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Abstract. This study proposes a short-horizon predictive maintenance (PdM) model that predicts
turbofan engine failures within five flight cycles using routine sensor data. A Random Forest
classifier trained on 2,800 synthetic cycles achieved strong performance (ROC-AUC = 0,88),
confirming the value of thermal and vibration indicators. The results show that reliable failure
prediction is possible even with limited data and support the integration of Al-based diagnostics
into MSG-3 and CAMO practices in Uzbekistan’s civil aviation.
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1. Introduction

Ensuring the reliability and safety of turbofan engines remains a key challenge in civil aviation,
as engine-related events continue to cause delays, diversions, unscheduled removals, and in-flight
shutdowns despite conventional maintenance practices [6]. Recent advances in Prognostics and
Health Management (PHM) and Predictive Maintenance (PdM) have improved early fault
detection and remaining useful life (RUL) estimation through data-driven methods using routine
parameters such as EGT, N1/N2, oil pressure, and vibration [1-5], helping reduce unplanned
maintenance and enhance operational efficiency [7], [8]. However, PdM adoption in emerging
aviation markets, including Uzbekistan, remains limited due to data scarcity, insufficient PHM
infrastructure, regulatory constraints, and lack of local expertise. This gap highlights the need for
practical, context-specific approaches. This study develops a short-horizon PAM model tailored to
Uzbekistan’s civil aviation sector, predicting engine failure risk within five flight cycles based on
widely available operational data. Integrated with MSG-3 and CAMO processes, the approach
demonstrates a reproducible workflow, identifies key degradation indicators, and outlines
actionable pathways for implementation. The novelty lies in adapting PdM techniques validated
in advanced aviation ecosystems to data-limited environments, offering a replicable framework
that can improve maintenance planning, safety, and engine reliability in Uzbekistan.

2. Literature review

Over the past two decades, the aviation industry has advanced significantly in data-driven
maintenance, particularly Predictive Maintenance (PdM) and Prognostics and Health
Management (PHM). Traditional time-based and condition-based strategies often fail to detect
early degradation, resulting in unscheduled removals and operational disruptions [6], [7]. PdM
addresses these limitations by using sensor data and machine-learning techniques to predict
failures in advance and improve maintenance planning [1], [2]. Turbofan engines have become a
primary focus of PAM/PHM research due to their complexity and safety criticality. Key indicators
— including Exhaust Gas Temperature (EGT), N1/N2 spool speeds, oil pressure, and vibration —
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are widely used to detect early deviations from normal operation, with numerous studies
confirming that rising EGT and vibration are strong precursors of component wear and bearing or
compressor issues [1], [3-5]. Recent work highlights the growing role of machine learning and
explainable Al: ensemble models like Random Forest show robust failure-prediction capability,
while Transformer-based methods improve Remaining Useful Life (RUL) estimation.
SHAP-based interpretability further supports engineer acceptance of Al-driven diagnostics [3],
[4]. Despite these advances, PdM adoption in emerging markets — including Central Asia —
remains limited due to sparse sensor infrastructure, inconsistent data quality, regulatory
constraints, and insufficient technical expertise [7]. Furthermore, few studies examine integration
of PdM into existing MSG-3 and CAMO frameworks [8]. These gaps underline the need for
context-specific solutions. This study contributes by developing a PAM model tailored to
Uzbekistan’s civil aviation sector and validating its feasibility using a realistic simulation
framework.

3. Methodology
3.1. Research design

This study applies a quantitative, experimental design using simulated operational data of
turbofan engines to evaluate a short-horizon predictive maintenance (PdM) model for failure
forecasting. A supervised machine learning approach was selected to identify degradation patterns
and estimate failure probability within the next five flight cycles. The research consists of four
stages: 1) simulation of engine operational data; 2) labeling of failure events and precursor
intervals; 3) model training and performance evaluation; 4) interpretation of predictive factors for
maintenance decision-making. The simulation environment replicates the behavior of
CFMS56-type turbofan engines using baseline thermodynamic and mechanical parameters from
publicly available sources. Flight profiles incorporate realistic variations in flight phases and
ambient conditions, while degradation events such as compressor fouling and bearing wear are
stochastically introduced to simulate in-service anomalies. This setup ensures a reproducible and
physically plausible representation of operational stresses affecting engine health.

3.2. Participants and inclusion criteria

Due to confidentiality restrictions on actual fleet data, the study uses four simulated turbofan
engines representing medium-range commercial aircraft. Inclusion criteria: at least 700 flight
cycles per engine; complete time series for key parameters (EGT, N1/N2, oil pressure, vibration,
ambient temperature); at least one degradation or failure event per engine. This design enables
realistic replication of typical degradation trends and shock events encountered in real operations.

3.3. Recruitment and sampling

A stratified synthetic sampling strategy was employed to represent operational variability
across four engines. Degradation events were randomly injected while maintaining physically
meaningful behavior. Sampling spanned all major flight phases (takeoff, climb, cruise, descent,
landing). The resulting dataset consisted of 2,800 cycles (4 engines x 700 cycles).

3.4. Variables

The study includes dependent, independent, and control variables reflecting key
thermodynamic and mechanical characteristics of turbofan engines. All parameters were recorded
for each flight cycle and used in model training and validation. Table 1 summarizes the operational
meaning and measurement units for each variable.

All variables were organized in time-series format and transformed using standard feature-
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engineering techniques (rolling averages, deltas, normalization), ensuring reproducibility and
compatibility with supervised machine-learning methods.

Table 1. Variables used in the predictive maintenance model
Category Features Description
Indicates whether a failure occurs within the

Dependent Failure next 5 next five flight cycles (0/1)
. Thermal, mechanical, and environmental
o 0, 0, s s
Predictors EGT (°C), N1 (%), N2 (%), Oil Press. parameters used for short-horizon failure

(psi), Vibration (ips), Ambient Temp (°C) prediction

Identifiers and operational context variables
capturing engine- and cycle-level differences

Control Engine ID, Flight Phase, Cycle No

3.5. Analytical methods and software

The analysis was performed in Python 3.10 using open-source libraries: pandas and numpy for
preprocessing; scikit-learn for feature scaling, model training, and evaluation; matplotlib for
visualization; shap for interpretability.

A Random Forest classifier with class_weight = balanced was used to account for rare failure
events. Model performance was assessed using ROC-AUC and Average Precision (AP), supported
by confusion-matrix analysis and SHAP-based feature-importance evaluation. Preprocessing
included rolling statistics, standardization, and delta-based transformations (e.g., AEGT,
AVibration).

3.6. Reproducibility and replicability

Reproducibility was ensured through fixed random seeds for event generation, data splitting,
and model initialization. All scripts are compatible with standard Python environments and can
be executed on a typical personal computer. The workflow is fully replicable and does not require
access to confidential operational data.

3.7. Ethical considerations

The study relied exclusively on synthetic engine-performance data with no real-world
identifiers; therefore, formal ethical approval was not required. Data generation and processing
followed general principles of research integrity and methodological transparency.

3.8. Measurement framework

Although synthetic data were used, the measurement framework reflects real operational
monitoring of turbofan engines. Each simulated flight cycle included averaged values of six key
parameters—EGT, N1, N2, oil pressure, vibration, and ambient temperature-sampled once per
flight phase (takeoff, climb, cruise, descent, landing), producing five aggregated records per cycle.

Operational ranges were based on published engine performance data: EGT: 480-700 °C; N1:
70-100 %; N2: 78-100 %; Oil pressure: 35-70 psi; Vibration: 0,3-2,2 ips; Ambient temperature:
-5 to +40 °C.

Gaussian noise was added to approximate sensor uncertainty. The measurement design
reproduces realistic degradation signatures—thermal rise, vibration growth, and transient oil-
pressure deviations—ensuring that the model is trained under conditions representative of regional
airline operations in Uzbekistan.
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4. Results
4.1. Sample characteristics

The final analytical dataset consisted of 2,800 flight cycles generated from four simulated
turbofan engines, e2ach representing approximately 700 operational cycles. The failure event rate
was 8.9 % (250 failure cycles), which is consistent with the expected rarity of engine-related
anomalies in commercial operations. Table 2 summarizes the descriptive statistics of the primary
predictor variables.

Table 2. Descriptive statistics of predictor variables (n = 2,800 cycles)

Variable Mean | Std. Dev. | Min | Max

Exhaust Gas Temperature (°C) | 564.7 42.1 485.2 | 682.9
N1 (%) 86.3 6.8 72.1 98.6

N2 (%) 91.8 4.9 79.7 | 100.0

Qil Pressure (psi) 52.4 8.1 36.3 68.9
Vibration (ips) 0.92 0.26 035 | 2.11
Ambient Temperature (°C) 17.4 7.8 —2.1 35.6

4.2. Bivariate associations

Pairwise inspection of variables indicated visible pre-failure trends in temperature and
vibration channels. Fig. 1 shows the average trajectory of EGT and vibration measurements during
the 10 cycles leading up to failure events.
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Fig. 1. Mean EGT and vibration signal behavior in the 10-cycle pre-failure window (n = 250 events)

Increased EGT and vibration variability were observed as failure events approached. Other
variables, such as N1, N2, and oil pressure, showed more modest fluctuations.

4.3. Multivariate model performance

The Random Forest classifier trained on six input variables demonstrated stable performance
on the hold-out test set. Table 3 summarizes the classification metrics across the chosen
probability threshold.
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Table 3. Classification performance metrics (test set, n = 700 cycles)
Metric Value
ROC-AUC 0.885
Average Precision | 0.512
Sensitivity (Recall) | 0.784

Specificity 0.842
Precision 0.471
Fl-score 0.587

4.4. Receiver operating characteristic curve

Fig. 2 presents the Receiver Operating Characteristic (ROC) curve of the model compared
with a random baseline.

4.5. Feature importance

Feature importance was computed using permutation-based ranking.
Fig. 3 shows the contribution of each input variable to the model’s predictive performance.
EGT and vibration had the highest importance scores, followed by oil pressure, N1, and N2.

1.0 — ROC Curve (AUC = 0.551) = Feature Importance Ranking
=== Random Baseline - Based on Permutation Scores
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False Positive Rate Importance Score
Fig. 2. ROC curve of the random forest Fig. 3. Feature importance ranking based
classifier (AUC = 0,885) on permutation scores

5. Discussion
5.1. Comparison with the global literature

The results confirm that short-horizon predictive modeling of turbofan engine failures is
feasible using routine parameters such as EGT, vibration, oil pressure, and N1/N2. The model
achieved strong performance (ROC-AUC = 0.834; AP = 0.484), with EGT and vibration emerging
as the most influential predictors — consistent with international PHM findings that identify
thermal and vibration signatures as key precursors of near-term anomalies [1-5]. Lower
performance compared with high-resolution deep-learning studies is expected, given the use of
cycle-level aggregates, a binary short-horizon label, and an interpretable baseline model rather
than complex sequence architectures.

5.2. Possible reasons for discrepancies

— Data granularity: Unlike PHM systems that use high-frequency HUMS/ACARS data, this
study relies on flight-cycle aggregates, reflecting minimal data conditions typical for regional
operators.

— Label definition: Predicting failures within five cycles improves operational relevance but
may omit longer precursor patterns captured in RUL-based studies.
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— Fleet representativeness: Simulated engines reproduce realistic degradation trends but cannot
capture rare fault modes present in large, diverse fleets.

— Modeling intent: A transparent Random Forest model was chosen to ensure interpretability
and ease of adoption, not to maximize absolute accuracy.

5.3. Strengths, weaknesses, and limitations

Strengths. The approach is fully reproducible and uses widely available Python tools, making
it practical for maintenance, MRO, and CAMO environments with limited analytical resources.
The short-horizon prediction target aligns directly with MSG-3 and CAMO decision intervals,
facilitating gradual PdM integration. The use of interpretable models provides engineer-friendly
insights — for example, combined increases in EGT and vibration — supporting real-world
acceptance.

Weaknesses and limitations:

— Synthetic data: While enabling controlled experimentation, synthetic datasets lack full real-
fleet variability and rare fault signatures, requiring future validation with real engine data.

— Narrow sensor set: The model uses only routinely available parameters; richer data (fuel
flow, EPR, spectral vibration) could improve precision and broaden applicability.

— Short-horizon focus: Predicting failures within five cycles enhances actionability but limits
usefulness for long-term planning tasks such as shop-visit optimization.

— Model simplicity: Prioritizing interpretability excludes more sophisticated models (boosting,
deep sequence networks) that could improve accuracy.

— Dataset shift risk: Differences in real operational environments (routes, climate, payload,
maintenance practices) may require retraining or calibration of the model.

Collectively, these limitations define the scope within which the results should be interpreted
and highlight future improvement pathways: expanding sensor sets, validating with real fleet data,
adopting calibrated or temporal models, and strengthening data-governance practices.

5.4. Sources of systematic error

Potential sources of bias include:

— Label leakage, mitigated but not entirely eliminated through forward-only windows and
strict splits.

— Scenario misspecification, since synthetic shock events may not fully reflect real anomalies.

— Class imbalance sensitivity, where small distribution shifts can influence precision metrics.

— Dataset shift, caused by environmental or operational differences across fleets.

Recognizing these factors strengthens methodological transparency and supports future
replication.

5.5. Implications

Practical implications. Short-horizon alerts can guide targeted inspections, reduce unscheduled
removals, and improve time-on-wing. Integration into MSG-3 and CAMO processes enables
phased PdM deployment without major structural changes. Interpretability enhances engineer
decision-making and troubleshooting.

Policy and organizational implications. Stable PdM adoption requires standardized data
pipelines, regulatory guidance for Al-supported maintenance decisions, and training programs to
build data-literacy capacities in maintenance personnel.

Summary. The study demonstrates that actionable short-horizon PdM is achievable with
minimal data, producing interpretable signals directly translatable into maintenance actions.
Performance gaps relative to advanced PHM systems stem from intentional design choices and
can be addressed through staged enhancement — richer sensors, calibrated models, and real-fleet
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validation.
6. Conclusions

This study confirms the feasibility of short-horizon PdM for turbofan engines using a minimal
set of routinely collected parameters. The Random Forest model (ROC-AUC = 0.834) identified
EGT and vibration as the strongest predictors of imminent failures. The findings align with global
PHM evidence and demonstrate that effective risk detection is possible even with limited data
resources typical of regional operators. The proposed framework is interpretable, operationally
practical, and compatible with MSG-3 and CAMO processes. Future work will focus on real-fleet
validation, expanding sensor inputs, improving calibration, and exploring hybrid physics-ML
approaches.
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