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Abstract. To accurately predict the remaining useful life (RUL) of rolling bearings under strong
noise interference, this paper proposes an RUL prediction method based on adaptive Variational
Mode Decomposition (VMD) and a hybrid Temporal Convolutional Network-Gated Recurrent
Unit-Self-Attention (TCN-GRU-SA) framework. First, a parameter-optimized VMD algorithm is
developed by integrating the Grey Wolf Optimizer (GWO) with VMD to extract effective intrinsic
mode components (IMFs) and reconstruct denoised signals, thereby mitigating the impact of
strong background noise. Subsequently, time-domain degradation features are extracted from the
reconstructed signals to generate more representative feature datasets. These degradation features
are then fed into a parallel TCN-GRU-SA prediction model. To enhance the model’s
generalization capability and RUL prediction performance, the proposed hybrid architecture
combines a Temporal Convolutional Network (TCN), which captures local temporal patterns, a
Gated Recurrent Unit (GRU) for modeling long-term dependencies, and a Self-Attention (SA)
mechanism to prioritize critical degradation-related features. Experimental validation on the
PHM2012 rolling bearing accelerated lifetime dataset demonstrates that the proposed method
achieves superior noise robustness and prediction accuracy compared to existing approaches.
Specifically, it reduces the root mean square error (RMSE) by 18.7 % and improves the coefficient
of determination (R2) by 12.3 % under high-noise conditions, confirming its effectiveness in
industrial predictive maintenance applications.

Keywords: rolling bearing, remaining useful life, adaptive variational mode decomposition, tcn-
Grusa model, grey wolf optimizer.

1. Introduction

In modern industrial applications, rolling bearings are ubiquitous components of rotating
machinery, where their operational integrity is paramount for equipment efficiency and safety.
Subjected to prolonged service under harsh operating conditions, bearings are prone to
degradation. As detailed in existing literature on dynamic fault modeling [1], failure modes
typically manifest as spalling, cracks, wear, plastic deformation, and pitting. Because distinct local
and distributed faults exhibit disparate dynamic signal characteristics, they present unique
challenges for health monitoring. This study specifically targets the degradation processes driven
by fatigue spalling and continuous wear — the dominant factors limiting service life in accelerated
aging scenarios. Consequently, precise Remaining Useful Life (RUL) estimation under these
conditions is critical for minimizing downtime and optimizing maintenance strategies [2-4].

RUL prediction methodologies are generally categorized into physics-based and data-driven
approaches [5-7]. Physics-based methods leverage an in-depth understanding of failure
mechanisms to construct mathematical models of the degradation process [8]. Theoretically, these
models characterize intrinsic system dynamics [9]. However, because bearing faults within
complex systems involve the coupling of multiple physical fields, the underlying damage
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evolution mechanisms remain partially obscure [10], hindering the construction of high-precision
physical models.

Conversely, data-driven methods, which rely on the volume and quality of monitoring data
rather than extensive prior expert knowledge, have gained significant traction. While conventional
algorithms such as Support Vector Machines (SVMs) [11] and Artificial Neural Networks (ANNs)
[12] yield acceptable results in controlled settings, they often struggle with high-noise interference
and complex non-linear relationships inherent in large-scale industrial datasets. To address this,
deep learning architectures have been widely adopted. For instance, Yang et al. [13] and Ding et
al. [14] utilized Convolutional Neural Networks (CNNs) for feature extraction. However, while
CNNs excel at capturing local spatial features, they are less effective at modeling long-term
temporal dependencies. To bridge this gap, hybrid architectures have emerged: Luo et al. [15]
combined CNNs with Bidirectional Long Short-Term Memory (Bi-LSTM) networks, Liu et al.
[16] integrated deep CNNs with Bidirectional Gated Recurrent Units (BiGRU) and Self-Attention
(SA) mechanisms, and Cao et al. integrated the Temporal Convolutional Network (TCN) with the
Transformer [17]. Despite these advancements, accurate RUL prediction under conditions of
strong noise and limited sample sizes remains a persistent challenge.

To overcome these limitations, this paper proposes a novel RUL prediction framework
utilizing adaptive Variational Mode Decomposition (VMD) and a parallel hybrid neural network.
First, to mitigate background noise, we develop a parameter-optimized VMD algorithm using the
Grey Wolf Optimizer (GWO) to adaptively extract effective Intrinsic Mode Functions (IMFs).
Second, we design a hybrid model combining a Temporal Convolutional Network (TCN), Gated
Recurrent Unit (GRU), and Self-Attention (SA) mechanism to extract complementary degradation
features.

The main contributions of this work are as follows:

1) A noise-robust signal processing method (GWO-VMD) is proposed. By integrating the
Grey Wolf Optimizer with VMD, this approach eliminates the subjectivity of manual parameter
tuning found in traditional VMD. Incorporating a weighted kurtosis criterion enables the adaptive
selection of optimal decomposition parameters, effectively isolating fault signatures from noise.
This yields significant noise suppression and superior feature quality compared to fixed-parameter
approaches.

2) A parallel TCN-GRU-SA dual-branch hybrid model is constructed for RUL prediction. This
architecture exploits the complementary nature of heterogeneous features: the TCN branch
captures multi-scale local and global trends via dilated convolutions, while the GRU branch
models the dynamic evolution of temporal sequences. Furthermore, the SA mechanism
dynamically weights features to emphasize critical degradation indicators while suppressing
irrelevant interference, thereby enhancing prediction accuracy and robustness.

2. Theoretical background
2.1. VMD

Variational Mode Decomposition (VMD) is a non-recursive signal decomposition technique
proposed by Dragomiretskiy and Zosso [18]. Unlike the recursive sieving of Empirical Mode
Decomposition (EMD), VMD decomposes a real-valued input signal f(t) into a discrete number
of K band-limited Intrinsic Mode Functions (IMFs), denoted as u (t). Each mode is compact
around a central frequency wy.

The decomposition is formulated as a constrained variational optimization problem, aiming to
minimize the sum of the estimated bandwidths of each mode while reconstructing the original
signal. This problem is solved efficiently using the Alternating Direction Method of Multipliers
(ADMM) algorithm. The detailed mathematical derivation and the iterative update steps for u;
and wy, can be found in the original literature [18].

In practical applications, the performance of VMD relies heavily on two pre-set parameters:
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the number of modes K and the penalty factor a (bandwidth control parameter).

The number of modes (K): An improper K value leads to either mode mixing (under-
segmentation) or the generation of spurious components (over-segmentation).

The penalty factor («): This parameter determines the bandwidth of the decomposed modes.
A smaller a retains more information but allows more noise, while a larger a effectively
suppresses noise but may filter out useful fault features.

Since these parameters are signal-dependent and lack a universal selection standard,
determining the optimal combination of (K, @) is critical for accurate fault feature extraction. This
necessitates the use of the adaptive optimization method proposed in the following section.

2.2. GWO-based adaptive VMD method

Inspired by the hunting behavior of gray wolf packs, Mirjalili et al. [19] proposed the Grey
Wolf Optimizer (GWO) in 2014. This algorithm simulates three key phases of gray wolf hunting
— searching for prey, encircling and chasing prey, and attacking prey — to achieve optimal search
performance. Compared to other optimization algorithms, the GWO features a simple structure,
fast convergence speed, and a balance between local and global optimization. It also incorporates
an information feedback mechanism, requires fewer parameters, and exhibits strong robustness,
making it widely applicable across various fields. In this paper, the GWO is integrated with VMD
to propose a parameter-adaptive VMD method based on the GWO. The algorithmic workflow is
as follows:

1) Select the envelope entropy as the fitness function, which is defined as follows:

N
E, = —Zm lgp), M
j=1
__a)
DS aG) (2)
a() = VIx(DI? + HIx (DI}, 3)

where, a(j) represents the envelope signal sequence obtained by applying Hilbert demodulation
to the signal x(j) (j = 1,2,3,---, N), and p; is the normalized form of a(j). H[x(j)] denotes the
Hilbert transform of the signal. Envelope entropy serves as a measure of the sparsity of the original
signal. For an Intrinsic Mode Function (IMF) dominated by noise components with limited feature
information, the envelope entropy value tends to be higher. Conversely, if an IMF contains rich
feature information and fewer noise components, the envelope entropy value will be lower.
Therefore, minimizing the envelope entropy is essential to enhance denoising performance and
retain more useful feature information.

2) Set the search ranges for parameters K and «, initialize a population by randomly generating
candidate solutions [K, ], input the original signal into the algorithm, and perform iterative
optimization based on the fitness function proposed in this study.

3) Upon completion of the iteration, the optimal parameters [K, a] are substituted into the
VMD to perform signal decomposition, thereby obtainingKIMF components.

4) An effective weighted kurtosis index [20] is introduced to screen the components, and the
selected effective modal components are reconstructed to mitigate the interference of strong
background noise.

2.3. Model construction

The Temporal Convolutional Network (TCN), introduced by Bai et al. [21], represents a
specialized architecture tailored for sequence modeling. In contrast to Recurrent Neural Networks
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(RNNs), the TCN leverages dilated causal convolutions and residual connections to process time-
series data efficiently. Its architecture is defined by three core components:

Causal Convolution: This mechanism ensures strict temporal ordering, where the prediction at
time t depends exclusively on historical data (t,t — 1, -+ ), thereby preventing any information
leakage from future states.

Dilated Convolution: By inserting gaps between kernel elements, this technique enables the
network to exponentially expand its receptive field without increasing the parameter count. This
allows the model to effectively capture long-term dependencies inherent in bearing degradation
signals.

Residual Blocks: These structures facilitate the training of deep networks by mitigating the
vanishing gradient problem. In this study, the TCN is employed to extract high-dimensional
temporal features from bearing vibration signals in parallel, ensuring high computational
efficiency. The structure of the dilated causal convolution is illustrated in Fig. 1.

Xo X4 X2 X3 Xt-1 Xt
Input layer d=1
Hidden IayerO
d=2
Hidden IayerO O O
O © o

o O O O O O
Yo Y1 y2 Y3

Fig. 1. Dilated causal convolution

Y1 Yt

The Gated Recurrent Unit (GRU) is a streamlined variant of the Long Short-Term Memory
(LSTM) network, developed to address the vanishing gradient problem prevalent in standard
RNNs [22]. As depicted in Fig. 2, the GRU architecture simplifies the cell structure by
synthesizing the input and forget gates into a single update gate, while utilizing a reset gate to
modulate the flow of information. This gating mechanism enables the GRU to selectively retain
critical historical information while discarding irrelevant noise, rendering it highly effective for
modeling the sequential evolution trends of bearing degradation. Furthermore, compared to
LSTM, the GRU’s reduced parameter complexity fosters faster convergence during training while
maintaining comparable predictive performance.

- ===

Up(ﬁt_e Gate!

Xt
Fig. 2. GRU model internal structure
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To further enhance the model’s ability to focus on critical degradation features, the Self-
Attention (SA) mechanism is incorporated, as depicted in Fig. 3. Unlike TCN and GRU, which
process data sequentially or locally, SA calculates global dependencies by computing the pairwise
relationships between all elements in the sequence. Through the Query-Key-Value (Q-K-V)
computation, SA dynamically assigns higher weights to time steps containing significant fault
impulses and suppresses irrelevant background noise. This mechanism allows the model to
prioritize the most informative segments of the vibration signal, thereby improving the robustness
and accuracy of RUL prediction under complex operating conditions.

T

| MatMul ]

\Y
Fig. 3. Self-attention convolution

In the TCN branch, the Self-Attention (SA) mechanism applies cross-channel and temporal
joint attention allocation (via Multi-Head Attention) to the convolutional feature maps. This
approach enhances the global contributions of fault features — such as specific frequency
components — while suppressing noise-dominated time segments, thereby improving the signal-to-
noise ratio of the extracted features. Meanwhile, in the GRU-SA branch, the SA mechanism
directly computes association weights across all time steps without being constrained by sequence
length, enabling context-aware reweighting of the hidden-state sequence produced by the GRU
and preserving key historical states (e.g., the initial healthy baseline). Furthermore, by identifying
abnormal time points in real time through the attention weights, the SA mechanism can mitigate
the GRU’s response lag when facing sudden transient events, such as the instantaneous impact of
local bearing spalling.

The Temporal Convolutional Network (TCN), Gated Recurrent Unit (GRU), and
Self-Attention (SA) mechanism are integrated to construct a hybrid prediction model, termed the
TCN-SA and GRU-SA Combined Prediction Model, as illustrated in Fig. 4. The network input is
a 2D tensor derived from horizontal vibration sensor data. The input tensor undergoes a dilated
one-dimensional convolution followed by max pooling, after which it splits into two parallel
pathways: the TCN-SA branch and the GRU-SA branch. The TCN-SA branch consists of multiple
stacked TCN modules and SA modules, where the TCN modules employ LeakyReLU activation
functions to enhance robustness during parameter optimization [23], and the SA modules
adaptively focus on critical features across time series, reinforcing long-range dependencies and
amplifying the influence of pivotal information on predictions. The GRU-SA branch utilizes the
GRU to model temporal dynamic evolution patterns and employs the SA mechanism to perform
context-aware reweighting of hidden-state sequences, alleviating the long-term dependency decay
inherent in traditional RNNs. The two branches are designed to exploit complementary strengths:
TCN-SA prioritizes multi-resolution local-global feature fusion, capturing both fine-grained and
coarse-grained temporal patterns, while GRU-SA focuses on continuous-state transition
modeling, preserving temporal coherence in sequential data. Outputs from both branches are
aggregated through a global average pooling layer, achieving multi-granularity feature fusion. The
fused features are processed through the global average pooling layer to generate the final
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prediction, effectively reducing the number of trainable parameters and mitigating overfitting.
This architecture synergizes the advantages of parallelized multi-scale feature extraction and
sequential dynamics modeling, enabling robust and accurate RUL prediction under noisy
industrial conditions.

TCN-SA Block ]
batchnorm dropout
Input max pooling Output
[ [ self-
l ) > attention
—» Lyl I
™ X leakyrelu dilated causal convld ’ E ) > >
X
dilated cautjal convl d‘ {
global AveragePooling
—»  GRU SSt GRU Sl |
attention attention

Fig. 4. Architecture of network model

The TCN-GRU-SA model proposed in this study achieves rolling bearing lifespan prediction
through the technical framework illustrated in Fig. 5. The key steps of the framework include the
following:

1) GWO-Based Parameter-Adaptive VMD Method: A Grey Wolf Optimizer (GWO)-driven
parameter-adaptive Variational Mode Decomposition (VMD) method is employed to select
effective IMFs for signal reconstruction, thereby mitigating interference from strong background
noise.

2) Time-Frequency Feature Extraction and Label Design: Multiple time-frequency domain
features are extracted from the reconstructed signals, and prominent features are selected to form
the input dataset. The Root Mean Square (RMS) value is utilized to design labels for the rolling
bearing feature dataset.

3) Construction of the TCN-GRU-SA Model: A hybrid TCN-GRU-SA model is constructed,
integrating the Temporal Convolutional Network (TCN), Gated Recurrent Unit (GRU), and
Self-Attention (SA) mechanism.

4) Dataset Partitioning: The dataset is divided into training and testing sets, where the training
set is used for model training and the testing set validates prediction accuracy.

5) Performance Evaluation Platform: To assess the effectiveness of the proposed method, an
evaluation framework is constructed, incorporating metrics such as Root Mean Square Error
(RMSE) and the coefficient of determination (R?).

2.4. Experimental dataset construction
2.4.1. Raw data

To validate the performance of the proposed lifespan prediction method, experiments were
conducted using the publicly available dataset from PHM2012 (the PRONOSTIA accelerated
aging platform) [24]. The experimental dataset is derived from the IEEE 2012 PHM Data
Challenge and consists of vibration acceleration measurements. Each signal contains 2560
samples, collected every 10 s at a sampling rate of 25.6 kHz. The experimental setup is depicted
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in Fig. 6. In total, vibration data from 17 rolling bearings under three load conditions are available.
For this study, the analysis focused on horizontal-direction bearing signals obtained at a rotational
speed of 1800 r/min under a 4000 N load.

Raw Vibration Signal
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Fig. 5. Technical roadmap

Based on measurements from the PHM2012 rolling bearing dataset under identical operating
conditions, the vibration signals from Bearing 1-1 and Bearing 1-2 were identified as the most
representative, as they comprehensively cover the majority of degradation states during bearing
operation under the same conditions. Consequently, Bearing 1-1 and Bearing 1-2 were chosen as
the training set, while Bearing 1-3, 1-4, 1-5, 1-6, and 1-7 were allocated to the test set.

To assess the predictive accuracy of the remaining useful life (RUL) estimation method, the
RMSE and MAE are employed as evaluation metrics. Their mathematical formulations are given
by:

1 n
RMSE = —Z (A, — F)?, (4)
n t=1
1 n
MAE=-"" |4, ~ [, 5)
n t=1

where, A; denotes the actual RUL, F; represents the predicted RUL, and n is the total number of
test samples.
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Fig. 6. PRONOSTIA test platform
2.4.2. RUL label construction

In bearing RUL prediction, RUL labels are typically constructed in a linear form ranging from
1 to 0, as shown in the following formula:

t:
Vi = 1- Tl' (6)
where, T represents the total lifespan of the rolling bearing, and t; denotes the time corresponding
to the ith data sample. Although the linear RUL labeling method is straightforward, it fails to
effectively capture the nonlinear degradation characteristics of bearings, particularly during the
early healthy phase and the accelerated degradation phase near failure.

The Root Mean Square (RMS) of vibration signals is adopted as a health indicator to design
RUL labels, as it effectively captures the average energy of the signal and reflects the bearing’s
degradation trend. The RUL labels are constructed by normalizing the RMS sequence and
mapping it to a range from 1 (healthy state) to 0 (complete failure). The method for calculating
RMS is as follows:

()

The RMS value x,,,5 is calculated using the formula above, where x; denotes the amplitude
of the ith data point in the vibration signal, and n is the total number of data points in the sample.
This value serves as a key feature for characterizing the bearing’s health state.

To clearly illustrate the impact of the RMS in characterizing the degradation trend of bearing
performance, the variation in the RMS and the 0-1 linear value over time for Bearing1-1 are shown
in Fig 7. As depicted, the RMS is influenced by multiple factors and does not exhibit a monotonic
change over time. Therefore, to align with the monotonicity requirement of RUL labels, the RMS
values are first fitted using an exponential function, and then the fitted values are normalized to
the range of 0 to 1. The normalization formula is as follows:

min

~ Xrms — Xrms (8)

X = -
rms xmax _ ymin’
rms rms

where, X5 is the normalized RMS value, x™3* and x™%* are the maximum and minimum values

of the RMS, respectively. It can be observed that, compared to the 0-1 linear values, the
normalized RMS values better characterize the degradation trend of the bearing. The slope of the
normalized RMS curve can be used to indicate the degree of damage between adjacent time points,

8 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460



ROLLING BEARING REMAINING USEFUL LIFE PREDICTION VIA PARAMETER-OPTIMIZED VMD AND HYBRID TCN-GRU-SELF-ATTENTION
NETWORK. LINGBIN KONG, YANG CHEN, YONGQI CHEN, ZONGCAI MA, XIAOYAN MAO

reflecting the transition from the normal state to the initial damage state and finally to the complete
failure state.

T -

RMS value |

09+ Exponential Fitted value |
: 0-1 label |

0.8 I

RUL/100%
=
2
T

| i
0 200 400 600 800 1000 1200
Time (s)

Fig. 7. Change trend of RMS over time

3. Results and discussion
3.1. GWO-VMD experiments and performance comparison

To demonstrate the superior performance of the Grey Wolf Optimizer (GWO) algorithm in
terms of optimization speed and precision, Fig 8 compares the optimization effects of Particle
Swarm Optimization (PSO)-VMD and GWO-VMD on parameters K and @. The GWO algorithm
exhibits faster convergence during the iterative process, achieving a minimum envelope entropy
value of 9.98523 after 10 optimization runs (Fig. 8(a)). In contrast, the PSO algorithm requires 49
iterations to converge, ultimately yielding a slightly lower minimum envelope entropy value of
9.98522 (Fig. 8(b)).
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908536 | 9.9852294961
= z ‘
= =
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£ - 2 99852294959
59985321 | 2
z 2 9.9852294958 -
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S omsf F
E £ 9.9852204057 ‘
Z o858l | E
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9908524 | 1 9.9852294954 |
‘ \
X b
9.08522 . . . . . . . ‘ 9.9852294953 L N e ——
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a) GWO iterations b) PSO iterations

Fig. 8. Optimizing results

Following the algorithmic steps described in Section 2.2, the envelope entropy was selected as
the fitness function, with the search ranges for parameters K and « set to [3, 10] and [1000, 3000],
respectively.For the configuration, the population size was set to N = 2, the spatial dimension to
dim = 2, and the iteration limit to t,,,, = 100. Ultimately, the optimal position of the gray wolf
population is [9, 2425], it was found that the best values for K and « are 9 and 2425, respectively,
and the frequency-domain decomposition of Bearingl-1 is presented in Fig 9. As illustrated in
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Fig. 9, the GWO-optimized adaptive VMD algorithm successfully decomposed the vibration
signal into nine IMFs, effectively separating the frequency components with minimal mode
mixing or under-decomposition. Subsequently, the effective weighted kurtosis of each IMF
component was calculated, and components with positive weighted kurtosis were selected for
signal reconstruction based on the effective weighted kurtosis criterion.

103
4

Amplitude(m/s)

0 2 4 6 8 10 12 14
Frequency(x10°Hz)

Fig. 9. Bearingl1-1 frequency domain decomposition results

The noise reduction performance of the proposed approach was evaluated by comparing the
GWO-optimized adaptive VMD algorithm with EMD and VMD. The Root Mean Square Error
(RMSE) between the reconstructed and true signals was adopted as the criterion for measuring
denoising effectiveness. In addition, the RMSE of the Bearingl-1 vibration signal was analyzed
across different SNR levels, as illustrated in Fig. 10.

0.5

EMD
—&—VMD
0.45) GWO-VMD

0.4
0351
0.3

0.25

02} L
015 \

0.1 T

RMSE

L I I
5 10 15 20 25
SNR(dB)

Fig. 10. RMSE of Bearing1-1 under different SNR conditions

As shown in Fig. 10, the RMSE gradually decreases as the SNR increases. Compared to the
EMD and VMD algorithms, the proposed denoising algorithm consistently exhibits lower RMSE
values. This superior performance is attributed to the integration of the GWO, which combines
high-precision global search capability and rapid convergence, to adaptively determine the
optimal values of parameters K (number of modes) and a (penalty factor). Furthermore, under
strong noise interference, the proposed algorithm demonstrates significant advantages over
traditional VMD. This is because the algorithm not only adaptively optimizes K and «, but also
employs the effective weighted kurtosis criterion to filter out informative IMFs, thereby achieving
more accurate signal reconstruction. The comparative results confirm that the GWO-optimized
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adaptive VMD algorithm possesses stronger denoising capabilities.
3.2. RUL experiments and performance comparison

According to the algorithmic steps described in Section 2.3, the parameters used by the model
for the PHM2012 dataset are listed in Table 1.

Table 1. Network parameters

Layer Parameters
Dilated causal convld | filters = 8, kernel = 32, stride = 4
Maxpoolld Pool size =4
TCN-SALl filters = 3, kernel = 16, dilation = 1
TCN-SA2 filters = 3, kernel = 32, dilation =2
TCN-SA3 filters = 3, kernel = 64, dilation = 4
Dropout rate = 0.4

In the branch structure of the TCN-SA network, small convolutional kernels are employed in
the convolutional layers to reduce the training burden of the model. The number of channels is set
as multiples of 16 and gradually increases. The stride determines the downscaling ratio of feature
dimensions after downsampling. The dilation rates, which control the expansibility of dilated
convolutions, are set to 1, 2, and 4 for the three TCN-SA modules, effectively avoiding the grid
effect of dilated convolutions. Additionally, the dilated causal convolutional layers incorporate L2
regularization to mitigate the risk of overfitting. The GRU-SA branch network consists of two
GRU layers, one SA (Self-Attention) layer, and one Dropout layer. The parallel TCN-SA and
GRU-SA models are trained using a mini-batch approach with a batch size of 128 and 50 training
iterations. The Dropout rate is set to 0.4, and the NumHeads parameter is set to 4, while other
parameters remain consistent. The model uses the Adam optimizer with an initial learning rate of
0.001. The MSE between the predicted labels and the true labels is adopted as the loss function.

The quantitative prediction results for the five test bearings are presented in Table 2. As
indicated by the data, the proposed TCN-GRU-SA method achieves the lowest average MAE and
RMSE across most datasets. Specifically, compared to the baseline TCN-GRU network, the
introduction of the Self-Attention mechanism reduces the average RMSE by 21.77 % and the
average MAE by 19.44 %. Although a slight increase in error is observed for Bearing 1-7, the
overall performance improvement is substantial.

Fig. 11 visualizes the RUL prediction curves for Bearing 1-3. It can be observed that the
proposed method closely follows the actual degradation trend, even during the later stages of
failure. This superiority is attributed to the dual-branch architecture: the TCN branch effectively
captures long-term degradation trends, while the GRU branch models transient dynamic
fluctuations. Additionally, the global average pooling layer enhances the model's generalization
ability, preventing overfitting to specific noise patterns.

Table 2. Performance comparison of using different methods with PHM2012 dataset

CNN LSTM TCN TCN-GRU TCN-GRU-SA
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE
Bearing1-3 | 0.2433 | 0.1890 | 0.1799 | 0.1225 | 0.1569 | 0.0854 | 0.1509 | 0.0831 | 0.0822 | 0.0582
Bearing1-4 | 0.1989 | 0.1920 | 0.1647 | 0.1368 | 0.1133 | 0.0414 | 0.1210 | 0.0686 | 0.1032 | 0.0486
Bearingl-5 | 0.1686 | 0.1665 | 0.1128 | 0.1041 | 0.0798 | 0.0730 | 0.0621 | 0.0570 | 0.0475 | 0.0319
Bearingl-6 | 0.2130 | 0.2110 | 0.1261 | 0.1122 | 0.1138 | 0.1034 | 0.1044 | 0.0540 | 0.0730 | 0.0439
Bearingl-7 | 0.1753 | 0.1718 | 0.1477 | 0.1393 | 0.1382 | 0.1183 | 0.0921 | 0.0634 | 0.1091 | 0.0801

Bearing

Table 3 provides a comprehensive comparison between the proposed model and state-of-the-
art methods, including I-DCNN [25] and CNN-Bi-LSTM [26]. The results indicate that the
proposed framework achieves significantly lower error metrics compared to these existing models.
The superior performance is primarily driven by two key factors: Enhanced Feature
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Representation: Unlike I-DCNN and CNN-Bi-LSTM, which rely on standard convolution or
recurrent layers, our model integrates a parallel TCN-GRU structure. This hybrid approach
enables the simultaneous extraction of local signal variations and global temporal dependencies,
providing a richer feature set for prediction. Impact of Self-Attention Mechanism: As
demonstrated by the comparison with the TCN-GRU baseline, the Self-Attention mechanism
plays a critical role in model performance. It explicitly models global correlations between
non-adjacent time steps and dynamically allocates higher weights to critical degradation features
(such as fault characteristic frequencies) while suppressing background noise. This effectively
addresses the challenge of information dilution in long sequences, leading to higher prediction
accuracy, particularly in complex multi-condition scenarios.

1
0.9
0.8 -

0.7

RUL/100%
s o = 2
& =2 &L =
T

{4
o
T

Predicted RUL (Smoothed)
Actual RUL

e
s
T

0 L I I I I I )
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time(10s)

Fig. 11. RUL prediction curve of test bearing 1-3

Table 3. Comparison of TCN-GRU-SA, I-DCNN, CNN-Bi-LSTM, and TCN-GRU.
I-DCNN CNN-Bi-LSTM TCN-GRU TCN-GRU-SA
RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Bearing 1-3 | 0.2513 | 0.2190 | 0.1061 | 0.0818 | 0.1509 | 0.0831 | 0.0822 | 0.0582
Bearing 1-4 | 0.5236 | 0.4865 | 0.1916 | 0.1373 | 0.1210 | 0.0686 | 0.1032 | 0.0486
Bearing 1-5 | 0.2199 | 0.1949 | 0.2713 | 0.2198 | 0.0621 | 0.0570 | 0.0475 | 0.0319
Bearing 1-6 | 0.2002 | 0.1734 | 0.2115 | 0.1765 | 0.1044 | 0.0540 | 0.0730 | 0.0439
Bearing 1-7 | 0.2499 | 0.2145 | 0.1549 | 0.1180 | 0.0921 | 0.0634 | 0.1091 | 0.0801

Bearing

4. Conclusions

This paper proposes a novel RUL prediction framework for rolling bearings that integrates
adaptive signal decomposition with a parallel deep learning architecture. To address the
limitations of fixed-parameter signal processing, a GWO-VMD algorithm is developed. By
introducing a weighted kurtosis criterion, this method achieves adaptive parameter optimization,
which significantly enhances the signal-to-noise ratio and allows for the effective extraction of
degradation features from strong background noise.

Using the reconstructed signals, a parallel TCN-GRU-SA hybrid model is constructed to
predict RUL. This architecture synergizes the strengths of dilated causal convolutions in capturing
long-term dependencies and GRUs in modeling sequential dynamics. Furthermore, the integration
of the Self-Attention mechanism enables the model to dynamically weight critical fault features
while suppressing irrelevant interference. Experimental results on industrial bearing datasets
demonstrate that the proposed framework achieves state-of-the-art performance in terms of RMSE
and MAE, exhibiting superior robustness and prediction accuracy compared to traditional
physics-based and single-model deep learning approaches.

However, several limitations remain to be addressed in future work. First, the determination
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of the degradation onset currently relies on expert-defined thresholds, which may introduce
subjectivity; future studies will explore unsupervised change-point detection for adaptive
thresholding. Second, the current experiments were conducted under constant operating
conditions; extending the framework to multi-condition scenarios via domain adaptation or
transfer learning is necessary. Finally, considering the computational complexity of the parallel
architecture, future research will focus on lightweight model design (e.g., model pruning) and
interpretability enhancement to facilitate real-time deployment in industrial edge computing
systems.
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