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Abstract. To conduct a comparative analysis of the differences between non-isolated and isolated
structures of a multi-span through arch bridge under uniform seismic excitation in different
directions, a three-span continuous through concrete-filled steel tube arch bridge was selected.
Using the large-scale finite element analysis software MIDAS Civil, a non-isolated model of the
actual bridge and an isolated model with lead-rubber bearings added to the top of the piers were
established respectively. Dynamic characteristic analysis and comparison were carried out for the
two models. Three actual seismic waves were selected to apply longitudinal, transverse, and
vertical seismic excitations to the two models respectively. The arch rib internal forces,
displacements, and velocities of the two structural models, the maximum internal forces of the
piers, the maximum acceleration of the bridge deck, and the hysteretic curves of the isolated
bearings were analyzed. It is concluded that under the action of longitudinal and transverse seismic
excitations, the isolated model with lead-rubber bearings exhibits a significant isolation effect.

Keywords: non-isolated and isolated, multi span through arch bridge, uniform excitation, time
history analysis, hysteretic curve.

1. Introduction

In recent years, global earthquakes have occurred with increased frequency, and research on
non-isolated and isolated structures within the engineering community has remained ongoing. It
is particularly crucial for bridges to maintain their structural safety and traffic accessibility after
an earthquake. Among various bridge types, arch bridges are widely adopted in engineering
practices, attributed to their aesthetic appeal and the efficient utilization of material compressive
properties. With the rapid advancement of information technology, the refinement of relevant
computational theories, and the maturation of construction techniques, the span lengths and
number of spans of arch bridges have been continuously increasing. As the theory governing
bridge seismic response analysis has advanced, the design of seismic isolation and mitigation for
bridges has garnered extensive attention and undergone rapid development since the 1970s [1-3].
Xia et al. investigated the application of seismic isolation technology in long-span continuous
beam bridges [4]; Li et al. examined the seismic response parameters of isolated beam bridges
under near-fault earthquake excitations [5]; Zhang et al. conducted a study on the near-fault
seismic response analysis of isolated skew bridges, taking into account the environmental
temperature effects of Lead-Rubber Bearings (LRBs) and heat generation in lead cores [6]; Zhao
et al. analyzed the seismic response of isolated bridges equipped with rotating mass friction
dampers and displacement-limited friction pendulums [7]. Additionally, numerous scholars have
carried out relevant research on bridge seismic isolation and mitigation [8-10], while several
international scholars have also contributed to this field [11-13]. However, the majority of these
studies have focused on beam bridges, cable-stayed bridges, and suspension bridges. Research
related to arch bridges has primarily centered on seismic resistance and vibration mitigation
control [14-16], whereas studies on seismic isolation for arch bridges — particularly for through
arch bridges — remain relatively scarce.
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A substantial number of multi-span through arch bridges have been constructed in China, and
more such bridges are planned for future development. Consequently, it is of great significance to
apply uniform seismic excitations to multi-span through arch bridges in different directions, and
to conduct a comparative study on the differences in response behaviors and isolation
effectiveness between non-isolated and isolated structural models.

While previous studies have extensively investigated the seismic performance of multi-span
through-type concrete-filled steel tube (CFST) arch bridges, a systematic comparative analysis of
their responses under conventional seismic-resistant versus seismic-isolated designs remains
limited. This study fills this gap by presenting a comprehensive comparative analysis of a
multi-span through-type CFST arch bridge subjected to uniform seismic excitations in the
longitudinal, transverse, and vertical directions. The novelty of this work lies in its direct,
quantitative comparison of internal force and acceleration responses between the two structural
systems across all three seismic components. The findings, which demonstrate significant
reductions in arch-rib internal forces (60 %-80 %) and deck accelerations (70 %-90 %) with lead
rubber bearings (LRBs), provide valuable empirical evidence and practical references for the
seismic design optimization of similar long-span bridge structures.

2. Finite element model

A seismic model of an actual three-span through concrete-filled steel tube tied arch bridge was
established using the large-scale finite element analysis software MIDAS Civil, and an isolation
model — with lead-rubber isolation bearings installed at the top of the piers — was also constructed.
The configuration of the isolation bearings in MIDAS Civil followed the workflow: Boundary —
General Connection — General Connection Properties — Add, where the parameters of the lead-
rubber isolation bearings were specified as detailed in Table 1.

The bridge features two side spans, each with a length of 87 meters, and a middle span of
127 meters. All arch rib cross-sections adopt a dumbbell shape, with circular steel tubes used for
both the upper and lower segments. Specifically, the middle arch ribs utilize steel tubes with a
diameter of 1.2 meters for the upper and lower chords, while the side arch ribs employ steel tubes
with a diameter of 1.0 meter for their upper and lower chords. The upper and lower steel tubes are
connected via steel batten plates, and each steel tube is filled with C50 micro-expansive concrete.
“*”_shaped cross-braces are installed at the top of both the side and middle arch ribs; additionally,
the side arches are equipped with two sets of “K”-shaped cross-braces, and the middle arch is
furnished with four sets of “K”-shaped cross-braces.

In the finite element model, beam elements were used to simulate the piers, longitudinal
girders, cross girders, arch ribs, and cross-braces; rod elements were adopted for the hangers;
tension-only elements were applied to the tie rods; and plate elements were employed for the
bridge deck. Elastic connections were set between the piers and the main girders, with the bottom
of each pier treated as a fixed support. The finite element model is illustrated in Fig. 1. A
coordinate system was established such that the longitudinal, transverse, and vertical directions of
the bridge correspond to the X, Y, and Z axes, respectively.

Table 1. Lead-core rubber support parameters

Support plane Lead core yield | Pre-yield stiffness |Post-yield stiffness| Horizontal equivalent
dimension (mmXxmm) force (kN) (kKN/mm) (kKN/mm) stiffness (kN/mm)
1320x1320 964 25.6 3.9 6.4

3. Dynamic characteristic analysis

Here only the first five-order frequencies and mode shape diagrams of the two models are
listed, as shown in Table 2. It can be seen from Table 2 that:

(1) The fundamental frequency of the non-isolated arch bridge is 0.269 Hz, and that of the
isolated arch bridge is 0.220 Hz. The fundamental frequency of the isolated structure is reduced
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by 18.18 %, and the mode shape is the lateral displacement of the middle arch rib; except that the
first-order frequencies are relatively close, the differences between the second and fifth orders are
relatively large.

(2) The second-order frequency of the non-isolated model is 0.472 Hz, and that of the isolated
model is 0.244 Hz. The second-order mode shape of the non-isolated model is the lateral
displacement of the side arch ribs, while that of the isolated model is the longitudinal movement
of the arch ribs and the deck system. The second-order frequencies and mode shapes of the two
models are quite different.

(3) The non-isolated model has vertical vibration in the fourth order and torsional vibration in
the fifth order, while the isolated model has neither vertical vibration nor torsional vibration in the
first five orders.

No-isolation

Isolation

Fig. 1. Finite element model with locally enlarged view of non-isolation and isolation

Table 2. First five frequencies and modes

Non-isolated Isolation
Order Fre(q}lllz)n Y Mode shape diagram | Mode shape Fre(qI—llls)n Y| Mode shape diagram | Mode shape
Lateral Lateral
. displacement displacement
First | 0.269 of the middle | %220 of the middle
arch rib arch rib
Lateral Longitudinal
displacement movement of
Second 0.472 P . 0.244 W the arch rib
of the side i} .
arch ribs and bridge
deck system
Lateral Lateral
. displacement displacement
Third| -~ 0.472 of the side | 02%° of the middle
arch ribs arch rib
Jibration of Lateral
Fourth| 0.736 the middle | 0297 | Zagidmtptr | displacement
. W sl of the side
arch rib and .
arch ribs
deck system
Middle arch Lateral
. T rib and bridge displacement
Fifth | 0.737 W deck system 0.486 of the side
torsion arch ribs
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4. Seismic response analysis
4.1. Seismic wave selection and excitation direction

This bridge is located in an area with a seismic fortification intensity of 8 degrees (0.2 g), and
the site category is Class II. In this study, three actual seismic waves were selected, namely the
El-Centro wave, Taft wave, and San Fernando wave. Considering the E1 seismic action, to ensure
compatibility with the design response spectrum specified in the seismic code and facilitate
comparative analysis, the maximum horizontal amplitude was uniformly adjusted to 0.122 g, and
the maximum vertical amplitude was uniformly adjusted to 0.079 g. The horizontal amplitude
adjustment coefficients for the three seismic waves were set to 0.339, 0.784, and 0.387
respectively, while the vertical amplitude adjustment coefficients were 0.221, 0.509, and 0.251
respectively. The adjusted horizontal seismic waves are shown in Fig. 2.

The amplitude of the seismic waves is relatively large in the first 20 seconds; moreover, to
save calculation time, the duration of the seismic action was set to only the first 20 seconds. The
seismic action was applied along the longitudinal, transverse, and vertical directions of the two
models respectively.
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Fig. 2. Seismic waves

4.2. Internal force response of arch ribs

Due to space limitations, only the variation of partial internal forces along the arch rib and the
time-history response of the two structural models are compared and analyzed here. For specific
details, please refer to Figs. 3-7.

As can be seen from Fig. 3, under the seismic action along the longitudinal direction of the
bridge:

(1) The axial force of the arch rib in the isolated structure decreases significantly, which
indicates that the isolated structure can effectively reduce the axial force of the arch rib under the
seismic action along the longitudinal direction of the bridge.

(2) For the non-isolated structure, the axial force of the arch rib is the largest at the arch foot,
and also relatively large at the approximate 3/8 and 5/8 positions. Attention should be paid to
strengthening the corresponding parts, while the axial force is the smallest at the arch crown.

(3) Regarding the axial force of the arch rib in the isolated structure, the side arches are roughly
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in a “V” shape, and the middle arch is roughly in an inverted “W” shape. That is to say, the
maximum axial force of the side arches is at the arch foot, and the maximum axial force of the
middle arch is at the 1/4 and 3/4 positions of the arch rib. The parts to be strengthened for the arch
ribs of the isolated structure and the non-isolated structure should be treated differently.
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Fig. 3. Comparison of axial forces of arch ribs of non isolated and isolation structures
under uniform excitation along the bridge direction
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Fig. 4. Comparison of axial forces of arch ribs of non isolated
and isolation structures under uniform transverse excitation

JOURNAL OF VIBROENGINEERING 5



COMPARATIVE ANALYSIS OF NON-ISOLATED AND ISOLATED STRUCTURES OF MULTI-SPAN THROUGH ARCH BRIDGES UNDER UNIFORM
EXCITATION. ZHONGHU GAO

As can be obtained from Fig. 4, under the uniform excitation in the transverse direction of the
bridge:

(1) The axial force of the arch rib in the isolated structure decreases significantly.

(2) For the non-isolated structure, the axial force of the arch rib is the largest at the arch feet
on both sides of the side arches, and also relatively large at the position approximately 5/8 of the
side arches near the middle arch. The axial force distribution of the middle arch is roughly in a
“W” shape, with the maximum values at the positions approximately 3/8 and 5/8 of the arch rib.
Attention should be paid to strengthening the corresponding parts.

(3) The axial force of the arch rib in the isolated structure shows a wavy distribution.

3500 3000

El-centro Non isolation —— El-centro Isolation

<<<<<<< Taft Non isolation
2500 [+ A

Taft Isolation
3000

2500

N
o
S
=3

2000

Axial force/kN

1500 [~

Axial force/kN
&
8

=
o
S
S}

1000

a) El-Centro
3000

2500

= ~
& S}
=3 S
=3 5]

Axial force/kN

N
1)
S
53

500 [

¢) San Fernando
Fig. 5. Comparison of axial forces of arch ribs of non isolated
and isolation structures under vertical uniform excitation

As can be obtained from Fig. 5, under vertical uniform excitation:

(1) For the isolated structure, the axial force at the arch feet decreases under the action of the
Taft wave and San Fernando wave, while the seismic isolation effect is not obvious at other parts.
Under the excitation of the EI-Centro seismic wave, the axial force of the middle arch basically
shows an increasing trend, the axial force at the arch feet decreases slightly; the axial force at the
arch feet of the side arches near the middle arch increases, while the axial force at the arch feet on
both sides of the side arches decreases.

(2) The axial force of the arch ribs of the side arches and middle arch of both structures roughly
presents a “W” shape.

Fig. 6 reveals the following observations under longitudinal seismic excitation:

(1) The isolated structure demonstrates significant shear force reduction with relatively
uniform distribution along the arch rib.

(2) The non-isolated structure exhibits substantial shear force fluctuations along the arch rib,
characterized by a sawtooth pattern.

(3) The isolated structure maintains consistent shear force distribution along the arch rib, with
both side and central arches displaying a characteristic “W”-shaped profile.
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Fig. 6. Comparison of arch rib shear of non isolated and isolation structures
under uniform excitation along the bridge direction
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Fig. 7. Time history response diagram of side arch and arch foot axial force of non isolated
and isolation structure under uniform excitation along the bridge direction

As can be seen from Fig. 7, under the seismic action along the longitudinal direction of the
bridge, the axial force at the arch feet of the side arches presents the following characteristics:
(1) For the non-isolated structure, under the excitation of the El-Centro wave and San Fernando
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wave, the axial force decays rapidly and decreases significantly after 6-7 seconds. A secondary
small peak of the axial force appears again between 11-13 seconds when subjected to the El-
Centro wave. When subjected to the Taft wave, the axial force remains relatively stable from 0 to
4 seconds, while it maintains a relatively large response from 4 to 16 seconds. It is evident that
the structural responses induced by different seismic waves are significantly different.

(2) For the isolated structure, under the action of the three seismic waves, the axial force of the
arch rib decreases significantly and remains relatively stable in all cases.

4.3. Arch rib displacement response

From the comparison of arch rib displacements, the following conclusions can be drawn:

(1) Under the seismic action along the longitudinal and transverse directions of the bridge, the
arch rib displacement of the isolated model increases; under vertical seismic excitation, the
difference in arch rib displacement between the two models is not obvious.

(2) Under the seismic action along the longitudinal direction of the bridge, the displacement
of both structural models is the largest at the 1/4 arch rib position; under the seismic action along
the transverse direction of the bridge, the displacement of both structural models is the largest at
the arch crown position.

(3) The arch rib displacement under the uniform seismic excitation in the transverse direction
of the bridge is larger than that under the uniform seismic excitation in the longitudinal and vertical
directions of the bridge.
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Fig. 8. Comparison of arch rib displacements

4.4. Speed response of arch ribs
From the comparison of arch rib velocities, the following observations can be made:
(1) The maximum velocity of the arch rib in the isolated structure is slightly greater than that

in the non-isolated structure, and it occurs slightly later than that in the non-isolated structure.
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(2) The variation frequency of the arch rib velocity in the isolated structure is lower than that

in the non-isolated structure.
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Fig. 9. Time history comparison of arch rib velocity

4.5. Internal force response of piers

The comparison of the maximum internal forces of piers is shown in Table 3 and Fig. 10.
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Fig. 10. Time history comparison of internal force at pier bottom

It can be concluded that: under longitudinal seismic action, the average seismic reduction rates
of the maximum axial force and bending moment M,, of the piers are 86.0 % and 82.7 %
respectively; under transverse seismic action, the average seismic reduction rates of the maximum
axial force and bending moment M, of the piers are 84.1 % and 58.1 % respectively; under
longitudinal seismic action, the average seismic reduction rates of the maximum axial force and
bending moment M,, of the piers are —16.1 % and 72.2 % respectively. Only when the El-Centro
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seismic wave acts along the vertical direction, the maximum axial force of the pier in the isolated
structure model increases, while it decreases in all other cases.

Table 3. Comparison of maximum internal force of piers

. Transverse direction of Vertical direction of the
Along the bridge bridge bridge
Z| 2|8 | 2|28 2 |§ 2 | & 2 |E °
Seismic e £ |EE| E | | & |Eg € e s EE| ©
wave Model = 5 g z| 8§ = 5 g ~| & » 5 gz 5
2 B ok § 2 B |wod| B 2 B ol | B
8 2 |lE% 2 |&] 8 |3 2| &8 = | £ 3
—_— = el =) —_ =) o =) —_— = o 2 el
[~ [} o 2 [P} < [P} f] 2 [P} [ [0 o [P}
= ~ 5 ~ = 2 ﬁ ~ vl ~ ﬁ ~
< < <
Non- 1,576 61996 2597 22529 3647 4837
El-centro| isolated 88.8 % 81.5 % 80.7 % 49.9 % =71.7% 59.9 %
Isolated | 233 11440 502 11292 6262 1939
Non-
. 1668 49826 2900 24152 3485 4627
Taft isolated 81.5 % 79.9 % 81.3 % 57.0 % 3.4% 74.5 %
Isolated | 308 10006 543 10381 3365 1180
Non-
. 1033 31970 1766 14537 3779 6409
Ferizr; o _isolated 87.7 % 86.6 % 90.4 % 67.4 % 19.8 % 82.1 %
Isolated | 127 4299 170 4741 3029 1147

4.6. Absolute acceleration response of bridge deck

The maximum absolute acceleration of the deck is shown in Table 4. It can be concluded that:
under longitudinal seismic action, the average seismic reduction rates of the maximum absolute
acceleration of the deck in the longitudinal and vertical directions are 81.2 % and 90.1 %
respectively; under transverse seismic action, the average seismic reduction rates of the maximum
absolute acceleration of the deck in the transverse and vertical directions are 86.0 % and 81.8 %
respectively; under longitudinal seismic action, the average seismic reduction rates of the
maximum absolute acceleration of the deck in the longitudinal and vertical directions are —20.9 %
and 12.9 % respectively. Under vertical seismic action, the longitudinal absolute acceleration of
the isolated structure increases; in addition, under the vertical action of the El-centro wave, the
vertical absolute acceleration also increases.

Table 4. Comparison of maximum absolute acceleration of bridge deck

Alone the bridee Transverse direction Vertical direction
& & of bridge of the bridge
Seismic | /oo ) 5 & 5 % g % g ) 8 2 8
wave g |Se|l 8§ |Se E|Se E|Se E|Se| E|Se
L =R L =R L 53| L |28 & | 5% L =R
o] = = - o = = = =
- N | AN N | - N 2
Non- 213.58 401.28 371.44 90.61 57.84 252.65
El-Centro| isolated TUI81.8%|  TT91.2% T 183.8%| 1 180.7%| T |-7.5%[ T T|-29.7%
Isolated | 38.96 35.44 60.16 17.45 62.15 327.73
Non-
. 144.06 33091 475.13 94.28 41.17) — |340.97
Taft |isolated 773 % 86.2 % 87.1 % 79.6 % 46.9 % 23.2%
Isolated | 32.68 45.67 61.15 19.21 60.49| 0262.03
Non-
. 104.16 286.07 230.77 84.24 57.01 391.27
Fe;f:l 4o isolated 84.6 % 92.8 % 87.0 % 85.0 % 8.3 % 45.1%
Isolated | 16.04 20.56 30.05 12.61 61.73 214.71
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4.7. Support hysteresis curve

It is relatively difficult to accurately establish a hysteretic model for lead-rubber bearings, so
the software modifies the hysteretic curve into a bilinear model. The hysteretic curves of the
isolation bearings on the side piers under different excitations are shown in Fig. 11.
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¢) San Fernando along the bridge f) San Fernando transverse direction of bridge
Fig. 11. Hysteretic curve of isolation bearing under uniform excitation

As can be seen from Fig. 11, when the El-Centro wave and Taft wave act along the longitudinal
direction of the bridge, their hysteretic curves are somewhat fuller than those when the
corresponding waves act along the transverse direction of the bridge; there is no obvious difference
in the fullness of the hysteretic curves of the San Fernando wave under excitation along the
longitudinal and transverse directions of the bridge. The hysteretic curves exhibit different shapes
under the excitation of the three waves. It can be concluded that uniform excitations of different
seismic waves in different directions result in different hysteretic curves, which indicates that
seismic waves and the direction of seismic action affect the shape of the hysteretic curves of
lead-rubber bearings.

5. Conclusions

From the above comparative analysis, the following conclusions can be drawn:

1) The differences in fundamental frequency and mode shape between the non-isolated
structure and the isolated structure are not obvious, but the differences in frequencies and mode
shapes of the other orders are relatively significant.
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2) Under the seismic action along the longitudinal and transverse directions of the bridge, the
internal force of the arch rib in the isolated structure decreases significantly, showing a remarkable
seismic isolation effect; under vertical seismic action, the seismic isolation effect is not obvious,
and an increase in internal force may even occur. The axial force of the arch rib caused by uniform
excitation along the longitudinal direction of the bridge is greater than that caused by uniform
excitation along the transverse direction. For the non-isolated structure, the time-history responses
of internal forces under the excitation of different seismic waves are significantly different, while
the isolated structure shows relatively stable responses in all cases. Under longitudinal and
transverse seismic excitation, the displacement of the arch rib in the isolated structure increases;
under vertical seismic excitation, there is no obvious difference in arch rib displacement between
the two models.

3) Regarding the main internal forces of the piers: except that the maximum axial force of the
isolated structure model increases when the El-Centro seismic wave acts vertically, all other
internal forces decrease significantly. For the maximum absolute acceleration of the deck: except
that the longitudinal absolute acceleration of the isolated structure increases under vertical uniform
excitation and the vertical absolute acceleration increases under the vertical excitation of the
El-centro wave, all other accelerations decrease significantly.

Under seismic excitation along both the longitudinal and transverse directions of the bridge,
Lead-Rubber Bearings (LRBs) significantly reduced the internal forces in the arch ribs by
60 %-80 % and decreased the deck acceleration by 70 %-90 % in both directions, demonstrating
effective seismic isolation performance.

Research has been conducted on the seismic response of multi-span through-type concrete-
filled steel tube (CFST) arch bridges under uniform excitation. However, further investigation is
required for non-uniform excitation scenarios that account for factors such as the traveling wave
effect, coherence effect, and site effect.
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