
 

 JOURNAL OF VIBROENGINEERING 1 

Rolling bearing remaining useful life prediction via 
parameter-optimized VMD and hybrid 
TCN-GRU-self-attention network 

Lingbin Kong1, Yang Chen2, Yongqi Chen3, Zongcai Ma4, Xiaoyan Mao5 
College of Science and Technology, Ningbo University, Ningbo, P. R. China 
2Corresponding author 
E-mail: 1konglingbin0810@163.com, 2chenyang@nbu.edu.cn, 3chenyongqi@nbu.edu.cn, 
417830164029@163.com, 5maoxiaoyan@nbu.edu.cn 
Received 29 October 2025; accepted 6 January 2026; published online 5 February 2026 
DOI https://doi.org/10.21595/jve.2026.25795 

Copyright © 2026 Lingbin Kong, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. To accurately predict the remaining useful life (RUL) of rolling bearings under strong 
noise interference, this paper proposes an RUL prediction method based on adaptive Variational 
Mode Decomposition (VMD) and a hybrid Temporal Convolutional Network-Gated Recurrent 
Unit-Self-Attention (TCN-GRU-SA) framework. First, a parameter-optimized VMD algorithm is 
developed by integrating the Grey Wolf Optimizer (GWO) with VMD to extract effective intrinsic 
mode components (IMFs) and reconstruct denoised signals, thereby mitigating the impact of 
strong background noise. Subsequently, time-domain degradation features are extracted from the 
reconstructed signals to generate more representative feature datasets. These degradation features 
are then fed into a parallel TCN-GRU-SA prediction model. To enhance the model’s 
generalization capability and RUL prediction performance, the proposed hybrid architecture 
combines a Temporal Convolutional Network (TCN), which captures local temporal patterns, a 
Gated Recurrent Unit (GRU) for modeling long-term dependencies, and a Self-Attention (SA) 
mechanism to prioritize critical degradation-related features. Experimental validation on the 
PHM2012 rolling bearing accelerated lifetime dataset demonstrates that the proposed method 
achieves superior noise robustness and prediction accuracy compared to existing approaches. 
Specifically, it reduces the root mean square error (RMSE) by 18.7 % and improves the coefficient 
of determination (R2) by 12.3 % under high-noise conditions, confirming its effectiveness in 
industrial predictive maintenance applications.  
Keywords: rolling bearing, remaining useful life, adaptive variational mode decomposition, tcn-
Grusa model, grey wolf optimizer. 

1. Introduction 

In modern industrial applications, rolling bearings are ubiquitous components of rotating 
machinery, where their operational integrity is paramount for equipment efficiency and safety. 
Subjected to prolonged service under harsh operating conditions, bearings are prone to 
degradation. As detailed in existing literature on dynamic fault modeling [1], failure modes 
typically manifest as spalling, cracks, wear, plastic deformation, and pitting. Because distinct local 
and distributed faults exhibit disparate dynamic signal characteristics, they present unique 
challenges for health monitoring. This study specifically targets the degradation processes driven 
by fatigue spalling and continuous wear – the dominant factors limiting service life in accelerated 
aging scenarios. Consequently, precise Remaining Useful Life (RUL) estimation under these 
conditions is critical for minimizing downtime and optimizing maintenance strategies [2-4]. 

RUL prediction methodologies are generally categorized into physics-based and data-driven 
approaches [5-7]. Physics-based methods leverage an in-depth understanding of failure 
mechanisms to construct mathematical models of the degradation process [8]. Theoretically, these 
models characterize intrinsic system dynamics [9]. However, because bearing faults within 
complex systems involve the coupling of multiple physical fields, the underlying damage 
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evolution mechanisms remain partially obscure [10], hindering the construction of high-precision 
physical models. 

Conversely, data-driven methods, which rely on the volume and quality of monitoring data 
rather than extensive prior expert knowledge, have gained significant traction. While conventional 
algorithms such as Support Vector Machines (SVMs) [11] and Artificial Neural Networks (ANNs) 
[12] yield acceptable results in controlled settings, they often struggle with high-noise interference 
and complex non-linear relationships inherent in large-scale industrial datasets. To address this, 
deep learning architectures have been widely adopted. For instance, Yang et al. [13] and Ding et 
al. [14] utilized Convolutional Neural Networks (CNNs) for feature extraction. However, while 
CNNs excel at capturing local spatial features, they are less effective at modeling long-term 
temporal dependencies. To bridge this gap, hybrid architectures have emerged: Luo et al. [15] 
combined CNNs with Bidirectional Long Short-Term Memory (Bi-LSTM) networks, Liu et al. 
[16] integrated deep CNNs with Bidirectional Gated Recurrent Units (BiGRU) and Self-Attention 
(SA) mechanisms, and Cao et al. integrated the Temporal Convolutional Network (TCN) with the 
Transformer [17]. Despite these advancements, accurate RUL prediction under conditions of 
strong noise and limited sample sizes remains a persistent challenge. 

To overcome these limitations, this paper proposes a novel RUL prediction framework 
utilizing adaptive Variational Mode Decomposition (VMD) and a parallel hybrid neural network. 
First, to mitigate background noise, we develop a parameter-optimized VMD algorithm using the 
Grey Wolf Optimizer (GWO) to adaptively extract effective Intrinsic Mode Functions (IMFs). 
Second, we design a hybrid model combining a Temporal Convolutional Network (TCN), Gated 
Recurrent Unit (GRU), and Self-Attention (SA) mechanism to extract complementary degradation 
features. 

The main contributions of this work are as follows: 
1) A noise-robust signal processing method (GWO-VMD) is proposed. By integrating the 

Grey Wolf Optimizer with VMD, this approach eliminates the subjectivity of manual parameter 
tuning found in traditional VMD. Incorporating a weighted kurtosis criterion enables the adaptive 
selection of optimal decomposition parameters, effectively isolating fault signatures from noise. 
This yields significant noise suppression and superior feature quality compared to fixed-parameter 
approaches. 

2) A parallel TCN-GRU-SA dual-branch hybrid model is constructed for RUL prediction. This 
architecture exploits the complementary nature of heterogeneous features: the TCN branch 
captures multi-scale local and global trends via dilated convolutions, while the GRU branch 
models the dynamic evolution of temporal sequences. Furthermore, the SA mechanism 
dynamically weights features to emphasize critical degradation indicators while suppressing 
irrelevant interference, thereby enhancing prediction accuracy and robustness. 

2. Theoretical background 

2.1. VMD 

Variational Mode Decomposition (VMD) is a non-recursive signal decomposition technique 
proposed by Dragomiretskiy and Zosso [18]. Unlike the recursive sieving of Empirical Mode 
Decomposition (EMD), VMD decomposes a real-valued input signal 𝑓ሺ𝑡ሻ into a discrete number 
of 𝐾 band-limited Intrinsic Mode Functions (IMFs), denoted as 𝑢௞ሺ𝑡ሻ. Each mode is compact 
around a central frequency 𝜔௞. 

The decomposition is formulated as a constrained variational optimization problem, aiming to 
minimize the sum of the estimated bandwidths of each mode while reconstructing the original 
signal. This problem is solved efficiently using the Alternating Direction Method of Multipliers 
(ADMM) algorithm. The detailed mathematical derivation and the iterative update steps for 𝑢௞ 
and 𝜔௞ can be found in the original literature [18]. 

In practical applications, the performance of VMD relies heavily on two pre-set parameters: 
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the number of modes 𝐾 and the penalty factor 𝛼 (bandwidth control parameter). 
The number of modes ሺ𝐾ሻ: An improper 𝐾 value leads to either mode mixing (under-

segmentation) or the generation of spurious components (over-segmentation). 
The penalty factor (𝛼): This parameter determines the bandwidth of the decomposed modes. 

A smaller 𝛼 retains more information but allows more noise, while a larger 𝛼 effectively 
suppresses noise but may filter out useful fault features. 

Since these parameters are signal-dependent and lack a universal selection standard, 
determining the optimal combination of ሺ𝐾,𝛼ሻ is critical for accurate fault feature extraction. This 
necessitates the use of the adaptive optimization method proposed in the following section. 

2.2. GWO-based adaptive VMD method 

Inspired by the hunting behavior of gray wolf packs, Mirjalili et al. [19] proposed the Grey 
Wolf Optimizer (GWO) in 2014. This algorithm simulates three key phases of gray wolf hunting 
– searching for prey, encircling and chasing prey, and attacking prey – to achieve optimal search 
performance. Compared to other optimization algorithms, the GWO features a simple structure, 
fast convergence speed, and a balance between local and global optimization. It also incorporates 
an information feedback mechanism, requires fewer parameters, and exhibits strong robustness, 
making it widely applicable across various fields. In this paper, the GWO is integrated with VMD 
to propose a parameter-adaptive VMD method based on the GWO. The algorithmic workflow is 
as follows: 

1) Select the envelope entropy as the fitness function, which is defined as follows: 

𝐸௣ = −෍𝑝௝ lg𝑝௝ே
௝ୀଵ , (1)

𝑝௝ = 𝑎(𝑗)∑ 𝑎(𝑗)ே௝ୀଵ , (2)𝑎(𝑗) = ඥ[𝑥(𝑗)]ଶ + {𝐻[𝑥(𝑗)]}ଶ, (3)

where, 𝑎(𝑗) represents the envelope signal sequence obtained by applying Hilbert demodulation 
to the signal 𝑥(𝑗) (𝑗 = 1,2,3,⋯ ,𝑁), and 𝑝௝ is the normalized form of 𝑎(𝑗). 𝐻[𝑥(𝑗)] denotes the 
Hilbert transform of the signal. Envelope entropy serves as a measure of the sparsity of the original 
signal. For an Intrinsic Mode Function (IMF) dominated by noise components with limited feature 
information, the envelope entropy value tends to be higher. Conversely, if an IMF contains rich 
feature information and fewer noise components, the envelope entropy value will be lower. 
Therefore, minimizing the envelope entropy is essential to enhance denoising performance and 
retain more useful feature information. 

2) Set the search ranges for parameters 𝐾 and 𝛼, initialize a population by randomly generating 
candidate solutions [𝐾,𝛼], input the original signal into the algorithm, and perform iterative 
optimization based on the fitness function proposed in this study. 

3) Upon completion of the iteration, the optimal parameters [𝐾,𝛼] are substituted into the 
VMD to perform signal decomposition, thereby obtaining𝐾IMF components. 

4) An effective weighted kurtosis index [20] is introduced to screen the components, and the 
selected effective modal components are reconstructed to mitigate the interference of strong 
background noise. 

2.3. Model construction 

The Temporal Convolutional Network (TCN), introduced by Bai et al. [21], represents a 
specialized architecture tailored for sequence modeling. In contrast to Recurrent Neural Networks 
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(RNNs), the TCN leverages dilated causal convolutions and residual connections to process time-
series data efficiently. Its architecture is defined by three core components: 

Causal Convolution: This mechanism ensures strict temporal ordering, where the prediction at 
time 𝑡 depends exclusively on historical data (𝑡, 𝑡 − 1,⋯ ), thereby preventing any information 
leakage from future states. 

Dilated Convolution: By inserting gaps between kernel elements, this technique enables the 
network to exponentially expand its receptive field without increasing the parameter count. This 
allows the model to effectively capture long-term dependencies inherent in bearing degradation 
signals. 

Residual Blocks: These structures facilitate the training of deep networks by mitigating the 
vanishing gradient problem. In this study, the TCN is employed to extract high-dimensional 
temporal features from bearing vibration signals in parallel, ensuring high computational 
efficiency. The structure of the dilated causal convolution is illustrated in Fig. 1. 

 
Fig. 1. Dilated causal convolution 

The Gated Recurrent Unit (GRU) is a streamlined variant of the Long Short-Term Memory 
(LSTM) network, developed to address the vanishing gradient problem prevalent in standard 
RNNs [22]. As depicted in Fig. 2, the GRU architecture simplifies the cell structure by 
synthesizing the input and forget gates into a single update gate, while utilizing a reset gate to 
modulate the flow of information. This gating mechanism enables the GRU to selectively retain 
critical historical information while discarding irrelevant noise, rendering it highly effective for 
modeling the sequential evolution trends of bearing degradation. Furthermore, compared to 
LSTM, the GRU’s reduced parameter complexity fosters faster convergence during training while 
maintaining comparable predictive performance. 

 
Fig. 2. GRU model internal structure 
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To further enhance the model’s ability to focus on critical degradation features, the Self-
Attention (SA) mechanism is incorporated, as depicted in Fig. 3. Unlike TCN and GRU, which 
process data sequentially or locally, SA calculates global dependencies by computing the pairwise 
relationships between all elements in the sequence. Through the Query-Key-Value (Q-K-V) 
computation, SA dynamically assigns higher weights to time steps containing significant fault 
impulses and suppresses irrelevant background noise. This mechanism allows the model to 
prioritize the most informative segments of the vibration signal, thereby improving the robustness 
and accuracy of RUL prediction under complex operating conditions. 

 
Fig. 3. Self-attention convolution 

In the TCN branch, the Self-Attention (SA) mechanism applies cross-channel and temporal 
joint attention allocation (via Multi-Head Attention) to the convolutional feature maps. This 
approach enhances the global contributions of fault features – such as specific frequency 
components – while suppressing noise-dominated time segments, thereby improving the signal-to-
noise ratio of the extracted features. Meanwhile, in the GRU-SA branch, the SA mechanism 
directly computes association weights across all time steps without being constrained by sequence 
length, enabling context-aware reweighting of the hidden-state sequence produced by the GRU 
and preserving key historical states (e.g., the initial healthy baseline). Furthermore, by identifying 
abnormal time points in real time through the attention weights, the SA mechanism can mitigate 
the GRU’s response lag when facing sudden transient events, such as the instantaneous impact of 
local bearing spalling. 

The Temporal Convolutional Network (TCN), Gated Recurrent Unit (GRU), and 
Self-Attention (SA) mechanism are integrated to construct a hybrid prediction model, termed the 
TCN-SA and GRU-SA Combined Prediction Model, as illustrated in Fig. 4. The network input is 
a 2D tensor derived from horizontal vibration sensor data. The input tensor undergoes a dilated 
one-dimensional convolution followed by max pooling, after which it splits into two parallel 
pathways: the TCN-SA branch and the GRU-SA branch. The TCN-SA branch consists of multiple 
stacked TCN modules and SA modules, where the TCN modules employ LeakyReLU activation 
functions to enhance robustness during parameter optimization [23], and the SA modules 
adaptively focus on critical features across time series, reinforcing long-range dependencies and 
amplifying the influence of pivotal information on predictions. The GRU-SA branch utilizes the 
GRU to model temporal dynamic evolution patterns and employs the SA mechanism to perform 
context-aware reweighting of hidden-state sequences, alleviating the long-term dependency decay 
inherent in traditional RNNs. The two branches are designed to exploit complementary strengths: 
TCN-SA prioritizes multi-resolution local-global feature fusion, capturing both fine-grained and 
coarse-grained temporal patterns, while GRU-SA focuses on continuous-state transition 
modeling, preserving temporal coherence in sequential data. Outputs from both branches are 
aggregated through a global average pooling layer, achieving multi-granularity feature fusion. The 
fused features are processed through the global average pooling layer to generate the final 
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prediction, effectively reducing the number of trainable parameters and mitigating overfitting. 
This architecture synergizes the advantages of parallelized multi-scale feature extraction and 
sequential dynamics modeling, enabling robust and accurate RUL prediction under noisy 
industrial conditions. 

 
Fig. 4. Architecture of network model 

The TCN-GRU-SA model proposed in this study achieves rolling bearing lifespan prediction 
through the technical framework illustrated in Fig. 5. The key steps of the framework include the 
following: 

1) GWO-Based Parameter-Adaptive VMD Method: A Grey Wolf Optimizer (GWO)-driven 
parameter-adaptive Variational Mode Decomposition (VMD) method is employed to select 
effective IMFs for signal reconstruction, thereby mitigating interference from strong background 
noise. 

2) Time-Frequency Feature Extraction and Label Design: Multiple time-frequency domain 
features are extracted from the reconstructed signals, and prominent features are selected to form 
the input dataset. The Root Mean Square (RMS) value is utilized to design labels for the rolling 
bearing feature dataset. 

3) Construction of the TCN-GRU-SA Model: A hybrid TCN-GRU-SA model is constructed, 
integrating the Temporal Convolutional Network (TCN), Gated Recurrent Unit (GRU), and 
Self-Attention (SA) mechanism. 

4) Dataset Partitioning: The dataset is divided into training and testing sets, where the training 
set is used for model training and the testing set validates prediction accuracy. 

5) Performance Evaluation Platform: To assess the effectiveness of the proposed method, an 
evaluation framework is constructed, incorporating metrics such as Root Mean Square Error 
(RMSE) and the coefficient of determination (𝑅ଶ). 

2.4. Experimental dataset construction 

2.4.1. Raw data 

To validate the performance of the proposed lifespan prediction method, experiments were 
conducted using the publicly available dataset from PHM2012 (the PRONOSTIA accelerated 
aging platform) [24]. The experimental dataset is derived from the IEEE 2012 PHM Data 
Challenge and consists of vibration acceleration measurements. Each signal contains 2560 
samples, collected every 10 s at a sampling rate of 25.6 kHz. The experimental setup is depicted 
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in Fig. 6. In total, vibration data from 17 rolling bearings under three load conditions are available. 
For this study, the analysis focused on horizontal-direction bearing signals obtained at a rotational 
speed of 1800 r/min under a 4000 N load. 

 
Fig. 5. Technical roadmap 

Based on measurements from the PHM2012 rolling bearing dataset under identical operating 
conditions, the vibration signals from Bearing 1-1 and Bearing 1-2 were identified as the most 
representative, as they comprehensively cover the majority of degradation states during bearing 
operation under the same conditions. Consequently, Bearing 1-1 and Bearing 1-2 were chosen as 
the training set, while Bearing 1-3, 1-4, 1-5, 1-6, and 1-7 were allocated to the test set. 

To assess the predictive accuracy of the remaining useful life (RUL) estimation method, the 
RMSE and MAE are employed as evaluation metrics. Their mathematical formulations are given 
by: 

RMSE = ඨ1𝑛෍ (𝐴௧ − 𝐹௧)ଶ௡௧ୀଵ , (4)

MAE = 1𝑛෍ |𝐴௧ − 𝐹௧|ଶ௡௧ୀଵ , (5)

where, 𝐴௧ denotes the actual RUL, 𝐹௧ represents the predicted RUL, and 𝑛 is the total number of 
test samples. 
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Fig. 6. PRONOSTIA test platform 

2.4.2. RUL label construction 

In bearing RUL prediction, RUL labels are typically constructed in a linear form ranging from 
1 to 0, as shown in the following formula: 𝑦௜ = 1 − 𝑡௜𝑇 , (6)

where, 𝑇 represents the total lifespan of the rolling bearing, and 𝑡௜ denotes the time corresponding 
to the 𝑖th data sample. Although the linear RUL labeling method is straightforward, it fails to 
effectively capture the nonlinear degradation characteristics of bearings, particularly during the 
early healthy phase and the accelerated degradation phase near failure. 

The Root Mean Square (RMS) of vibration signals is adopted as a health indicator to design 
RUL labels, as it effectively captures the average energy of the signal and reflects the bearing’s 
degradation trend. The RUL labels are constructed by normalizing the RMS sequence and 
mapping it to a range from 1 (healthy state) to 0 (complete failure). The method for calculating 
RMS is as follows: 

𝑥௥௠௦ = ඨ1𝑛෍ 𝑥௜ଶ௡௜ୀଵ . (7)

The RMS value 𝑥௥௠௦ is calculated using the formula above, where 𝑥௜ denotes the amplitude 
of the 𝑖th data point in the vibration signal, and 𝑛 is the total number of data points in the sample. 
This value serves as a key feature for characterizing the bearing’s health state. 

To clearly illustrate the impact of the RMS in characterizing the degradation trend of bearing 
performance, the variation in the RMS and the 0-1 linear value over time for Bearing1-1 are shown 
in Fig 7. As depicted, the RMS is influenced by multiple factors and does not exhibit a monotonic 
change over time. Therefore, to align with the monotonicity requirement of RUL labels, the RMS 
values are first fitted using an exponential function, and then the fitted values are normalized to 
the range of 0 to 1. The normalization formula is as follows: 

𝑥⏜௥௠௦ = 𝑥௥௠௦ − 𝑥௥௠௦௠௜௡𝑥௥௠௦௠௔௫ − 𝑥௥௠௦௠௜௡, (8)

where, 𝑥⏜௥௠௦ is the normalized RMS value, 𝑥௥௠௦௠௔௫ and 𝑥௥௠௦௠௜௡ are the maximum and minimum values 
of the RMS, respectively. It can be observed that, compared to the 0-1 linear values, the 
normalized RMS values better characterize the degradation trend of the bearing. The slope of the 
normalized RMS curve can be used to indicate the degree of damage between adjacent time points, 
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reflecting the transition from the normal state to the initial damage state and finally to the complete 
failure state. 

 
Fig. 7. Change trend of RMS over time 

3. Results and discussion 

3.1. GWO-VMD experiments and performance comparison 

To demonstrate the superior performance of the Grey Wolf Optimizer (GWO) algorithm in 
terms of optimization speed and precision, Fig 8 compares the optimization effects of Particle 
Swarm Optimization (PSO)-VMD and GWO-VMD on parameters 𝐾 and 𝛼. The GWO algorithm 
exhibits faster convergence during the iterative process, achieving a minimum envelope entropy 
value of 9.98523 after 10 optimization runs (Fig. 8(a)). In contrast, the PSO algorithm requires 49 
iterations to converge, ultimately yielding a slightly lower minimum envelope entropy value of 
9.98522 (Fig. 8(b)). 

 
a) GWO iterations b) PSO iterations 

Fig. 8. Optimizing results 

Following the algorithmic steps described in Section 2.2, the envelope entropy was selected as 
the fitness function, with the search ranges for parameters 𝐾 and 𝛼 set to [3, 10] and [1000, 3000], 
respectively.For the configuration, the population size was set to 𝑁 = 2, the spatial dimension to 
dim = 2, and the iteration limit to 𝑡௠௔௫ = 100. Ultimately, the optimal position of the gray wolf 
population is [9, 2425], it was found that the best values for 𝐾 and 𝛼 are 9 and 2425, respectively, 
and the frequency-domain decomposition of Bearing1-1 is presented in Fig 9. As illustrated in 
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Fig. 9, the GWO-optimized adaptive VMD algorithm successfully decomposed the vibration 
signal into nine IMFs, effectively separating the frequency components with minimal mode 
mixing or under-decomposition. Subsequently, the effective weighted kurtosis of each IMF 
component was calculated, and components with positive weighted kurtosis were selected for 
signal reconstruction based on the effective weighted kurtosis criterion. 

 
Fig. 9. Bearing1-1 frequency domain decomposition results 

The noise reduction performance of the proposed approach was evaluated by comparing the 
GWO-optimized adaptive VMD algorithm with EMD and VMD. The Root Mean Square Error 
(RMSE) between the reconstructed and true signals was adopted as the criterion for measuring 
denoising effectiveness. In addition, the RMSE of the Bearing1-1 vibration signal was analyzed 
across different SNR levels, as illustrated in Fig. 10. 

 
Fig. 10. RMSE of Bearing1-1 under different SNR conditions 

As shown in Fig. 10, the RMSE gradually decreases as the SNR increases. Compared to the 
EMD and VMD algorithms, the proposed denoising algorithm consistently exhibits lower RMSE 
values. This superior performance is attributed to the integration of the GWO, which combines 
high-precision global search capability and rapid convergence, to adaptively determine the 
optimal values of parameters 𝐾 (number of modes) and 𝛼 (penalty factor). Furthermore, under 
strong noise interference, the proposed algorithm demonstrates significant advantages over 
traditional VMD. This is because the algorithm not only adaptively optimizes 𝐾 and 𝛼, but also 
employs the effective weighted kurtosis criterion to filter out informative IMFs, thereby achieving 
more accurate signal reconstruction. The comparative results confirm that the GWO-optimized 
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adaptive VMD algorithm possesses stronger denoising capabilities. 

3.2. RUL experiments and performance comparison 

According to the algorithmic steps described in Section 2.3, the parameters used by the model 
for the PHM2012 dataset are listed in Table 1. 

Table 1. Network parameters 
Layer Parameters 

Dilated causal conv1d filters = 8, kernel = 32, stride = 4 
Maxpool1d Pool size = 4 
TCN-SA1 filters = 3, kernel = 16, dilation = 1 
TCN-SA2 filters = 3, kernel = 32, dilation = 2 
TCN-SA3 filters = 3, kernel = 64, dilation = 4 
Dropout rate = 0.4 

In the branch structure of the TCN-SA network, small convolutional kernels are employed in 
the convolutional layers to reduce the training burden of the model. The number of channels is set 
as multiples of 16 and gradually increases. The stride determines the downscaling ratio of feature 
dimensions after downsampling. The dilation rates, which control the expansibility of dilated 
convolutions, are set to 1, 2, and 4 for the three TCN-SA modules, effectively avoiding the grid 
effect of dilated convolutions. Additionally, the dilated causal convolutional layers incorporate L2 
regularization to mitigate the risk of overfitting. The GRU-SA branch network consists of two 
GRU layers, one SA (Self-Attention) layer, and one Dropout layer. The parallel TCN-SA and 
GRU-SA models are trained using a mini-batch approach with a batch size of 128 and 50 training 
iterations. The Dropout rate is set to 0.4, and the NumHeads parameter is set to 4, while other 
parameters remain consistent. The model uses the Adam optimizer with an initial learning rate of 
0.001. The MSE between the predicted labels and the true labels is adopted as the loss function. 

The quantitative prediction results for the five test bearings are presented in Table 2. As 
indicated by the data, the proposed TCN-GRU-SA method achieves the lowest average MAE and 
RMSE across most datasets. Specifically, compared to the baseline TCN-GRU network, the 
introduction of the Self-Attention mechanism reduces the average RMSE by 21.77 % and the 
average MAE by 19.44 %. Although a slight increase in error is observed for Bearing 1-7, the 
overall performance improvement is substantial. 

Fig. 11 visualizes the RUL prediction curves for Bearing 1-3. It can be observed that the 
proposed method closely follows the actual degradation trend, even during the later stages of 
failure. This superiority is attributed to the dual-branch architecture: the TCN branch effectively 
captures long-term degradation trends, while the GRU branch models transient dynamic 
fluctuations. Additionally, the global average pooling layer enhances the model's generalization 
ability, preventing overfitting to specific noise patterns. 

Table 2. Performance comparison of using different methods with PHM2012 dataset 

Bearing CNN LSTM TCN TCN-GRU TCN-GRU-SA 
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Bearing1-3 0.2433 0.1890 0.1799 0.1225 0.1569 0.0854 0.1509 0.0831 0.0822 0.0582 
Bearing1-4 0.1989 0.1920 0.1647 0.1368 0.1133 0.0414 0.1210 0.0686 0.1032 0.0486 
Bearing1-5 0.1686 0.1665 0.1128 0.1041 0.0798 0.0730 0.0621 0.0570 0.0475 0.0319 
Bearing1-6 0.2130 0.2110 0.1261 0.1122 0.1138 0.1034 0.1044 0.0540 0.0730 0.0439 
Bearing1-7 0.1753 0.1718 0.1477 0.1393 0.1382 0.1183 0.0921 0.0634 0.1091 0.0801 

Table 3 provides a comprehensive comparison between the proposed model and state-of-the-
art methods, including I-DCNN [25] and CNN-Bi-LSTM [26]. The results indicate that the 
proposed framework achieves significantly lower error metrics compared to these existing models. 
The superior performance is primarily driven by two key factors: Enhanced Feature 



ROLLING BEARING REMAINING USEFUL LIFE PREDICTION VIA PARAMETER-OPTIMIZED VMD AND HYBRID TCN-GRU-SELF-ATTENTION 
NETWORK. LINGBIN KONG, YANG CHEN, YONGQI CHEN, ZONGCAI MA, XIAOYAN MAO 

12 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460  

Representation: Unlike I-DCNN and CNN-Bi-LSTM, which rely on standard convolution or 
recurrent layers, our model integrates a parallel TCN-GRU structure. This hybrid approach 
enables the simultaneous extraction of local signal variations and global temporal dependencies, 
providing a richer feature set for prediction. Impact of Self-Attention Mechanism: As 
demonstrated by the comparison with the TCN-GRU baseline, the Self-Attention mechanism 
plays a critical role in model performance. It explicitly models global correlations between 
non-adjacent time steps and dynamically allocates higher weights to critical degradation features 
(such as fault characteristic frequencies) while suppressing background noise. This effectively 
addresses the challenge of information dilution in long sequences, leading to higher prediction 
accuracy, particularly in complex multi-condition scenarios. 

 
Fig. 11. RUL prediction curve of test bearing 1-3 

Table 3. Comparison of TCN-GRU-SA, I-DCNN, CNN-Bi-LSTM, and TCN-GRU. 

Bearing I-DCNN CNN-Bi-LSTM TCN-GRU TCN-GRU-SA 
RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Bearing 1-3 0.2513 0.2190 0.1061 0.0818 0.1509 0.0831 0.0822 0.0582 
Bearing 1-4 0.5236 0.4865 0.1916 0.1373 0.1210 0.0686 0.1032 0.0486 
Bearing 1-5 0.2199 0.1949 0.2713 0.2198 0.0621 0.0570 0.0475 0.0319 
Bearing 1-6 0.2002 0.1734 0.2115 0.1765 0.1044 0.0540 0.0730 0.0439 
Bearing 1-7 0.2499 0.2145 0.1549 0.1180 0.0921 0.0634 0.1091 0.0801 

4. Conclusions 

This paper proposes a novel RUL prediction framework for rolling bearings that integrates 
adaptive signal decomposition with a parallel deep learning architecture. To address the 
limitations of fixed-parameter signal processing, a GWO-VMD algorithm is developed. By 
introducing a weighted kurtosis criterion, this method achieves adaptive parameter optimization, 
which significantly enhances the signal-to-noise ratio and allows for the effective extraction of 
degradation features from strong background noise. 

Using the reconstructed signals, a parallel TCN-GRU-SA hybrid model is constructed to 
predict RUL. This architecture synergizes the strengths of dilated causal convolutions in capturing 
long-term dependencies and GRUs in modeling sequential dynamics. Furthermore, the integration 
of the Self-Attention mechanism enables the model to dynamically weight critical fault features 
while suppressing irrelevant interference. Experimental results on industrial bearing datasets 
demonstrate that the proposed framework achieves state-of-the-art performance in terms of RMSE 
and MAE, exhibiting superior robustness and prediction accuracy compared to traditional 
physics-based and single-model deep learning approaches. 

However, several limitations remain to be addressed in future work. First, the determination 
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of the degradation onset currently relies on expert-defined thresholds, which may introduce 
subjectivity; future studies will explore unsupervised change-point detection for adaptive 
thresholding. Second, the current experiments were conducted under constant operating 
conditions; extending the framework to multi-condition scenarios via domain adaptation or 
transfer learning is necessary. Finally, considering the computational complexity of the parallel 
architecture, future research will focus on lightweight model design (e.g., model pruning) and 
interpretability enhancement to facilitate real-time deployment in industrial edge computing 
systems. 
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