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Abstract. The article presents a numerical simulation of the spatial distribution of temperature
fields in the spring elements of freight wagons of railway transport during heat treatment. The use
of modern CAE systems such as ANSYS has made it possible to analyze thermal processes in real
time, which ensures precise control of technological parameters. The simulation aims to optimize
heating and cooling modes, minimize internal stresses and deformations, and identify areas of
potential defects. The paper considers the parameters of a spring made of 60Si2CrVA grade steel,
performs a transient thermal analysis, and determines the optimal conditions for achieving the
required mechanical properties. The simulation results show that it takes about 900 seconds to
reach a quenching temperature of 880 °C with a rod diameter of 30 mm, while the temperature
difference between the surface and the core of the product is 1.25 °C, which indicates minimal
internal stresses.
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1. Introduction

The development of modern technologies is impossible without the active use of numerical
modeling methods, which play a key role in the design and optimization of processes. Currently,
the assessment of temperature conditions during the production of springs is carried out mainly
on the basis of an analysis of the microstructural characteristics of the grinders obtained after
completion of all stages of the technological process [1], [2]. The main problem is that it is not
possible to directly measure and control the temperature distribution in the spring at each
processing stage [3], [4]. In this regard, the use of modern computer engineering methods, such
as CAE systems (ANSYS), seems to be the most reasonable, since it allows modeling and
analyzing temperature fields in a spring in real time, thereby providing more accurate control of
technological parameters [5].

Numerical modeling of the distribution of temperature fields in the springs of freight wagons
during heat treatment serves as a key tool for optimizing technological modes and ensuring high
performance characteristics of products [6], [7]. It allows you to predict the temperature
distribution, minimizing internal stresses and deformations, determine the optimal heating and
cooling parameters to achieve the required mechanical properties and microstructure, as well as
identify areas of potential defects such as cracks or warping [8], [9]. In addition, modeling reduces
the cost of experimental research and allows analyzing the effects of various heat treatment
parameters, contributing to the development of more efficient and cost-effective technologies [10].

Thus, numerical modeling of the distribution of temperature fields in springs during heat
treatment is a key tool for improving product quality, reducing production costs and ensuring the
stability of technological processes [11], [12].
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The purpose of this work is to develop and apply a numerical model to analyze the spatial
distribution of temperature fields in the spring elements of freight wagons in order to evaluate
their thermomechanical behavior during heating under quenching, optimize design parameters and
increase reliability under operating loads.

2. Materials and methods

The 3D model was built in the Autodesk Inventor Professional software product in the
compression spring design section. According to Drawing 9597.50.002 (The drawing was drawn
up by the design department of OGK DP “LMZ”, Tashkent), the following input parameters were
used: the length of the spring in the free state, the diameter of the wire, the outer diameter of the
spring, the number of working turns, the load values, and the properties of the spring material.
The spring is made of 60Si2CrVA grade steel, the chemical composition of which is shown in the
Table 1. The calculation results indicate that the input parameters are correct. The listed
parameters are shown in Table 2 and illustrated in Fig. 1 in the window of the compression spring
component generator.

Table 1. Chemical composition of 60Si2CrVA grade steels

Steel grade C Si Cr \Y Mn Ni Cu S P Fe
60Si2CrVA | 0.56-0.64 | 1.4-1.8 | 0.9-1.2 ] 0.1-0.2 | 0.4-0.7 | <0.25 | <0.2 | <0.025 | <0.025 | ~95
Table 2. Input parameters for constructing the geometry of springs

Name of the parameters External spring
The length of the spring in the free state Ly, mm 249
Wire diameter d, mm 30
The outer diameter of the spring D;, mm 200
Number of working turns, pcs 4
Minimum load, kN 9.45
Maximum load, kN 26,46
Workload, kKN 19.58
Tensile strength*, MPa 1810
Density, kg/m? 7650
The number of preloaded coils on each side 0.25
The number of polished turns on each side 0.75
*The tensile strength conforms to the quenching mode at 880 °C in oil, followed by tempering at 450 °C
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a) The loading scheme b) The digital 3D model of the spring
Fig. 1. The parameters used to form the geometric model of the spring

The temperature field analysis was performed using the ANSYS CAE program in the Transient
Thermal subsystem. Transient Thermal Analysis is a research method that makes it possible to
evaluate the temporal dynamics of thermal processes in a system under the influence of constant
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and variable boundary conditions. This analysis makes it possible to determine the time interval
required to achieve a stationary thermal state of the system, as well as the duration of maintaining
its operational parameters [13], [14]. In the case of variable boundary conditions, the analysis
makes it possible to identify the nature of the thermal response of the system and its dependence
on temporary changes in external influences [15].

For the reliability of the calculation results, the grid size was 2 mm (Fig. 2). The initial
temperature of the product is 22 °C. By default. For 60Si2CrVA steel, heating for quenching is
carried out at a temperature of 880 °C [8], which is the final temperature of the spring.

200,00 (o)

15000

Fig. 2. Imported spring geometry and visual inspection of mesh uniformity

In conditions where heat transfer occurs through thermal conduction, the heat exchange
process is described by the following differential equation [1]:

(6T+ 0T+ 6T+ 0T)_ +6(K6T>+6<K6T>+6<K6T) )
PelGe T g T gy TV a,) = Qo t g \Kagy) Y 5y B 55 ) T o\ K5z ) M

where p is the density, kg/m?; ¢ is the specific heat, J/(kg'K); T — temperature, K; t — time, s; K,
K,, K, — the conductivity of the element in the x, y, and z directions, W/(mxK); Q; — heat
dissipation capacity per unit volume, W/m?; v,, vy, VU, — the rate of heat transfer in the x, y, and z
directions, m/s.

The boundary conditions are set by convective heat exchange on the surface in accordance
with Newton’s law of cooling [1]:

S @

where q/A is the heat flux, J/s; hy is the heat transfer coefficient, W/(m?xK); T is the temperature
on the surface of the product, K; T}, is the volume temperature, K.

3. Results and discussions

Figs. 3 and 4 show the temperature distribution over the section of the product. The surface
temperature after 1000 seconds is 892 °C. The temperature difference between the surface and the
core of the product is 1.25 °C. Since the temperature difference is small, the internal stresses
during the heating process are minimal. Analyzing the temperature dependence on the heating
time (Fig. 4), it can be established that it will take about 900 seconds (15 minutes) to reach the
quenching temperature of 880 °C with a rod diameter of 30 mm. The temperature of the furnace
after loading the tank begins to drop from 880 to ~800 °C, as heat is absorbed by the tank. The
material (cage) loaded into the furnace has a lower temperature than the internal environment of
the furnace. When the heaters start working, a significant part of the energy released by them is
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first spent on heating the tank, which temporarily reduces the average temperature in the furnace
chamber.
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Fig. 3. Temperature distribution over the bar section
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Fig. 4. Temperature dependence on heating time

Figs. 5 and 6 show the distribution of the total heat flow over the cross section of the rod. Since
the surface temperature is higher during heating than in the core, the heat is transferred deep into
the product. The value of the heat flow decreases with increasing heating time, since at the
beginning of heating the temperature difference between the surface and the core is maximum,

therefore the heat flow is greatest. As the material warms up, this difference decreases, which
leads to a decrease in heat flow.
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Fig. 5. Total heat flow
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Fig. 6. Dependence of heat flow on heating time

4. Conclusions

1) Optimization of heating modes has shown that it takes about 900 seconds (15 minutes) to
reach a quenching temperature of 880 °C in a spring with a diameter of 30 mm. At the same time,
the temperature difference between the surface and the core is 1.25 °C, which indicates uniform
heating and minimal internal stresses.

2) The heat flow is maximal during the initial heating period, when the temperature difference
between the surface and the core is greatest. Over time, the heat flow decreases as the temperature
inside the material equalizes.

3) The use of CAE systems (ANSYS) for modeling thermal processes makes it possible to
accurately control technological parameters, reduce the cost of experimental research and develop
more efficient heat treatment technologies.

4) The scientific novelty of this article lies in its pioneering use of ANSY S-based numerical
simulation to precisely model and optimize the spatial distribution of temperature fields in freight
wagon springs during heat treatment, enabling real-time analysis that allows for the accurate
control of heating and cooling parameters, the minimization of internal stresses and deformations
by achieving a minimal surface-to-core temperature difference, the proactive identification of
potential defects, and a quantifiable understanding of heat flow dynamics, ultimately contributing
to more efficient, cost-effective, and higher-quality heat treatment technologies in the railway
transport industry.
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