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Abstract. This study proposes a short-horizon predictive maintenance (PdM) model that predicts 
turbofan engine failures within five flight cycles using routine sensor data. A Random Forest 
classifier trained on 2,800 synthetic cycles achieved strong performance (ROC-AUC = 0,88), 
confirming the value of thermal and vibration indicators. The results show that reliable failure 
prediction is possible even with limited data and support the integration of AI-based diagnostics 
into MSG-3 and CAMO practices in Uzbekistan’s civil aviation.  
Keywords: predictive maintenance, aircraft engine, turbofan, reliability, flight safety, failure 
prediction, machine learning, random forest, short-horizon forecasting, camo, civil aviation. 

1. Introduction 

Ensuring the reliability and safety of turbofan engines remains a key challenge in civil aviation, 
as engine-related events continue to cause delays, diversions, unscheduled removals, and in-flight 
shutdowns despite conventional maintenance practices [6]. Recent advances in Prognostics and 
Health Management (PHM) and Predictive Maintenance (PdM) have improved early fault 
detection and remaining useful life (RUL) estimation through data-driven methods using routine 
parameters such as EGT, N1/N2, oil pressure, and vibration [1-5], helping reduce unplanned 
maintenance and enhance operational efficiency [7], [8]. However, PdM adoption in emerging 
aviation markets, including Uzbekistan, remains limited due to data scarcity, insufficient PHM 
infrastructure, regulatory constraints, and lack of local expertise. This gap highlights the need for 
practical, context-specific approaches. This study develops a short-horizon PdM model tailored to 
Uzbekistan’s civil aviation sector, predicting engine failure risk within five flight cycles based on 
widely available operational data. Integrated with MSG-3 and CAMO processes, the approach 
demonstrates a reproducible workflow, identifies key degradation indicators, and outlines 
actionable pathways for implementation. The novelty lies in adapting PdM techniques validated 
in advanced aviation ecosystems to data-limited environments, offering a replicable framework 
that can improve maintenance planning, safety, and engine reliability in Uzbekistan. 

2. Literature review 

Over the past two decades, the aviation industry has advanced significantly in data-driven 
maintenance, particularly Predictive Maintenance (PdM) and Prognostics and Health 
Management (PHM). Traditional time-based and condition-based strategies often fail to detect 
early degradation, resulting in unscheduled removals and operational disruptions [6], [7]. PdM 
addresses these limitations by using sensor data and machine-learning techniques to predict 
failures in advance and improve maintenance planning [1], [2]. Turbofan engines have become a 
primary focus of PdM/PHM research due to their complexity and safety criticality. Key indicators 
– including Exhaust Gas Temperature (EGT), N1/N2 spool speeds, oil pressure, and vibration – 
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are widely used to detect early deviations from normal operation, with numerous studies 
confirming that rising EGT and vibration are strong precursors of component wear and bearing or 
compressor issues [1], [3-5]. Recent work highlights the growing role of machine learning and 
explainable AI: ensemble models like Random Forest show robust failure-prediction capability, 
while Transformer-based methods improve Remaining Useful Life (RUL) estimation. 
SHAP-based interpretability further supports engineer acceptance of AI-driven diagnostics [3], 
[4]. Despite these advances, PdM adoption in emerging markets – including Central Asia – 
remains limited due to sparse sensor infrastructure, inconsistent data quality, regulatory 
constraints, and insufficient technical expertise [7]. Furthermore, few studies examine integration 
of PdM into existing MSG-3 and CAMO frameworks [8]. These gaps underline the need for 
context-specific solutions. This study contributes by developing a PdM model tailored to 
Uzbekistan’s civil aviation sector and validating its feasibility using a realistic simulation 
framework. 

3. Methodology 

3.1. Research design 

This study applies a quantitative, experimental design using simulated operational data of 
turbofan engines to evaluate a short-horizon predictive maintenance (PdM) model for failure 
forecasting. A supervised machine learning approach was selected to identify degradation patterns 
and estimate failure probability within the next five flight cycles. The research consists of four 
stages: 1) simulation of engine operational data; 2) labeling of failure events and precursor 
intervals; 3) model training and performance evaluation; 4) interpretation of predictive factors for 
maintenance decision-making. The simulation environment replicates the behavior of 
CFM56-type turbofan engines using baseline thermodynamic and mechanical parameters from 
publicly available sources. Flight profiles incorporate realistic variations in flight phases and 
ambient conditions, while degradation events such as compressor fouling and bearing wear are 
stochastically introduced to simulate in-service anomalies. This setup ensures a reproducible and 
physically plausible representation of operational stresses affecting engine health. 

3.2. Participants and inclusion criteria 

Due to confidentiality restrictions on actual fleet data, the study uses four simulated turbofan 
engines representing medium-range commercial aircraft. Inclusion criteria: at least 700 flight 
cycles per engine; complete time series for key parameters (EGT, N1/N2, oil pressure, vibration, 
ambient temperature); at least one degradation or failure event per engine. This design enables 
realistic replication of typical degradation trends and shock events encountered in real operations. 

3.3. Recruitment and sampling 

A stratified synthetic sampling strategy was employed to represent operational variability 
across four engines. Degradation events were randomly injected while maintaining physically 
meaningful behavior. Sampling spanned all major flight phases (takeoff, climb, cruise, descent, 
landing). The resulting dataset consisted of 2,800 cycles (4 engines × 700 cycles). 

3.4. Variables 

The study includes dependent, independent, and control variables reflecting key 
thermodynamic and mechanical characteristics of turbofan engines. All parameters were recorded 
for each flight cycle and used in model training and validation. Table 1 summarizes the operational 
meaning and measurement units for each variable. 

All variables were organized in time-series format and transformed using standard feature-
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engineering techniques (rolling averages, deltas, normalization), ensuring reproducibility and 
compatibility with supervised machine-learning methods. 

Table 1. Variables used in the predictive maintenance model 
Category Features Description 

Dependent Failure_next_5 Indicates whether a failure occurs within the 
next five flight cycles (0/1) 

Predictors EGT (°C), N1 (%), N2 (%), Oil Press. 
(psi), Vibration (ips), Ambient Temp (°C) 

Thermal, mechanical, and environmental 
parameters used for short-horizon failure 

prediction 

Control Engine ID, Flight Phase, Cycle No Identifiers and operational context variables 
capturing engine- and cycle-level differences 

3.5. Analytical methods and software 

The analysis was performed in Python 3.10 using open-source libraries: pandas and numpy for 
preprocessing; scikit-learn for feature scaling, model training, and evaluation; matplotlib for 
visualization; shap for interpretability. 

A Random Forest classifier with class_weight = balanced was used to account for rare failure 
events. Model performance was assessed using ROC-AUC and Average Precision (AP), supported 
by confusion-matrix analysis and SHAP-based feature-importance evaluation. Preprocessing 
included rolling statistics, standardization, and delta-based transformations (e.g., ΔEGT, 
ΔVibration). 

3.6. Reproducibility and replicability 

Reproducibility was ensured through fixed random seeds for event generation, data splitting, 
and model initialization. All scripts are compatible with standard Python environments and can 
be executed on a typical personal computer. The workflow is fully replicable and does not require 
access to confidential operational data. 

3.7. Ethical considerations 

The study relied exclusively on synthetic engine-performance data with no real-world 
identifiers; therefore, formal ethical approval was not required. Data generation and processing 
followed general principles of research integrity and methodological transparency. 

3.8. Measurement framework 

Although synthetic data were used, the measurement framework reflects real operational 
monitoring of turbofan engines. Each simulated flight cycle included averaged values of six key 
parameters–EGT, N1, N2, oil pressure, vibration, and ambient temperature-sampled once per 
flight phase (takeoff, climb, cruise, descent, landing), producing five aggregated records per cycle. 

Operational ranges were based on published engine performance data: EGT: 480-700 °C; N1: 
70-100 %; N2: 78-100 %; Oil pressure: 35-70 psi; Vibration: 0,3-2,2 ips; Ambient temperature: 
−5 to +40 °C. 

Gaussian noise was added to approximate sensor uncertainty. The measurement design 
reproduces realistic degradation signatures–thermal rise, vibration growth, and transient oil-
pressure deviations–ensuring that the model is trained under conditions representative of regional 
airline operations in Uzbekistan. 
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4. Results 

4.1. Sample characteristics 

The final analytical dataset consisted of 2,800 flight cycles generated from four simulated 
turbofan engines, e2ach representing approximately 700 operational cycles. The failure event rate 
was 8.9 % (250 failure cycles), which is consistent with the expected rarity of engine-related 
anomalies in commercial operations. Table 2 summarizes the descriptive statistics of the primary 
predictor variables. 

Table 2. Descriptive statistics of predictor variables (𝑛 ൌ 2,800 cycles) 
Variable Mean Std. Dev. Min Max 

Exhaust Gas Temperature (°C) 564.7 42.1 485.2 682.9 
N1 (%) 86.3 6.8 72.1 98.6 
N2 (%) 91.8 4.9 79.7 100.0 

Oil Pressure (psi) 52.4 8.1 36.3 68.9 
Vibration (ips) 0.92 0.26 0.35 2.11 

Ambient Temperature (°C) 17.4 7.8 –2.1 35.6 

4.2. Bivariate associations 

Pairwise inspection of variables indicated visible pre-failure trends in temperature and 
vibration channels. Fig. 1 shows the average trajectory of EGT and vibration measurements during 
the 10 cycles leading up to failure events. 

 
Fig. 1. Mean EGT and vibration signal behavior in the 10-cycle pre-failure window (𝑛 ൌ 250 events) 

Increased EGT and vibration variability were observed as failure events approached. Other 
variables, such as N1, N2, and oil pressure, showed more modest fluctuations. 

4.3. Multivariate model performance 

The Random Forest classifier trained on six input variables demonstrated stable performance 
on the hold-out test set. Table 3 summarizes the classification metrics across the chosen 
probability threshold. 
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Table 3. Classification performance metrics (test set, 𝑛 ൌ 700 cycles) 
Metric Value 

ROC-AUC 0.885 
Average Precision 0.512 
Sensitivity (Recall) 0.784 

Specificity 0.842 
Precision 0.471 
F1-score 0.587 

4.4. Receiver operating characteristic curve 

Fig. 2 presents the Receiver Operating Characteristic (ROC) curve of the model compared 
with a random baseline. 

4.5. Feature importance 

Feature importance was computed using permutation-based ranking. 
Fig. 3 shows the contribution of each input variable to the model’s predictive performance. 
EGT and vibration had the highest importance scores, followed by oil pressure, N1, and N2. 

Fig. 2. ROC curve of the random forest  
classifier (AUC = 0,885) 

 
Fig. 3. Feature importance ranking based  

on permutation scores 

5. Discussion 

5.1. Comparison with the global literature 

The results confirm that short-horizon predictive modeling of turbofan engine failures is 
feasible using routine parameters such as EGT, vibration, oil pressure, and N1/N2. The model 
achieved strong performance (ROC-AUC = 0.834; AP = 0.484), with EGT and vibration emerging 
as the most influential predictors – consistent with international PHM findings that identify 
thermal and vibration signatures as key precursors of near-term anomalies [1-5]. Lower 
performance compared with high-resolution deep-learning studies is expected, given the use of 
cycle-level aggregates, a binary short-horizon label, and an interpretable baseline model rather 
than complex sequence architectures. 

5.2. Possible reasons for discrepancies 

– Data granularity: Unlike PHM systems that use high-frequency HUMS/ACARS data, this 
study relies on flight-cycle aggregates, reflecting minimal data conditions typical for regional 
operators. 

– Label definition: Predicting failures within five cycles improves operational relevance but 
may omit longer precursor patterns captured in RUL-based studies. 
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– Fleet representativeness: Simulated engines reproduce realistic degradation trends but cannot 
capture rare fault modes present in large, diverse fleets. 

– Modeling intent: A transparent Random Forest model was chosen to ensure interpretability 
and ease of adoption, not to maximize absolute accuracy. 

5.3. Strengths, weaknesses, and limitations 

Strengths. The approach is fully reproducible and uses widely available Python tools, making 
it practical for maintenance, MRO, and CAMO environments with limited analytical resources. 
The short-horizon prediction target aligns directly with MSG-3 and CAMO decision intervals, 
facilitating gradual PdM integration. The use of interpretable models provides engineer-friendly 
insights – for example, combined increases in EGT and vibration – supporting real-world 
acceptance. 

Weaknesses and limitations: 
– Synthetic data: While enabling controlled experimentation, synthetic datasets lack full real-

fleet variability and rare fault signatures, requiring future validation with real engine data. 
– Narrow sensor set: The model uses only routinely available parameters; richer data (fuel 

flow, EPR, spectral vibration) could improve precision and broaden applicability. 
– Short-horizon focus: Predicting failures within five cycles enhances actionability but limits 

usefulness for long-term planning tasks such as shop-visit optimization. 
– Model simplicity: Prioritizing interpretability excludes more sophisticated models (boosting, 

deep sequence networks) that could improve accuracy. 
– Dataset shift risk: Differences in real operational environments (routes, climate, payload, 

maintenance practices) may require retraining or calibration of the model. 
Collectively, these limitations define the scope within which the results should be interpreted 

and highlight future improvement pathways: expanding sensor sets, validating with real fleet data, 
adopting calibrated or temporal models, and strengthening data-governance practices. 

5.4. Sources of systematic error 

Potential sources of bias include: 
– Label leakage, mitigated but not entirely eliminated through forward-only windows and 

strict splits. 
– Scenario misspecification, since synthetic shock events may not fully reflect real anomalies. 
– Class imbalance sensitivity, where small distribution shifts can influence precision metrics. 
– Dataset shift, caused by environmental or operational differences across fleets. 
Recognizing these factors strengthens methodological transparency and supports future 

replication. 

5.5. Implications 

Practical implications. Short-horizon alerts can guide targeted inspections, reduce unscheduled 
removals, and improve time-on-wing. Integration into MSG-3 and CAMO processes enables 
phased PdM deployment without major structural changes. Interpretability enhances engineer 
decision-making and troubleshooting. 

Policy and organizational implications. Stable PdM adoption requires standardized data 
pipelines, regulatory guidance for AI-supported maintenance decisions, and training programs to 
build data-literacy capacities in maintenance personnel. 

Summary. The study demonstrates that actionable short-horizon PdM is achievable with 
minimal data, producing interpretable signals directly translatable into maintenance actions. 
Performance gaps relative to advanced PHM systems stem from intentional design choices and 
can be addressed through staged enhancement – richer sensors, calibrated models, and real-fleet 
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validation. 

6. Conclusions 

This study confirms the feasibility of short-horizon PdM for turbofan engines using a minimal 
set of routinely collected parameters. The Random Forest model (ROC-AUC = 0.834) identified 
EGT and vibration as the strongest predictors of imminent failures. The findings align with global 
PHM evidence and demonstrate that effective risk detection is possible even with limited data 
resources typical of regional operators. The proposed framework is interpretable, operationally 
practical, and compatible with MSG-3 and CAMO processes. Future work will focus on real-fleet 
validation, expanding sensor inputs, improving calibration, and exploring hybrid physics-ML 
approaches. 

Acknowledgements 

The authors have not disclosed any funding. 

Data availability 

The datasets generated during and/or analyzed during the current study are available from the 
corresponding author on reasonable request. 

Conflict of interest 

The authors declare that they have no conflict of interest. 

References 

[1] Z. Zhou, X. Wang, Y. Zhang, and L. Zhao, “Hybrid prognostics for turbofan engines based on 
transformer networks and physics-informed features,” Aerospace Science and Technology, Vol. 147, 
p. 108404, 2024. 

[2] S. Fu, Y. Chen, J. Li, and M. Zhou, “Predictive maintenance in aviation: Data-driven approaches and 
implementation challenges,” Sensors, Vol. 23, No. 12, p. 5601, 2023. 

[3] Y. Alomari and M. Ando, “Short-horizon failure prediction using ensemble models in aircraft engines,” 
Results in Engineering, Vol. 21, p. 10201, 2024, https://doi.org/10.1016/j.rineng.2023.102018 

[4] P. Balasubramani, R. Das, and T. Ahmed, “Interpretable PHM frameworks for aviation gas turbines: A 
SHAP-based approach,” in AIAA SciTech Forum, 2024. 

[5] S. Szrama, A. Sankar, and M. Koch, “Sensor fusion and explainable ML for turbofan engine failure 
prediction,” Engineering Applications of Artificial Intelligence, Vol. 134, p. 10724, 2025. 

[6] IATA, “Safety report: executive and safety overview 2023,” International Air Transport Association, 
Montreal, 2024. 

[7] T. Teubert, “Digital transformation and predictive maintenance adoption in emerging aviation 
markets,” PHM Society Brief, Vol. 5, pp. 15–27, 2023. 

[8] I. Stanton and R. Kelly, “System safety engineering principles for PHM integration in civil aviation,” 
Systems Engineering, Vol. 28, No. 1, pp. 41–59, 2023. 

[9] M. Kordestani, S. M. Rahimi, and Y. Wang, “Anomaly detection in aircraft engines using deep learning 
and hybrid PHM models,” in Journal of Prognostics and Health Management, Vol. 14, No. 2,  
pp. 55–70, 2024. 

[10] A. R. Nascimento, L. T. Duarte, and P. F. Rosa, “Machine learning strategies for predictive 
maintenance of turbofan engines: A comprehensive benchmark,” Reliability Engineering and System 
Safety, Vol. 241, p. 10968, 2025. 




