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Abstract. In response to the challenges posed by the substantial volume of monitoring data from 
rotating machinery, the considerable effort required for manual interpretation, and the scarcity of 
labeled fault samples, this study proposes a vibration-based anomaly-detection method that 
applies active learning to unlabeled vibration signals. The key novelty is a redundancy-aware 
batch active learning scheme, in which predictive-entropy from a committee is combined with a 
long short-term memory fully convolutional network (LSTM–FCN) deep-clustering module. One 
most representative sample is selected from each cluster to increase diversity and reduce labeling 
cost. The method comprises two stages: first, predictive entropy is computed for all unlabeled 
samples to rank uncertainty and perform an initial screening; second, a deep-clustering procedure 
mitigates redundancy among high-uncertainty candidates, after which the highest-entropy 
instance in each cluster is selected for expert labeling. Evaluations on vibration datasets from a 
rolling-bearing accelerated-life rig and a centrifugal-compressor rig show consistent 
improvements in accuracy and recognition stability over conventional clustering-based 
anomaly-detection methods, alleviating the dependence on scarce labeled anomalies in real-world 
rotating machinery monitoring.  
Keywords: anomaly detection, batch active learning, predictive entropy, deep clustering, 
query-by-committee, vibration monitoring. 

1. Introduction 

Rotating machinery – including motors, pumps, fans, compressors, and spindle systems – 
constitutes a ubiquitous category of equipment in industrial facilities [1, 2]. The operational 
integrity of these assets hinges critically on shaft and bearing assemblies, the degradation of which 
can precipitate unplanned downtime and significant safety hazards [3, 4]. Consequently, vibration 
monitoring has established itself as a cornerstone of anomaly detection and condition monitoring, 
favored for its non-intrusive deployment and high sensitivity to incipient fault signatures [5, 6]. 

Despite advancements in data-driven methodologies, practical implementation in industrial 
settings is impeded by two intrinsic constraints [7]. First, equipment heterogeneity is substantial; 
variations in machine topology, operating modes, mounting foundations, and sensor 
configurations induce pronounced distribution shifts in features of vibration signals, thereby 
complicating robust generalization across diverse scenarios [8]. Second, high-quality labels are 
scarce in operational environments [9]. Anomalies are inherently rare and heterogeneous, while 
ground-truth annotation often necessitates expert interpretation, maintenance inspections, or 
disassembly – processes that are resource-intensive, costly, and frequently incompatible with strict 
production schedules [10]. These factors necessitate a label-efficient learning strategy capable of 
identifying high-value samples within a restricted annotation consumption, while simultaneously 
mitigating redundancy during batch selection [11]. 

Active learning (AL) [12] addresses these challenges by optimizing the selection of unlabeled 
data for annotation based on specific query strategies, thereby enhancing model performance with 
fewer labeled instances. In general, AL paradigms are categorized into membership query 
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synthesis, stream-based selective sampling, and pool-based sampling [13, 14]. Membership query 
synthesis generates synthetic instances for annotation [15]; however, such queries frequently lack 
fidelity to realistic physical dynamics, limiting their applicability in industrial settings. 
Stream-based sampling evaluates incoming instances sequentially, a localized approach that 
precludes global comparison against the remaining unlabeled data, potentially resulting in 
suboptimal selection under fixed budgets. Conversely, pool-based sampling evaluates the entire 
unlabeled pool to select an informative subset [16]. This paradigm aligns optimally with practical 
industrial workflows where datasets are often aggregated prior to the annotation phase. 

The method proposed in this study follows the pool-based active learning paradigm to select 
informative samples from the entire unlabeled pool. Specifically, an Entropy-based Query by 
Bagging (EQB) strategy is employed to estimate uncertainty for all unlabeled samples. While 
earlier research focused on feature selection and data mining for real-time fault diagnosis [17, 18], 
recent studies demonstrate the superior efficacy of deep learning architectures – specifically Long 
Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs) – for 
anomaly detection in time-series sensor data [19]. To further enhance representativeness and 
diversity in batch querying, a two-stage redundancy-aware selection scheme is developed. In 
Stage 1, a high-uncertainty candidate set is obtained using EQB-based entropy ranking. Uniquely, 
Stage 2 diverges from traditional diversity strategies – which typically rely on simple geometric 
distances in raw feature space – by implementing deep clustering on temporal embeddings learned 
via an LSTM Fully Convolutional Network (LSTM-FCN). By clustering within this learned latent 
space, the proposed method captures the semantic temporal dependencies of vibration signals, 
ensuring that the selected batch maximizes fault pattern diversity rather than merely selecting 
statistical outliers. This design effectively reduces redundant queries while retaining informative 
samples situated near decision boundaries, offering a robust solution to the high-dimensional 
distribution shifts characteristic of industrial monitoring. Given that bearing and rotor failures 
account for the overwhelming majority of faults in rotating machinery, the proposed method is 
empirically evaluated on two vibration datasets: a rolling bearing accelerated life test and a 
centrifugal compressor test rig. The results demonstrate consistent improvements in detection 
accuracy and stability compared to entropy-based and random screening baselines, achieving 
these gains with substantially fewer labeled samples. 

The remainder of this paper is organized as follows. Section 2 delineates the theoretical 
foundations of the proposed sample screening strategy, including the EQB mechanism and the 
LSTM-FCN deep clustering architecture. Section 3 details the integrated redundancy-aware batch 
active learning framework and its two-stage screening workflow. Section 4 presents the 
experimental verification on rolling bearing and centrifugal compressor datasets, providing a 
comprehensive analysis of detection accuracy and label efficiency. Finally, Section 5 summarizes 
the conclusions and outlines directions for future research. 

2. Active learning-based sample screening strategy for deep clustering 

As rotating machinery is generally in normal operation with scarce labeled vibration 
monitoring data, the insufficient number of labeled samples becomes the primary factor limiting 
the performance of anomaly detection [20]. However, labeling by experts requires considerable 
time and labor costs [21]. The labeling of easily collapsible samples, which exhibit high entropy 
in their prediction results and a substantial volume of information, has been shown to enhance the 
performance of classification models. Consequently, to reduce the cost of manual labeling, the 
LSTM-FCN deep network is constructed as a learner, in conjunction with a deep clustering sample 
screening strategy based on active learning. This approach is founded on the premise that labeling 
easily aliased unlabeled samples can significantly enhance the model’s discriminative ability and 
detection accuracy. 
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2.1. Batch active learning 

The crux of active learning algorithms lies in the selection of the active learning strategy, 
denoted by Q, with the more commonly employed active learning strategies comprising random 
sampling (RS), uncertainty sampling (US), and committee-based querying (QBC) [22]. Among 
these, the QBC strategy has been shown to consider the prediction results of multiple models and 
exhibits consistent performance [23,24]. The EQB [25] strategy is the most widely used QBC 
strategy. It is independent of learning algorithms, relying solely on classifier outputs. 
Consequently, it can be integrated with any learning algorithm. 

The uncertainty of an unlabeled sample 𝑢௜ is quantified by the predictive entropy of the 
ensemble-averaged predictive distribution. Let 𝐿 denote the number of fault categories, and let {𝜃௞}௞ୀଵ௄  denote the parameters of the 𝐾 committee models trained via bootstrap resampling. For 
each model, the class posterior is obtained from the logits 𝑓ఏೖ(𝑥) by temperature-scaled softmax 
[26, 27]: 

𝑝ఏೖ(𝑦 = 𝑗|𝑥) = softmaxቆ𝑓ఏೖ(𝑥)𝜏 ቇ௝ . (1)

Averaging the posteriors across the committee yields the predictive distribution: 

𝑝௜,௝ = 1𝐾෍𝑝ఏೖ(𝑦 = 𝑗|𝑥 = 𝑢௜)௄
௞ୀଵ , (2)

and the predictive entropy of 𝑢௜ is computed as: 

𝐻(𝑢௜) = −෍𝑝௜,௝ log ቀ𝑝௜,௝ + 𝜀ቁ௅
௝ୀଵ , (3)

where 𝜀 = 10-12 is a small constant for numerical stability, and log denotes the natural logarithm 
(uncertainty measured in Nats). A larger 𝐻(𝑢௜) indicates greater disagreement in the probability 
mass assigned by the committee and thus a more informative candidate for annotation. In contrast 
to vote entropy that relies on hard votes, Eq. (3) exploits soft probabilities and is therefore sensitive 
to calibration. 

The committee is constructed by applying the bootstrap resampling technique to the current 
labeled set 𝒟௅. Specifically, for each of the 𝐾 committee members, a class-stratified bootstrap 
subset 𝒟௅(௞) of size |𝒟௅| is drawn with replacement (independent draws). Each member uses the 
same LSTM-FCN backbone but is trained from an independent random initialization on 𝒟௅(௞) 
with the schedule described in Section 2.2; out-of-bag examples 𝒟௅\𝒟௅(௞) are used only to 
monitor early stopping and are never used for training. This procedure introduces the necessary 
diversity among the 𝐾 models (default 𝐾 = 8), enabling a committee-based estimate of predictive 
uncertainty without additional annotation cost. Unlabeled samples are ranked by 𝐻(𝑢௜); the 
integration with the deep clustering stage is described in Section 3. The computational complexity 
of the uncertainty calculation is O(𝑁𝐾𝐿) for 𝑁 unlabeled samples and 𝐿 classes. 

Traditional active learning can only select one unlabeled sample for labeling at a time and 
retrain the classification after each labeling. However, frequent model training is time-consuming. 
Batch mode active learning (BMAL) [28] addresses the inefficiency of conventional active 
learning sample selection by attempting to select multiple unlabeled samples simultaneously. The 
BMAL algorithm enhances the efficiency of active learning in the context of vast data. However, 
it still lacks a more effective approach to address the redundancy of information among batch 
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samples [29]. There is currently no superior approach to address this issue. In particular, the 
efficacy of hard clustering in enhancing the sample representativeness is compromised by the 
background noise interfering with the monitoring data of mechanical equipment. Consequently, 
this study proposes a combination of the entropy bagging method to investigate the batch active 
learning algorithm, to reduce the redundancy of information among unlabeled samples of 
machinery and equipment monitoring data. 

2.2. Deep clustering algorithm based on LSTM-FCN 

The development of active learning has resulted in the gradual integration of the BMAL 
algorithm with the clustering algorithm. Initially, clustering was performed on batch samples, and 
subsequently, a second screening was conducted between different clusters. This approach ensures 
that the obtained samples exhibit greater variation and are more representative [30]. Conventional 
clustering methodologies employed in the context of mechanical equipment monitoring signals 
are hindered by the presence of noise components, which impedes the attainment of precise 
clustering outcomes. Consequently, the extraction of time-domain data features, among other 
approaches, is typically used for clustering. To better adapt to the anomaly detection algorithm 
model and complete the automation of intelligent detection, the BMAL algorithm requires a 
clustering algorithm that uses the original monitoring signals and has good anti-jamming 
properties. This study proposes a deep clustering algorithm based on the LSTM-FCN, as shown 
in the network structure in Fig. 1. The deep-clustering module follows an LSTM-FCN 
architecture. It consists of two parallel branches. One is an FCN branch with three stacked 1-D 
convolutional blocks (128/256/128 filters). Each block is followed by batch normalization and 
ReLU. Global average pooling is applied at the end of the FCN branch. The other branch is a 
unidirectional LSTM with 128 hidden units. The two outputs are concatenated and projected to a 𝑑-dimensional embedding used for clustering (default 𝑑 = 10). Unless otherwise stated, 
optimization uses Adam (initial learning rate 10-3, weight decay 10-5), batch size 64, dropout 0.2 
after the LSTM, early stopping with a patience of 10 epochs, and a maximum of 100 epochs. 

 
Fig. 1. LSTM-FCN clustering network structure. 

The LSTM-FCN network is used to learn compact temporal embeddings from the vibration 
time series. It combines a 1-D convolutional branch to extract multi-scale local patterns with a 
unidirectional LSTM branch to capture long-range temporal dependencies. The outputs of the two 
branches are fused and then projected into a low-dimensional embedded feature of size 1×10, 
which is used for subsequent clustering and sample selection. Thereafter, the two components of 
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the encoder are connected through the intermediate embedding layer. Finally, the embedded 
feature of each input sample is mapped to a label 𝑞. The loss function of this clustering algorithm 
is defined as follows: ℒ = ℒ௥ + 𝜆ℒ௖ , (4)

where ℒ௥ is the reconstruction loss (L2 norm between the input 𝑥 and the reconstruction 𝑥ො ); 𝜆 is 
the trade-off coefficient; and ℒ௖ is the clustering loss defined as the Kullback-Leibler divergence 𝐷௄௅(𝑝||𝑞) between the soft assignment 𝑞 and the target distribution 𝑝. The soft assignment 𝑞 is 
computed with a Student-t kernel (DEC-style) over the distances between the embedding  𝑧௜ = 𝑔థ(𝑥௜) and the cluster centers {𝜇௝} (degrees of freedom 𝛼 = 1). The target distribution 𝑝 is 
obtained by sharpening 𝑞 (element-wise squaring followed by normalization) to emphasize 
confident assignments and mitigate class-imbalance. Cluster centers {𝜇௝} are initialized by  𝐾-means on the embeddings and are subsequently updated jointly with the network parameters 
through gradient-based backpropagation. In the pre-training stage, 𝜆 = 0 is used to train the 
autoencoder and obtain a stable mapping from the data space to the embedding space. During fine-
tuning, 𝜆 = 0.1 is employed; the target distribution 𝑝 is refreshed periodically. Optimization uses 
Adam (as in Section 2.2). Training stops when the average change of 𝑞 between two consecutive 
updates of 𝑝 falls below a threshold 𝛿. 

3. Device anomaly detection via active learning of unlabeled samples 

To avoid the limitations of the conventional batch active learning clustering method, 
particularly its vulnerability to a wild value and its insensitivity to features embedded in 
high-dimensional data, the batch active learning based on deep clustering (LSFM-FCN-BMAL) 
algorithm was developed. This algorithm was employed to enhance the diversity of 
high-dimensional device state data. The proposed method was initiated by employing the EQB 
algorithm, which undertakes first-level screening based on the entropy value of unlabeled samples. 
Subsequently, the algorithm clusters the screened batch samples and selects representative 
samples from each cluster to complete the second-level screening. The samples that emerge from 
this second-level screening process are both informative and representative, thus enabling 
effective mining of expert experience and performance enhancement of the detection model at a 
reduced labor cost. The specific steps of screening are as follows: 

– The first filtration stage involves classifying all unlabeled samples according to the amount 
of information they contain. The initial stage employs the active learning algorithm to calculate 
the information content of all unlabeled samples. Subsequently, the unlabeled samples are 
arranged according to their information content, and the first 𝑚 samples with the most substantial 
information content are extracted and placed into the initial-level sample pool of active learning 
without being labeled first. 

– The second-level screening applies the LSTM-FCN deep clustering algorithm to the 
first-level screening samples, grouping all candidates from the first-level sample pool into 𝐶 
clusters. In this stage, a diversity-maximization strategy is adopted by setting the number of 
clusters equal to the query batch size (𝐶 = 𝑏). This configuration ensures that exactly one 
representative is drawn from each cluster, thereby maximizing the structural diversity of the query 
batch and minimizing redundancy among candidates. Consequently, throughout all experiments, 𝐶 is fixed to 𝑏 (e.g., 𝐶 = 5 for a batch size of 5). While the LSTM-FCN deep clustering algorithm 
effectively compresses the sample pool by grouping similar instances, simply selecting the cluster 
centroid for annotation is suboptimal, as it may ignore samples near the classification boundary. 
To address this, a ranking strategy is employed within each cluster. Samples are firstly ranked by 
the predictive-entropy score computed during the first-level screening, and then the single most 
informative sample (highest 𝐻(𝑢)) from each cluster is selected for the second-level sample pool. 



ANOMALY DETECTION IN ROTATING MACHINERY VIA ACTIVE LEARNING OF UNLABELED VIBRATION SAMPLES.  
GANG LI, XIANGE HOU, QING ZHANG 

6 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

These selected samples are both informative and representative, and are subsequently submitted 
to domain experts for labeling to update the labeled set for the next iteration. 

Fig. 2 illustrates the selection process of the secondary sample screening strategy. In the figure, 
given the observation that samples 𝑥ଵସ and 𝑥଼ଶ belong to the same cluster, the second-level sample 
screening strategy dictates that one of these samples should be selected for inclusion in the 
second-level sample pool. As illustrated in Fig. 2, the selection process of the secondary sample 
screening strategy involves selecting sample 𝑥ଵସ with the highest information ranking in the same 
cluster, because of the limitation of sample representativeness. This is because sample 𝑥଼ଶ has a 
higher information ranking than 𝑥ଽ, as it is returned to the unlabeled sample pool. Conversely, 
sample 𝑥ଽ is screened into the second-level sample pool as the sample with the highest information 
ranking in the other cluster. The sample with the highest information content in the cluster is 
filtered into the secondary sample pool. 

 
Fig. 2. Flowchart of secondary sample screening strategy 

As demonstrated in the preceding analysis, the device anomaly detection method based on 
active learning of unlabeled vibration samples is primarily divided into two components: first, the 
semi-supervised learning component of sample training, and second, the active learning 
component of optimization, finding, labeling, and updating of unlabeled samples. The method’s 
flow is illustrated in Fig. 3. First, the LSTM-FCN deep clustering network is pre-trained using the 
labeled sample set 𝒟௅, with the clustering loss ℒ௖ weight set to 𝜆 = 0. Subsequently, the bootstrap 
method is used to generate 𝐾 variant sub-training sets from the labeled sample set, which are then 
employed to train adaptive detection algorithms designed to handle labeling and signal noise. The 𝐾 anomaly detection models are constructed to constitute committee members, who then predict 
labels for all unlabeled samples, obtain 𝐾 labels for each sample, and calculate the entropy value 
of the samples accordingly. The unlabeled samples are then sorted, and the top 𝑚 samples with 
the largest entropy value are filtered to form a first-level sample pool. The samples in the first-level 
sample pool are then clustered using the pre-trained LSTM-FCN deep clustering algorithm, at 
which time the number of cluster centers 𝐶 is equal to the active learning batch size, and the weight 
of the clustering loss ℒ௖ is set to 𝜆 = 0.1. According to the clustering results, the samples with the 
largest entropy value are screened from each cluster into the second-level sample pool, and the 
samples in the second-level sample pool are subsequently marked by domain experts. After the 
labelling is completed, the newly labeled samples are added to the labeled sample set 𝒟௅, and the 
updated 𝒟௅ is used to retrain the LSTM-FCN anomaly detection network. The above process is 
repeated until the performance of anomaly detection reaches the pre-set criteria. 
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Fig. 3. Flowchart of the device anomaly detection method based on active learning of unlabeled samples 

4. Verification analysis 

In rotating machinery, shaft-system failures have been identified as major contributors to 
overall failures, with rotor and bearing anomalies being particularly prominent. These faults can 
propagate to system-level malfunctions of the equipment. Rotors and bearings are subjected to 
elevated loads and complex dynamic loading during operation, and common forms of failure 
include rotor imbalance, eccentricity, bearing wear, and inadequate lubrication. These failures 
frequently have a significant impact on the stability and reliability of the equipment. Therefore, to 
verify the feasibility and validity of the proposed method, data collection and method validation 
were performed on two test rigs. The first was the rolling bearing accelerated life rig of Xi’an 
Jiaotong University, and the second was a centrifugal compressor rig of Liaohe Engineering Co. 

To provide a reproducible evaluation under realistic label-scarcity conditions, a pool-based 
active-learning protocol was adopted for both vibration datasets. Each dataset was split into 
training and test subsets. Within the training subset, only a small seed set was assumed to be 
labeled at the start, and all remaining training samples were treated as unlabeled. At each iteration, 
a fixed annotation budget of 𝑏 samples were selected from the unlabeled pool, and their labels 
were obtained from the dataset ground truth. These newly labeled samples were then added to the 
labeled set to update the model. For uncertainty estimation, an EQB strategy was used, where a 
committee of 𝐾 base classifiers was trained via bagging (each member trained on 75 % of the 
current labeled set) to produce a predictive-entropy score for each unlabeled candidate. The top-𝑚 most uncertain candidates formed a first-stage pool. In the second stage, these high-uncertainty 
candidates were embedded by the LSTM-FCN encoder and clustered into 𝐶 groups, where the 
number of clusters was set equal to the query batch size (𝐶 = 𝑏) to enforce one selection per 
cluster. Within each cluster, candidates were ranked by the EQB entropy, and the single 
highest-entropy instance was selected for labeling, which mitigates redundancy while preserving 
boundary-informative samples. This query-label-retrain loop was repeated for a fixed number of 
iterations (20 iterations in this study), and the test-set performance was recorded after each 
iteration. Reported results were averaged over 10 repeated runs to reduce randomness introduced 
by seed selection and training stochasticity. 

4.1. Rolling bearing full life dataset validation 

The rolling bearing accelerated life test rig of Xi’an Jiaotong University comprises an 
alternating current motor, a motor speed controller, a rotating shaft, support bearings, a hydraulic 
loading system, and the test bearing [31]. The test bench provides adjustable working conditions, 
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mainly the radial load and rotational speed. The hydraulic loading system applies the radial load 
to the bearing seat of the test bearing, while the rotational speed is set and regulated by the AC 
motor speed controller. The test bearing is an LDK UER204 rolling bearing, and its key 
parameters are listed in Table 1. The experimental settings and test information are summarized 
in Table 2. 

Table 1. Parameters of rolling bearings 
Parameter name Value 

Inner ring raceway diameter / mm 29.30 
Outer ring raceway diameter / mm 39.80 

Bearing medium diameter / mm 34.55 
Basic dynamic load rating / N 12820 

Ball diameter / mm 7.92 
Number of balls 8 
Contact angle / ° 0 

Ba1sic static load rating / N 6650 

Table 2. Experimental selection of bearing related information 
Parameter name Value 

Sample size 491 
Basic rated life / h 6.8-11.8 

Actual life / h 8.183 
Failure location Inner ring 

Rotational speed / rpm 2250 
Radial force / kN 11 

Sampling frequency / kHz 25.6 
Sampling time / s 1.28 

The vibration dataset under consideration contains a total of 491 samples, with each sample 
comprising 32,768 points. The time interval between each acquisition is 1 min, the sampling 
frequency is 25.6 kHz, and the length of each sample is 1.28 s. Fig. 4 shows the waveforms of the 
normal and abnormal samples in the time and frequency domains. 

 
a) Normal sample after 10 min run 

 
b) Normal sample after 100 min run 

 
c) Abnormal sample 40 min before failure 

Fig. 4. Time and frequency-domain waveforms 
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For the active-learning evaluation, an instance-level pool was further constructed from the 
original acquisitions to obtain a sufficiently large candidate set under a controlled label-scarcity 
protocol. Specifically, an instance-level pool of 4,500 samples (4,000 normal and 500 abnormal) 
was constructed from the 491 acquisitions for active-learning evaluation, where “normal” 
instances were drawn from the early healthy stage and “abnormal” instances were drawn from the 
pre-failure stage. Of these, 70 % are used for training set 𝑋௧௥௔௜௡ and the remaining 30 % for testing 𝑋௧௘௦௧, resulting in 2,800 normal samples 𝑋௧௥௔௜௡௡  and 350 abnormal samples 𝑋௧௥௔௜௡௔  in the training 
set 𝑋௧௥௔௜௡ = ሾ𝑋௧௥௔௜௡௡ ,𝑋௧௥௔௜௡௔ ሿ, totaling 3,150 samples. Subsequently, a proportion of the abnormal 
samples is assigned labels to form the labeled sample set 𝑋௟௔௕௘௟ = ሾ𝑋௟௔௕௘௟௡ ,𝑋௟௔௕௘௟௔ ሿ. Simply, there 
are 280 normal samples, 35 labeled abnormal samples 𝑋௟௔௕௘௟௔ , and the remaining samples are the 
unlabeled samples 𝑋௨௡௟௔௕௘௟. 
4.2. Analysis of rolling bearing dataset validation results 

To verify the accuracy of the proposed algorithm, a secondary sample screening strategy based 
on LSTM-FCN deep clustering is compared with a random strategy and the state-of-the-art 
(SOTA) baseline, EQB. The algorithms under evaluation consists of a committee of seven 
adaptive noise-reduction anomaly-detection classifiers, each trained on 75 % of the samples from 
the training set. Here 𝐾 = 7 is adopted as a trade-off between computational cost (which scales 
approximately as O(𝑁𝐾𝐿)) and the ensemble diversity required for a stable predictive-entropy 
ranking on this dataset; larger 𝐾 showed diminishing returns under the same runtime/memory 
budget. The LSTM-FCN strategy is predicated on the assumption that the primary candidate pool 
is 𝑚 = 20 and the secondary candidate pool is 𝑏 = 5. In essence, five samples are selected for 
labeling in each generation, and the total number of iterations is 20. The average value is obtained 
by repeating the experiment 10 times. In the experimental stage, the manual expert labeling 
method involves querying the real labels of the samples. The experimental results are shown in 
Fig. 5. 

 
Fig. 5. Comparison of performance improvement of sample screening methods 

The accuracy of LSTM-FCN reaches 92.02 % after 20 iterations, while the accuracy obtained 
using all training samples to train the adaptive noise reduction classifier is 93 %. Random label 
selection achieves only 87.53 %, whereas the active learning algorithm attains comparable 
performance to the adaptive noise-reduction classifier using just 33 % of the training samples. 
This demonstrates the superiority of active learning in selecting samples. This finding underscores 
the efficacy of active learning in sample selection. 

As presented in Table 3, Table 4, and Fig. 5, the EQB algorithm demonstrates enhanced 
accuracy compared to the original algorithm, despite employing an equivalent number of 
iterations, after the incorporation of the LSTM-FCN deep-clustering screening process. The 
LSTM-FCN algorithm differs from the original algorithm from the outset, showing a marked 
improvement in accuracy, with the largest increase of 4.39 % observed at the 5th iteration. The 
accuracy of the original EQB algorithm improves after incorporating the LSTM-FCN filtering 



ANOMALY DETECTION IN ROTATING MACHINERY VIA ACTIVE LEARNING OF UNLABELED VIBRATION SAMPLES.  
GANG LI, XIANGE HOU, QING ZHANG 

10 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

process, likely owing to its ability to enhance balanced class sampling, ensuring that each class of 
samples is sampled as neutrally as possible in each selection of valuable samples. The efficacy of 
the algorithm becomes more evident as model evaluation is refined through iteration. As 
demonstrated in Tables 3-4, the model requires 7.8 % fewer training samples than the EQB 
algorithm to reach an accuracy of 85 %, thereby confirming the efficacy of the proposed 
methodology. 

Table 3. Accuracy of the algorithm before and after improvement for the same number of iterations 
Iteration number EQB-BMAL LSTM-FCN-BMAL Improvement 

5 78.13 % 82.52 % +4.39 % 
10 88.03 % 90.17 % +2.14 % 
15 90.9 % 91.18 % +0.88 % 
20 91.75 % 92.02 % +0.27 % 

Table 4. Number of samples required to achieve target accuracy 
Target accuracy EQB-BMAL LSTM-FCN-BMAL Savings in sample size 

75 % 223 212 11 
76 % 229 217 12 
77 % 237 223 14 
78 % 245 229 16 
79 % 251 235 16 
80 % 259 242 17 
81 % 266 248 18 
82 % 271 251 20 
83 % 272 254 18 
84 % 278 258 20 
85 % 282 260 22 
86 % 283 263 20 
87 % 285 267 18 

To validate the robustness of the proposed two-stage selection strategy, the impact of the 
primary screening size 𝑚 and the query batch size 𝑏 on detection performance was investigated. 
First, regarding the primary pool size 𝑚, values in the range of {10, 20, 30, 40} were evaluated. 
Results indicated that setting 𝑚 = 10 limited the diversity of the candidate pool, causing the 
omission of some informative boundary samples. Conversely, increasing 𝑚 beyond 30 introduced 
excessive low-uncertainty samples into the clustering stage, which diluted the density of high-
value candidates and slightly degraded the clustering purity without improving accuracy. Thus, 𝑚 = 20 was adopted as the optimal threshold to balance candidate coverage and screening quality. 
Second, for the query batch size 𝑏, sizes of {5, 10, 15} were tested. Smaller batches (𝑏 = 5) 
allowed for more frequent model updates, enabling the classifier to correct its decision boundary 
promptly after observing a few key samples. Larger batches (𝑏 ≥ 10) reduced the retraining 
frequency but led to the selection of redundant information within a single batch, resulting in 
“diminishing returns” for annotation efforts. Therefore, 𝑏 = 5 was selected to maximize the 
performance gain per labeled sample while maintaining a reasonable annotation workload. 

4.3. Centrifugal compressor test bench dataset 

The dataset under consideration was derived from a centrifugal compressor test bench 
belonging to China Liaohe Petroleum Engineering Co. The monitoring objects comprise a 
compressor, booster box, and motor, as well as the bearings that support these rotating bodies. The 
arrangement of test points on the test bench is presented in Table 5, with each point equipped with 
three directional sensors, positioned horizontally, vertically, and axially. These sensors can 
measure the vibration velocity signal in the specified directions.  
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Table 5. Number of bench points and point names in centrifugal compressor test 
Point number Point name 

Point 1 motor free-side bearing 
Point 2 motor load-side bearing 
Point 3 compressor motor-side bearing 
Point 4 compressor non-motor side bearings 

The sampling frequency was set to 2,560 Hz, the sampling time to 1.6 s, and each data set 
contained 4,096 sampling points. As summarized in Table 6, comprehensive data of the 
monitoring process are available for review. The types of data from the monitoring equipment 
include normal and abnormal data. Abnormal data are further classified into the following 
categories: unbalance, misalignment, and looseness. The time and frequency domain waveforms 
are illustrated in Fig. 6. 

 
a) Normal sample 

 
b) Misaligned sample 

 
c) Unbalanced sample 

 
d) Looseness sample 

Fig. 6. Time and frequency-domain waveforms 

Given the modest number of sample points, amounting to 4,096, neither segmentation nor 
sliding window sampling operations are prerequisites in the data preprocessing stage. Each sample 
is defined as a one-dimensional vector 𝑋 = ሾ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, …，𝑥ସ଴ଽ଺ሿ. The dataset contains 23,560 
normal samples and 5,420 abnormal samples, totaling 28,980 samples. Of these, 70 % are used 
for training set 𝑋௧௥௔௜௡ and the remaining 30 % for testing set 𝑋௧௘௦௧, resulting in 16,492 normal 
samples 𝑋௧௥௔௜௡௡  and 3,794 abnormal samples 𝑋௧௥௔௜௡௔  in the training set 𝑋௧௥௔௜௡ = ሾ𝑋௧௥௔௜௡௡ ,𝑋௧௥௔௜௡௔ ሿ, 
totaling 20,286 samples. Subsequently, a proportion of the abnormal samples is assigned labels to 
form the labelled sample set 𝑋௟௔௕௘௟ = ሾ𝑋௟௔௕௘௟௡ ,𝑋௟௔௕௘௟௔ ሿ. Therefore, there are 1,650 normal 
samples 𝑋௟௔௕௘௟௡ , 379 labeled abnormal samples 𝑋௟௔௕௘௟௔ , and the remaining samples are the unlabeled 
samples 𝑋௨௡௟௔௕௘௟. 

Table 6. Detailed information on monitoring data 
Project Detail 

Signal-to-noise ratio Low 
Sampling frequency / kHz 2.56 

Motor rotation frequency / Hz 15, 20, 25, 50 
Failure type Unbalance, misalignment, looseness 
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4.4. Analysis of compressor dataset validation results 

First, 152 misaligned anomaly samples with labels from the training set are used, along with 
an equal number of randomly selected normal samples, while the remaining samples are treated 
as unlabeled. The test set consists of 654 misaligned anomaly samples and 7,068 normal samples. 
For initialization, 50 normal and 50 anomalous samples are used to train the noise-containing data 
anomaly detection model in a supervised manner. The primary screening sample pool is set to 20, 
and the secondary screening sample pool is set to six. In this setup, six samples are labeled per 
iteration, resulting in a total of 30 iterations. The experimental phase involves querying the real 
labels of the samples rather than manual expert labeling. The number of anomaly detection models 
serving as committee members is eight. For the centrifugal-compressor dataset, 𝐾 = 8 is used to 
accommodate the higher signal complexity and noise level, providing a slightly more diverse 
ensemble and more stable committee-averaged predictive distributions within the same 
experimental budget. Concurrently, active learning algorithms under various strategies are 
employed to ascertain the efficacy of the secondary sample screening strategy based on 
LSTM-FCN deep clustering. The comparison strategy includes random screening and the 
proposed screening strategy. The experimental results are presented in Fig. 7 and Table 7, which 
demonstrate that the accuracy of the secondary sample screening strategy is enhanced compared 
to both the random and entropy bagging strategies.  

 
Fig. 7. Comparison of the performance improvement of sample screening methods 

After 30 iterations, the model achieves an anomaly detection accuracy of 93.05 % on the test 
set of 280 labeled samples. In comparison, the anomaly detection model based on all the training 
samples without the screening method achieves an accuracy of 94.73 % with 1,802 labeled 
samples. The anomaly detection algorithm based on the screening method achieves a comparable 
detection performance using 15.54 % of the labeling cost, demonstrating the superiority of the 
proposed method in terms of reducing labeling costs. 

Table 7. Accuracy of centrifugal compressor anomaly detection  
with different strategies for the same number of iterations 

Iteration number RS-BMAL EQB-BMAL LSTM-FCN-BMAL Improvement 
5 77.51 % 83 % 84.18 % +6.67 % 
10 82.91 % 85 % 90.44 % +7.53 % 
15 84.12 % 87 % 91.67 % +7.55 % 
20 84.68 % 89 % 92.50 % +7.82 % 
25 85.05 % 89 % 92.73 % +7.68 % 
30 85.66 % 90 % 93.05 % +7.39 % 

To contextualize performance, the proposed framework is evaluated against a widely used 
state-of-the-art uncertainty-based active-learning baseline, EQB, under identical backbone, label 
budgets, and training schedule. As shown in Table 7 and Fig. 7, the redundancy-aware two-stage 
strategy attains higher final accuracy, smoother learning curves with lower variance, and faster 
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convergence than EQB. For reference, a fully supervised LSTM-FCN trained on 100 % labeled 
data serves as an upper bound. The method reaches >93 % of this upper-bound accuracy while 
using ≈15 % of the labels, indicating strong label-efficiency for label-scarce industrial scenarios. 

5. Conclusions 

In rotating machinery, the large volume of vibration monitoring data from compressor 
equipment contrasts with the scarcity of labeled anomalies, posing a major challenge for reliable 
fault identification. To address this issue, this study proposes a sample-selection method for 
vibration time series based on deep clustering and active learning. The method combines 
entropy-based uncertainty and clustering-based representativeness to identify the most 
informative vibration segments for expert annotation, thereby reducing labeling cost and 
improving the efficiency of active learning. 

The primary conclusions are as follows. 
1) Two-stage vibration sample selection. We propose an active-learning screening strategy for 

vibration signals that first computes the predictive entropy of unlabeled samples to form a 
high-informativeness candidate pool and reduce misclassified entries in the first-level pool. To 
mitigate redundancy in these candidates, a deep clustering stage is introduced: an LSTM-FCN 
network embeds and clusters the vibration time series, and the most informative samples nearest 
the centroid of each cluster are selected for manual labeling. This design increases sample 
representativeness and diversity across operating conditions, improving the downstream 
anomaly-detection performance. 

2) Vibration-dataset validation and effectiveness. Experiments on vibration datasets from a 
rolling-bearing accelerated-life rig and a centrifugal compressor rig demonstrate that the proposed 
method achieves higher accuracy and recognition stability than RS-BMAL, EQB-BMAL, and 
other conventional clustering-based screening strategies. In particular, the second-stage clustering 
selection produces significant improvements over random and entropy-bagging baselines. These 
results indicate that the proposed screening strategy effectively tackles the shortage of labeled 
vibration anomalies in industrial monitoring and enables more cost-efficient, reliable vibration-
based condition monitoring of rotating machinery. 

The future work will be extended in two directions: (i) Online stream-based active learning: 
batch-mode selection will be adapted to streaming by using a sliding-window extractor, 
drift/change-point detection to trigger model updates, and a budgeted querying policy; 
effectiveness will be verified on continuous runs by reporting latency per update, label budget per 
day, and time-to-detection. (ii) Multi-modal fusion: vibration will be fused with process variables 
(e.g., temperature, pressure) via late-fusion and feature-level fusion baselines, with robustness to 
missing sensors and ablations on fusion strategy. In addition, an adaptive choice of 𝑏 and 𝑚 based 
on internal validity indices and calibration will be explored, and a field pilot on the compressor 
line (30-day trial) is planned to quantify real-world gains in accuracy and label cost. 
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