
 

586 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479  

Challenges to properly accounting for cyclic response in 
transversely isotropic elastic soil idealizations 

Victor N. Kaliakin1, Said Shaumarov2, Daulet Khadim3 
1The Department of Civil, Construction, and Environmental Engineering, University of Delaware,  
Newark, Delaware, U.S.A. 
2State Transport University, 1 Temiryulchilar St., Tashkent, 100167, Uzbekistan 
3Department Civil Engineering, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan 
1Corresponding author 
E-mail: 1kaliakin@udel.edu, 2shoumarovss@gmail.com, 3khadimdaulet.294@gmail.com 
Received 27 October 2025; accepted 24 November 2025; published online 22 December 2025 
DOI https://doi.org/10.21595/vp.2025.25721 

74th International Conference on Vibroengineering in Tashkent, Uzbekistan, November 27-29, 2025 

Copyright © 2025 Victor N. Kaliakin, et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. The way natural soils are deposited gravitationally inherently leads to an anisotropic 
microfabric. The elasticity of such anisotropic soils has typically been idealized as being 
transversely isotropic (or “cross anisotropic”). The importance of elastic anisotropy in 
geotechnical engineering applications has particularly been invoked in conjunction with 
predicting ground deformations associated with underground structures such as deep excavations 
and tunnels. The development of elastic constitutive relations for transversely isotropic 
geomaterials is complicated by the fact that the elastic material parameters are usually not 
constant. This paper briefly reviews the issue of elasticity in soils. Following a short overview of 
isotropic elastic idealizations, the more relevant topic of transversely isotropic idealizations is 
discussed, with emphasis not only on monotonic but also on cyclic response.  
Keywords: elasticity, soils, isotropic, transversely isotropic. 

1. Introduction 

The importance of elastic anisotropy in geotechnical engineering applications has been 
invoked in conjunction with predicting ground deformations associated with underground 
structures such as deep excavations and tunnels [1-4]. It is, however, equally relevant to simulating 
the small-strain response of any two- or three-dimensional geotechnical engineering problem. 
Indeed, different attempts have been made to improve the accuracy of soil deformations associated 
with various forms of underground construction by considering the anisotropic properties of soils 
in numerical analyses [1, 5]. 

This paper briefly reviews the issues elasticity in soils. Following a short overview of isotropic 
elastic idealizations, the more relevant topic of transversely isotropic (or “cross anisotropic”) 
idealizations is discussed, with emphasis not only on monotonic but also on cyclic response. 

2. Elasticity in soils 

The state of stress in an elastic material depends only on the current strain state and is 
independent of the loading history. When it is loaded, the material stores all the energy attributed 
to deformation as strain energy. When unloaded, the material releases all this energy and reverts 
to its initial state without permanent strain. The response of elastic materials is also independent 
of the rate of loading. 

In soils, which exhibit nonlinear and inelastic response, it natural to think that elastic response 
may be somewhat ambiguous [6]. If soils exhibit elastic response, then it would be expected to 
occur at very small strain levels. For example, when performing dynamic loading tests on normally 
consolidated clay specimens, at axial strain levels less than 0.01 % such soils exhibited only very 
small hysteretic damping, thus implying essentially elastic response [7]. From the results of 
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numerous experimental studies performed on a wide range of geomaterials it has been concluded 
that such materials exhibit “imperfect elasticity” that was essentially rate-independent and nearly 
linear even at strains less than 0.001 % [8]. 

The quantification of material response at very small strain levels requires suitable 
experimental techniques. Initially, values of the elastic material parameters were almost 
exclusively determined in the laboratory by means of dynamic tests employing small amplitude 
excitations that generate longitudinal deformations typically around 0.0001 mm/mm or shearing 
deformations of 0.0001 radian or less [9]. The most common dynamic test is the resonant-column 
(RC) method, which was first used in the late 1930’s [10] to investigate the propagation of waves 
in columns of sands subjected to torsional or longitudinal oscillations. Since the 1950’s, the RC 
device has been rather widely used for both research and routine soil investigation [11-15]. In a 
typical RC test, a cylindrical specimen is subjected to torsional vibrations, and the resulting 
shearing deformations are recorded. Since the analysis of results from such tests assumes linear 
elastic material behavior, the test data are, however, strictly speaking, valid only for very small 
strains. Assuming isotropic elastic response, the shear modulus (𝐺) is usually determined from 
torsional vibrations, while Young’s modulus (𝐸) is obtained from longitudinal or flexural 
vibrations. 

Geophysical field tests have also been used to measure the velocity of propagation of 
compression, shear, and/or Rayleigh waves. Such tests involve seismic refraction surveys, 
Rayleigh wave techniques, or other surface methods [16], from which values of 𝐺 can be 
determined for low strain conditions. At depth, the shear and compressional wave velocities can 
be measured using down-hole and cross-hole methods, as well as cyclic plate load tests. 

3. The issue of elastic isotropy 

Due to the way they are deposited, and considering their stress history and particle shapes, 
many natural soils are known to exhibit some degree of anisotropy [17-21]. Such soils have 
different properties in the direction of deposition as compared to that in planes oriented normal to 
this direction. 

This notwithstanding, historically the elastic response of soils has been characterized as being 
isotropic. One reason for selecting such a material idealization was the lack of laboratory 
equipment that could accurately determine values for the parameters associated with an 
anisotropic elastic idealization. A second reason was simply the desire to keep the elastic 
formulations relatively simple analytically. 

During the past 40 some years, rather significant progress in the development of laboratory 
and field equipment and techniques that allow for accurate determination of the elastic parameters 
has lessened the former constraint. Using such equipment, researchers have confirmed that at low 
levels of strain, soils indeed exhibit elastic response. Furthermore, this response was typically 
found to be anisotropic. As a result of such developments, anisotropic elastic material idealizations 
have become significantly easier to formulate. 

4. Transversely isotropic elastic idealizations 

Although the analytical details associated with a transversely isotropic elastic material 
idealization have been well established for some time now [18, 22-25], it required the 
aforementioned experimental advances, as well as more recent efforts [26-30] to facilitate the 
determination of values for the five elastic parameters associated with such an idealization. 

Indeed, field seismic measurements have shown the existence of inherent anisotropy in the 
stiffness of natural soils [31-33]. Laboratory studies of shear stiffness have likewise identified 
varying levels of anisotropy that were attributed to inherent anisotropy, stress-induced anisotropy, 
or a combination of the two [34-37]. 

In the absence of initial stresses and strains, the constitutive equations for an anisotropic linear 
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elastic material are written in the following manner: 𝛿𝜀௘ = 𝐴𝛿𝜎ᇱ, (1)

where the symmetric matrix of compliance coefficients 𝐴 has size (𝑁௥௢௪௕ × 𝑁௥௢௪௕), where 𝑁௥௢௪௕ 
is the number of strain and stress components [38]. In the case of three-dimensional analyses 
(𝑁௥௢௪௕= 6), the infinitesimal elastic strain increments and effective stress increments are then 
given by: 𝛿𝜀௘ = { 𝛿𝜀ଵଵ௘ 𝛿𝜀ଶଶ௘ 𝛿𝜀ଷଷ௘     𝛿𝛾ଵଶ௘ 𝛿𝛾ଵଷ௘ 𝛿𝛾ଶଷ௘  }், (2)𝛿𝜎′ = { 𝛿𝜎ଵଵᇱ 𝛿𝜎ଶଶᇱ 𝛿𝜎ଷଷᇱ     𝛿𝜎ଵଶᇱ 𝛿𝜎ଵଷᇱ 𝛿𝜎ଶଷᇱ  }், (3)

where engineering shear strains are used. In the above equations the superscript 𝑇 denotes the 
operation of vector transposition. 

In a transversely isotropic material, through all points there pass parallel planes of isotropy 
(Fig. 1). At every point in such a material there is thus a principal direction and, in a plane normal 
to the first direction, an infinite number of other principal directions [39]. 

In the present development, the local axes are assumed to coincide with the global ሺ𝑥,𝑦, 𝑧ሻ 
coordinate axes (Fig. 1). In addition, the global 𝑥-axis is assumed to coincide with the normal to 
the planes of isotropy. The global 𝑦 and 𝑧 axes are thus directed arbitrarily in such plane of 
isotropy. 

The definition of a transversely isotropic material requires values for five elastic parameters, 
namely 𝐸௡, 𝐸௧, 𝑛௧௡, 𝑛௧௧, and 𝐺௡௧. The parameter 𝐸௡ represents the elastic (Young’s) modulus that 
is associated with compression or tension in a direction normal to the plane of isotropy. The 
parameter 𝐸௧ represents the elastic (Young’s) modulus that is associated with compression or 
tension tangential to the plane of isotropy. Since the 𝑦-𝑧 plane is a plane of isotropy, 𝑛௧௡ 
represents the Poisson’s ratio that is associated with the lateral contraction in a direction that is 
normal to the plane of isotropy when tension is applied within the plane. The quantity 𝑛௧௧ 
represents the Poisson’s ratio that is associated with transverse contraction in the plane of isotropy 
when tension is applied within the same plane. Finally, 𝐺௡௧ is the modulus associated with 
shearing involving the shear strain and shear stress components with subscripts 13 and 12.  

The shear modulus (𝐺௧௧), which is associated with shearing within a plane of isotropy, is 
computed in the following manner: 𝐺௧௧ = ா೟ଶሺଵା௡೟೟ሻ. From this expression it is apparent that 𝐺௧௧ is 
obviously not an additional independent material parameter. 

For a transversely isotropic material idealization, the compliance matrix, given in equation (1), 
thus becomes: 

𝐴 =  
⎣⎢⎢
⎢⎢⎡

1/𝐸௡ −𝜈௧௡/𝐸௧ −𝜈௧௡/𝐸௧ 0 0 0−𝜈௡௧/𝐸௡ 1/𝐸௧ −𝜈௧௧/𝐸௧ 0 0 0−𝜈௡௧/𝐸௡ −𝜈௧௧/𝐸௧ 1/𝐸௧ 0 0 00 0 0 1/𝐺௡௧ 0 00 0 0 0 1/𝐺௡௧ 00 0 0 0 0 2ሺ1 + 𝜈௧௧ሻ/𝐸௧⎦⎥⎥
⎥⎥⎤. (4)

Since 𝐴 is symmetric, 𝐴ଵଶ = 𝐴ଶଵ, implying that ௡೟೙ா೟ = ௡೙೟ா೙  or 𝑛௧௡ = 𝑛௡௧ ቀா೟ா೙ቁ. Kaliakin [41] 
has discussed various other important issues related to anisotropic elastic material idealizations 
for soils in general, and transversely isotropic idealizations in particular. 

The values of the five independent elastic parameters associated with a transversely isotropic 
elastic material idealization can be obtained from either the results of laboratory experiments or 
from field tests. Laboratory experiments used for this task include torsional shear, RC, ultrasonic, 



CHALLENGES TO PROPERLY ACCOUNTING FOR CYCLIC RESPONSE IN TRANSVERSELY ISOTROPIC ELASTIC SOIL IDEALIZATIONS.  
VICTOR N. KALIAKIN, SAID SHAUMAROV, DAULET KHADIM 

 VIBROENGINEERING PROCEDIA. DECEMBER 2025, VOLUME 60 589 

and axisymmetric triaxial tests. Tests such as these must be appropriately modified to facilitate 
the determination of values for all the five elastic parameters. Such modifications include the use 
of bender elements (e.g., [28, 30, 43]) or other types of transducers suitable for measuring P and 
S-waves [44]. These laboratory tests permit either the direct (e.g., [26]) or the indirect 
determination (e.g., [27]) of all five parameters. 

Commonly used field methods include in-situ seismic surveys consisting of down-hole and/or 
cross-hole tests, as well as the pressuremeter test. Due to differences in the shear deformations 
generated, the results obtained using such field tests can differ from values determined using 
laboratory experiments [42]. 

Additional details pertaining to the experimental determination of material parameter values 
for transversely isotropic material idealizations are outside the scope of the present paper. Such 
details are available in the pertinent references cited above. 

 
Fig. 1. Element of transversely isotropic material with local and global coordinates axes (after [40]) 

5. Functional forms used in transversely isotropic elastic idealizations 

In general, the addition of a transversely isotropic elastic material idealization into inelastic 
constitutive models for soils necessitates a particular functional form that analytically describes 
the transversely anisotropic elastic idealization. Also required is a suitable empirical expression 
that accounts for the variation of the associated five independent material parameters. These topics 
have been discussed in greater detail by Kaliakin [40]. 

The development of elastic constitutive relations for transversely isotropic geomaterials is 
complicated by the fact that these material parameters are usually not constant. Indeed, test results 
[26] indicate that such parameters are a function of the density, stress state, and history of loading. 
The elastic strain increments will thus be related to the stress increments through compliance 
matrices (𝐴) that are functions of the instantaneous stress state, the stress history and so forth. 
Since the elastic response is thus rendered stress path-dependent, only hypoelastic constitutive 
models are thought to be relevant [26]. 

A key assumption underlying the development of hypoelastic models is that the elastic 
modulus (𝐸௜) associated with coordinate direction 𝑖 is a function only of the normal stress acting 
in this direction and is unrelated to the normal stresses acting in the other two orthogonal directions 
[45, 46]. This important assumption has subsequently been supported by data from body wave 
velocity measurements [47-49] and by micromechanics-based simulations [42]. 

As an example of the functional forms used in a transversely isotropic elastic material 
idealization, consider the hypoelastic model of Yimsiri and Soga [50]. Based on the results of their 
tests on London clay, Yimsiri and Soga [50] proposed the following expressions for the elastic 
moduli: 𝐸௡ = 5.5𝐹ሺ𝑒ሻሺ𝑝′ሻ଴.ଷ଼,     𝐸௧ = 12.0𝐹ሺ𝑒ሻሺ𝑝′ሻ଴.ଷ଼. (5)

The measured values of 𝑛௧௧ and 𝑛௡௧ exhibited some scatter but appeared to be independent of 
the confining pressure. Considering these findings, these Poisson’s ratios were assumed to be 
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constant, namely, 𝑛௡௧ = 0.07, 𝑛௧௡ = 0.15, 𝑛௧௧ = 0.18 [50]. The independent shear modulus was 
represented by the following expression: 𝐺௡௧ = 4.25𝐹ሺ𝑒ሻሺ𝑝′ሻ଴.ଷ଼. (6)

Finally, using Eq. (5) gives 𝐺௧௧ = 𝐸௧ ሾ2ሺ1 + 𝑛௧௧ሻሿ⁄ = 5.10𝐹ሺ𝑒ሻሺ𝑝ᇱሻ଴.ଷ଼. In the above 
expressions, 𝑝ᇱ, and thus the elastic moduli, are expressed in units of MPa, and 𝑒 is the void ratio. 
The void ratio function is assumed to be that proposed by Hardin and Black [7] for cohesionless 
soils, namely 𝐹ሺ𝑒ሻ = ሺଶ.ଽ଻ଷି௘ሻమଵା௘ . The stiffness anisotropy at small strains can then be quantified as 
follows: ா೟ா೙ = 12.0 / 5.5 = 2.18, ீ೟೟ீ೙೟ = 1.20, and ௡೙೟௡೟೟ = 0.39. 

A check the symmetry of the resulting compliance matrix 𝐴 gives: 𝜈௧௡𝐸௡ = 0.825𝐹ሺ𝑒ሻሺ𝑝′ሻ଴.ଷ଼,     𝜈௡௧𝐸௧ = 0.840𝐹ሺ𝑒ሻሺ𝑝′ሻ଴.ଷ଼. (7)

Thus, rendering 𝐴 non-symmetric. Yimsiri and Soga [50] attributed this anomaly to the fact 
that the 𝑛௡௧ was deemed to be the most unreliable parameter in their study due to complications 
related to the alignment of the proximity transducer exactly with the in-situ vertical direction when 
testing horizontally cut specimens. 

6. Stiffness degradation under cyclic loading 

Of particular interest to the present discussion is an issue that was not investigated by Kaliakin 
[40], namely the response of transversely isotropic elastic idealizations under cyclic and/or more 
general vibrational environments. None of the functional forms discussed in [40] included any 
sort of degradation of the elastic parameters with cyclic load. 

By contrast, such degradation has been rather extensively studied for isotropic elasticity. 
Although a rather large body of work in this area was performed on sands (e.g., [7, 15]), the present 
discussion is focused on cohesive soils. 

Based on the results of numerous experimental studies, cyclically loaded cohesive soils may 
exhibit stiffness degradation [51-62]. This characteristic was found to rather strongly depend on 
the level of cyclic strain or stress that was applied to a specimen. Thus, cyclic loading that induces 
large strains tends to produce appreciable stiffness degradation, with substantial degradation 
typically occurring during the first few loading cycles. 

Thiers and Seed [51] performed one of the first experimental studies of soil stiffness 
degradation in cohesive soils. They performed cyclic direct simple shear tests under strain-
controlled conditions. They found that the isotropic elastic shear modulus 𝐺 decreased by 
approximately 50 % to 80 % as the peak strain level increased from 0.5 % to 2 %. The change in 
G was, however, negligible for strains above 2 %. Thiers and Seed [51] also found that, in general, 
the largest changes in 𝐺 occurred during the first 50 loading cycles. 

To study the degradation in soil stiffness, Idriss et al. [52] performed both stress and strain-
controlled cyclic triaxial tests on normally consolidated (NC) specimens. The degradation was 
found to be strongly dependent on the cyclic strain level applied to the specimen. Consequently, 
cyclic loading at high strain levels significantly degraded the soil stiffness. 

Based on the results of their cyclic tests, Andersen et al. [53] also concluded that 𝐺 decreased 
with increasing number of cycles. In addition, the higher the cyclic stress level, the more 
pronounced was this decrease. Interestingly, at low cyclic stress levels the stiffness degradation 
was negligible, indicating that 𝐺 was thus essentially independent of the number of cycles. 
Comparing test results at the same cyclic deviator stress amplitude, Andersen et al. [53] found that 
overconsolidated (OC) specimens reached failure after a smaller number of cycles as compared to 
NC ones. Also, for both NC and OC specimens, the number of cycles to failure decreased with 
increasing cyclic deviator stress. Meimon and Hicher [56] found that for NC specimens failure 
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occurred by reduction in the effective stresses, whereas for OC ones there was practically no 
evolution of the pore pressure during cyclic loading, even at failure. 

Using cyclic direct simple shear tests, Vucetic and Dobry [57] studied soil stiffness 
degradation of anisotropically consolidated NC and OC clay specimens. To quantify the 
degradation of the undrained secant value of 𝐺 during cyclic loading, they introduced the so-called 
“degradation index” 𝛿, that is defined as follows: 

𝛿 = 𝐺௦ே𝐺௦ଵ , (8)

where 𝐺௦ே and 𝐺𝑠ଵ represent the secant shear modulus after 𝑁 cycles and first cycle at constant 
shear strain amplitude, respectively. Small 𝛿 values thus correspond to high degree of stiffness 
degradation. 

As evident from Fig. 2, 𝛿 is lower for NC specimens, meaning that 𝐺 degrades more and faster 
than in the case of OC specimens. In addition, the controlled cyclic shear strain amplitude (𝛾௖) 
increases with overconsolidation ratio (OCR) (Fig. 2). Yasuhara et al. [60] also observed such 
response. 

 
Fig. 2. Degradation index versus number of cycles for different OCR values (after [57]) 

Zhou and Gong [59] also quantified stiffness degradation through 𝛿. They showed that such 
degradation was directly related to the cyclic stress ratio. Comparing 𝛿 values for the same number 
of cycles, it was found to be smaller with increasing the cyclic stress ratio, implying higher levels 
of soil degradation. In addition, 𝛿 values were lower for NC specimens, which confirmed that 
stiffness in such samples degrades more and faster than in OC ones and confirms that the OCR is 
an important factor in the study of soil degradation. 

By contrast to the large body of work discussed above for isotropic elastic idealizations, there 
appears to be only one study of stiffness degradation for transversely isotropic elastic 
idealizations. Yu et al. [63] studied such degradation for Boom clay, which has been rather 
extensively studied as a potential deep underground disposal repository for nuclear waste. The 
degradation was mathematically accounted for by introducing a damage matrix that contained the 
damage variables 𝐷ଵ, 𝐷ଶ, and 𝐷ଷ associated with the global coordinates 𝑥ଵ = 𝑥, 𝑥ଶ = 𝑦, and  𝑥ଷ = 𝑧 shown in Fig. 1. For transversely isotropic elasticity, 𝐷ଶ = 𝐷ଷ. 

The following expressions for the elastic moduli were proposed by Yu et al. [63]:   𝐸തଵ = (1 −  𝐷ଵ)ଶ 𝐸ଵ,     𝐸തଶ = 𝐸തଷ  = (1 −  𝐷ଷ)ଶ 𝐸ଷ, (9)

where 𝐸ଵ = 𝐸௡ and 𝐸ଶ = 𝐸ଷ = 𝐸௧ with respect to the notation used in the current development. 
The shear modulus 𝐺ଵଷ = 𝐺௡௧ is then modified as follows:   𝐺̅ଵଷ = (1 −  𝐷ଵ)(1 −  𝐷ଷ)𝐺ଵଷ. (10)
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The following expression was next proposed for the Poisson ratio 𝑛ଷଵ = 𝑛௧௡: 

𝜈̅ଷଵ = ൬1 −  𝐷ଷ1 −  𝐷ଵ൰ 𝜈ଷଵ. (11)

The similar expression for 𝑛ଶଷ = 𝑛௧௧ is: 

𝜈̅ଶଷ = ൬1 −  𝐷ଶ1 −  𝐷ଷ൰ 𝜈ଶଷ. (12)

Since 𝐷ଶ = 𝐷ଷ it is, however, evident that 𝑛ଶଷ will be unaffected by the damage variables. 
Consequently, the following expression results for 𝐺ଶଷ = 𝐺௧௧: 𝐺̅ଶଷ = (1 −  𝐷ଷ)ଶ2(1 + 𝜈ଶଷ) 𝐸ଷ. (13)

The evolution of the degradation was mathematically accounted for through an elastic and a 
plastic damage law that were based on experimental results for Boom clay.  

The work of Yu et al. [63] notwithstanding and compared to the body of work associated with 
isotropic elastic material characterizations, there exists a knowledge gap in the formulation of 
transversely isotropic elastic material idealizations as applied to other than static loading. 

7. Conclusions 

This paper briefly reviewed the issue of elasticity in soils. Following a short overview of 
isotropic elastic idealizations, the more relevant topic of transversely isotropic (or “cross 
anisotropic”) idealizations was discussed, with emphasis not only on static but cyclic response. 

Although progress in the development of transversely isotropic elastic models is notable, 
additional work is required before such models can be reliably used in the simulation of 
geomaterials. This conclusion is explained as follows: 

First, not all transversely isotropic elastic models are complete. That is, they do not necessarily 
provide explicit functional forms for all five parameters associated with such idealizations. 
Whereas the Poisson’s ratios 𝑛௡௧ and 𝑛௧௧ are commonly assumed to be constant, there is no 
consensus on the functional forms for 𝐸௡, 𝐸௧, and 𝐺௡௧. In addition, some models render the 
compliance matrix 𝐴 is non-symmetric. 

Secondly, values of the parameters associated with such models are only available for select 
soils. No attempts have been made to apply a given model to more than one or two specific soils. 

Finally, existing transversely isotropic elastic formulations have almost exclusively been 
developed for monotonic conditions. With one exception, these formulations have not investigated 
the degradation in the moduli with cyclic loading. 
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