. The latency is also acceptable for practical applications.
Overall, our model demonstrates low computational requirements and high performance.

Sensitivity analysis of hyperparameters. In the proposed method, the model itself involves two
hyperparameters: the number of experts E and the number of selected top experts k. Fig. 13 shows
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the results of different combinations of E and k on case 2: P1+P3+P4—P2. It can be observed that
the proposed model performs well with TOP-1 expert when the number of experts is 6, 8, 10 and
16. However, the performance degrades significantly when the ratio of activated experts is high,
as the specialization of each expert is weakened. In addition, the memory demand is increasing
following with the number of experts. In the optimization strategy, there are three balancing
parameters: a for expert balancing,  for monotonicity regularization and y for sparsity
regularization. To focus on the main task in the early stage of training, we update « and § with a
cosine strategy from low to high. In contrast, y is set a fixed one to maintain a fixed regularization
to keep the model from learning spurious features. Fig. 14 shows the test accuracy during training
for the controlled experiments on these three parameters on case 2: P1+P3+P4—P2. The proposed
strategy, with a updating from 0.01 to 1.0, § updating from 0.01 to 0.1 and y fixed at 0.01,
achieves relatively high accuracy.

Table 10. Runtime/performance comparison on case 2: P1+P3+P4—P2

Model FLOPs (M) | Params (M) | Memory (MB) | Latency (ms) | Accuracy (%)
WhiteningNet 109.41 0.72 2.75+2.78 1.08+0.01 62.78+4.29
DGNIS 218.22 0.85 21.42+5.54 2.57+0.30 70.53£3.60
CDDG 665.12 1.10 4.20+9.46 3.67£0.57 64.18+1.28
ACRLN 429.45 2.82 11.01+31.87 7.23+1.04 56.56+2.28
CIMSDG 6.11 0.03 0.38+2.12 1.82+0.29 72.41£1.39
Ours 39.22 0.15 387.59+6.72 10.06:+0.30 94.25£1.72
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Fig. 13. Sensitivity of number of experts E and the number
of selected top experts k on case 2: P1+P3+P4—P2
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Fig. 14. Sensitivity of balancing parameters a,  and y on case 2: P1+P3+P4—P2
6. Conclusions

In this work, we propose a novel rolling bearing fault diagnosis method under the
cross-working condition setting. The proposed approach, developed from the perspective of
causality purification in a frequency band-aware manner, consists of three stages:
cyclostationarity-enhanced representation generation, cycle frequency-level adaptive feature
extraction via a mixture-of-experts (MoE) block with a multi-view router and a
prior-knowledge-guided feature enhancer, and frequency band-level causal localization using a
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tokenized Transformer with an entropy-based sparsity regularization. Experiments demonstrate
that the proposed model achieves good generalization performance in cases of working-condition
transfer with distribution gaps ranging from small to large. In addition, the model provides good
interpretability in the view of frequency band and cycle frequency.

While the proposed model demonstrates satisfactory performance under unseen working
conditions, its performance highly depends on the quality of frequency band decomposition.
Frequency bands obtained through wavelet packets decomposition may retain noise or irrelevant
components. More advanced decomposition is the key to further motivating the potential of the
model. In addition, the model relies on sufficient class-balanced data for training. As for future
directions, it is necessary to investigate more efficient, lightweight, and transparent feature
extraction mechanisms in the class-imbalanced case, including leveraging techniques such as
knowledge distillation to lower deployment cost and self-supervised learning to alleviate the data
imbalance constraint. These development directions are expected to facilitate the development of
data-driven rolling bearing fault diagnosis algorithms in real-world applications.
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