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Abstract. This work investigates the stability of a linear oscillator with a periodically varying 
stiffness composed of constant and linearly time-dependent segments. By combining Floquet 
theory with an analytical formulation in terms of Airy functions, the monodromy matrix is 
obtained in closed form and the characteristic multipliers that determine the stability regime are 
calculated. Unlike the classical literature on Hill or Mathieu systems, where the stiffness profile 
is assumed to switch instantaneously or vary sinusoidally, the present model explicitly 
incorporates finite transition times through linear ramps. This allows us to quantify how the 
duration of these transitions affects the onset of parametric resonance. The resulting stability map 
reveals alternating bands of stable and unstable regions reminiscent of Arnold tongues, and shows 
that the proportion of the cycle spent in the linear-ramp stage plays a decisive role in either 
promoting or suppressing instability. Overall, the study provides a compact analytical and 
numerical framework for assessing stability in periodically driven parametric systems of practical 
relevance in physics and engineering.  
Keywords: parametric resonance, airy functions, time-varying systems. 

1. Introduction 

In recent years, systems with variable stiffness have attracted attention in control engineering. 
These systems exploit the modulation of stiffness properties to achieve objectives such as 
vibration attenuation and resonance suppression to improve structural performance. The stiffness 
variation is typically implemented via a control law that switches between two discrete values, 
allowing the system to adapt its response to operational conditions or external disturbances [1-6]. 

Among the contributions in this area, Moreno and Diarte [1] propose a control law in which 
the switching is state-dependent. Their work demonstrates that such a strategy effectively 
mitigates mechanical vibrations in linear time-invariant (LTI) systems. The underlying principle 
is that by appropriately alternating the stiffness, one can induce energy dissipation. Nevertheless, 
the introduction of a switching control law also introduces significant analytical challenges. 
Specifically, the system becomes inherently time-varying, departing from the standard analysis of 
LTI systems. In general, time-varying systems – particularly those with discontinuous coefficients 
– are difficult to analyze, as classical tools such as eigenvalue analysis and transfer functions are 
no longer directly applicable. The example analyzed by Moreno and Diarte is the Reid oscillator, 
written as follows: 𝑥ሷሺ𝑡ሻ ൅ 𝑘തሺ𝑡ሻ𝑥ሺ𝑡ሻ ൌ 0,      𝑥ሺ0ሻ ൌ 𝑥଴,      𝑥ሶሺ0ሻ ൌ 𝑥ሶ଴, (1)

where the stiffness function is defined as 𝑘തሺ𝑡ሻ ൌ 1 ൅ 𝜀𝑠𝑔𝑛ሺ𝑥𝑥ሶ ሻ, with 𝑠𝑔𝑛ሺ∙ሻ denoting the sign 
function and 0 ൏ 𝜀 ൏ 1 a real constant. The non-dimensional adjustment parameter 𝜀 plays a 
pivotal role in governing the dynamics of the system, determining the rate at which oscillations 
are attenuated. In addition, this parameter has served as a standard metric for assessing the 
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performance of semi-active stiffness devices [6]. 
To analyze the system, we must note that it has a non-continuous coefficient 𝑘തሺ𝑡ሻ. 

Consequently, the use of specialized mathematical tools for time-varying systems is required. 
Such tools often involve sophisticated techniques, including numerical simulations, piecewise 
analysis, or perturbation methods. These tools are generally not easy to use. Remarkably, in this 
case, 𝑘ത(𝑡) exhibits periodic behavior. This periodicity allows for the application of Floquet theory, 
a rigorous framework for studying the stability and qualitative behavior of linear systems with 
periodic coefficients, thereby classifying the Reid oscillator as a Hill-type system [7, 8]. 

Although Floquet theory is generally considered mathematically demanding, the alternating 
nature of 𝑘ത(𝑡) between two constant values (commutation) simplifies the analysis. This property 
enables the derivation of analytical solutions, similar in approach to the classical Meissner 
equation [9]. These analytical expressions not only enhance theoretical understanding but also 
provide benchmarks for validating numerical simulations and experimental investigations. 

Until now, the study of variable-stiffness systems has been only partially addressed: most 
research has focused on the restrictive scenario in which stiffness alternates instantaneously 
between two constants. While this assumption renders the problem mathematically tractable, it 
does not fully capture the complexity of real-world applications, where switching may be 
non-instantaneous or involve more complex stiffness profiles. Therefore, bridging the gap 
between idealized commutated models and practically implementable controllers remains an open 
problem. 

In this work, we address this gap by studying a variant derived from the commutation-based 
control law proposed in [2], in which stiffness transitions occur over a finite switching interval. 
This alteration fundamentally changes the problem: the switching instants can no longer be 
determined analytically in advance, and the system coefficient is no longer piecewise constant. As 
a result, the analytical tools traditionally used for the classical Reid and Hill oscillators are no 
longer directly applicable. A key contribution of this work is the derivation of explicit analytical 
solutions in terms of Airy functions. These solutions do not merely reproduce known Floquet 
stability patterns; rather, they reveal how the finite transition duration reshapes the boundaries 
between stability and instability and quantifies the corresponding rate of energy dissipation. To 
the best of our knowledge, no prior study has established this analytical connection between 
smooth stiffness transitions, Airy-function solutions, and vibration-attenuation performance. 

2. Problem statement 

In [3], a state-dependent controller was designed and experimentally implemented to mitigate 
mechanical vibrations induced by seismic excitations. The control strategy was applied to a single-
story building model, schematically represented in Fig. 1, where a movable mass 𝑚௖ traverses a 
linear path. The motion of this mass is designed to attenuate the vibrations experienced by the 
building structure during a seismic event. 

The mathematical model can be expressed as: 𝑚𝑥ሷ(𝑡) + 𝑏𝑥ሶ(𝑡) + 𝑘𝑥(𝑡) = 𝑢, 𝑥(0) = 𝑥଴, 𝑥ሶ(0) = 𝑥ሶ଴, (2)

where 𝑚 = 𝑚௖ + 𝑚௧, 𝑚௖ is a linearly moving mass and 𝑚௧ is the mass of the building roof. The 
coefficient 𝑏 accounts for viscous damping associated with the walls, while 𝑘 denotes the 
structural stiffness of the building. For more details of the model see [10]. 

Let us consider a control input of the form 𝑢 = −𝑘෠(𝑡)𝑥(𝑡) and assume that 𝑏 ≪ 1. 
Substituting this control law into the Eq. (2) yields: 𝑥ሷ(𝑡) + 𝑘(𝑡)𝑥(𝑡) = 0, 𝑥(0) = 𝑥଴, 𝑥ሶ(0) = 𝑥ሶ଴, (3)

where 𝑘(𝑡) = (𝑘 + 𝑘෠(𝑡))/𝑚, is the time-dependent equivalent stiffness of the building-mass 
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system, with units [N/m]. As we can see, this model corresponds to the form of Eq. (1). By 
appropriate manipulation of the model, we identify 𝑘(𝑡)  =  𝑘ത(𝑡) expecting to reproduce the same 
behavior reported in [1]. However, the experimental results show discrepancy in the controller 
response. The switching is not instantaneous, contrary to the idealized assumption. The motion of 
the mass 𝑚௖ remains subject to the physical constraints of the experiment, which inherently 
introduce short transition intervals between the stiffness states. This phenomenon is illustrated in 
Fig. 2, the switching between the minimum and maximum values of 𝑘(𝑡) occurs over a finite 
duration rather than abruptly. This duration is relatively short, but this time can increase whether 
the experimental conditions change, for instance, if the mass 𝑚௖ has to increase its travel or a 
higher friction. 

 
Fig. 1. Single-story building model 

 
Fig. 2. Experimental data of 𝑘(𝑡) 

These observations motivate an analysis of the system in which the stiffness switching is 
non-instantaneous. We propose the model depicted in Fig. 3, where the stiffness function 𝑘(𝑡) 
alternates periodically between two values 𝑘௠௔௫ and 𝑘௠௜௡, but with finite rising and falling 
transitions. These rises and falls are assumed to be linear in a small-time interval. The resulting 
model no longer corresponds to a purely piecewise-constant system, but rather to a continuous, 
piecewise-linear periodic system. Therefore, the central problem addressed in this work is the 
characterization and analysis of a linear oscillator with non-instantaneous, linearly varying 
stiffness switching. 

3. Preliminaries 

Let us consider Eq. (3). The solutions of Eq. (3) depend directly on the stiffness function 𝑘(𝑡). 
Two representative cases are distinguished below. 

3.1. Case 1. Constant stiffness 

If 𝑘(𝑡) is any value 𝑘௠௔௫, 𝑘௠௜௡ ൐ 0, the Eq. (3) reduces to the classical linear oscillator 



EFFECT OF PARAMETRIC MODULATION ON THE STABILITY OF A PERIODIC OSCILLATOR: A STUDY WITH AIRY FUNCTIONS.  
RAFAEL IVAN AYALA-FIGUEROA, ARTURO ALEJANDRO CHÁVEZ-MURGA, JESUS ELIAS MIRANDA-VEGA, ET AL. 

 MATHEMATICAL MODELS IN ENGINEERING. DECEMBER 2025, VOLUME 11, ISSUE 4 179 

equation: 𝑥ሷ(𝑡) + 𝑘𝑥(𝑡) = 0, 𝑥(𝑡଴) = 𝑥଴, 𝑥ሶ(𝑡଴) = 𝑥ሶ଴. (4)

 
Fig. 3. Non-instantaneous switching of 𝑘(𝑡) 

The solution is well known and can be expressed as: 

൬𝑥(𝑡)𝑥ሶ(𝑡)൰ = ቌ cos൫√𝑘(𝑡 − 𝑡଴)൯ 1√𝑘 sin൫√𝑘(𝑡 − 𝑡଴)൯−√𝑘sin൫√𝑘(𝑡 − 𝑡଴)൯ cos൫√𝑘(𝑡 − 𝑡଴)൯ ቍቀ𝑥଴𝑥ሶ଴ቁ, 
while the transition matrix is given by: 

Φ(t଴, 𝑡ଵ) = ൮ cos൫ඥ𝑘௠௔௫(𝑡ଵ − 𝑡଴)൯ 1ඥ𝑘௠௔௫ sin൫ඥ𝑘௠௔௫(𝑡ଵ − 𝑡଴)൯−ඥ𝑘௠௔௫sin൫ඥ𝑘௠௔௫(𝑡ଵ − 𝑡଴)൯ cos൫ඥ𝑘௠௔௫(𝑡ଵ − 𝑡଴)൯ ൲. 
3.2. Case 2. Linearly varying stiffness 

If 𝑘(𝑡) varies linearly with time, that is, 𝑘(𝑡) = 𝛼𝑡 + 𝛽, where 𝛼 and 𝛽 are real constants. If 𝛼 ൐ 0, we have a transition from 𝑘௠௜௡ to 𝑘௠௔௫. Conversely, if 𝛼 ൏ 0, then the transition is from 𝑘௠௔௫ to 𝑘௠௜௡. Substituting this expression into Eq. (3), we obtain: 𝑥ሷ(𝑡) + (𝛼𝑡 + 𝛽)𝑥(𝑡) = 0, 𝑥(𝑡଴) = 𝑥଴, 𝑥ሶ(𝑡଴) = 𝑥ሶ଴. (5)

This equation no longer admits trigonometric solutions and belongs to a class of 
non-autonomous differential equations. To simplify Eq. (5), let us introduce the change of 
variable: 𝜏(𝑡) = − (𝛼𝑡 + 𝛽) 𝛼ଶ ଷ⁄⁄ , 
where 𝜏 is a non-dimensional scaled time transformation which transforms the equation into the 
standard form of the Airy equation: 𝑑ଶ𝑥(𝜏)𝑑𝜏ଶ − 𝜏(𝑡)𝑥(𝜏) = 0, 𝑥(𝜏଴) = 𝑥଴, 𝑥ሶ(𝜏଴) = −𝑥ሶ଴ 𝛼ଵ ଷ⁄⁄ , (6)

where 𝜏(0) = 𝜏଴. The solution to Eq. (6) can be expressed as a combination of the Airy functions 𝐴𝑖(𝜏) and 𝐵𝑖(𝜏) (for details see [11]): 
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𝑥(𝑡) = 𝐶ଵ𝐴𝑖൫𝜏(𝑡)൯ + 𝐶ଶ𝐵𝑖൫𝜏(𝑡)൯. 
The constants 𝐶ଵ and 𝐶ଶ are determined by imposing the initial conditions: 𝐶ଵ𝐴𝑖(𝜏଴) + 𝐶ଶ𝐵𝑖(𝜏଴) = 𝑥଴, 𝐶ଵ𝐴𝑖ᇱ(𝜏଴) + 𝐶ଶ𝐵𝑖ᇱ(𝜏଴) = − 𝑥ሶ଴𝛼ଵ/ଷ. 
Solving the system of equation, we have: 𝐶ଵ = 𝜋 ൤𝑥଴𝐵𝑖ᇱ(𝜏଴) + 𝑥଴ሶ𝛼ଵ/ଷ 𝐵𝑖(𝜏଴)൨, 𝐶ଶ = −𝜋 ൥𝑥଴ሶ𝛼ଵଷ 𝐴𝑖(𝜏଴) + 𝑥଴𝐴𝑖ᇱ(ఛబ)൩. 
The fundamental matrix is given by: 

Ψ(𝑡) = ቆ 𝐴𝑖(𝜏(𝑡)) 𝐵𝑖(𝜏(𝑡))𝑚ଵ/ଷ𝐴𝑖′൫𝜏(𝑡)൯ 𝑚ଵ/ଷ𝐵𝑖′൫𝜏(𝑡)൯ቇ, 
and the transition matrix is Φ(𝑡, 𝑡଴) = Ψ(𝑡)Ψିଵ(𝑡଴). 

The two cases analyzed above establish the foundational elements for constructing the 
complete solution of Eq. (3) under a piecewise-defined stiffness function 𝑘(𝑡). From here we 
construct a solution for the differential Eq. (3) in the Carathéodory sense. 

4. Results 

We assume that the function 𝑘(𝑡) is periodic and defined as follows (see Fig. 3): 

𝑘(𝑡)  = ⎩⎨
⎧𝑘ଵ(𝑡) =  𝑘௠௔௫, 𝑡 ∈ ሾ𝑡௜ , 𝑡௜ାଵሿ,𝑘ଶ(𝑡) = −𝑚𝑡 + 𝑚ሾ𝑖(1 + 𝜆) + 1ሿ∆ + 𝑘௠௔௫, 𝑡 ∈ (𝑡௜ାଵ, 𝑡ାଶ),𝑘ଷ(𝑡) = 𝑘௠௜௡, 𝑡 ∈ ሾ𝑡௜ାଶ, 𝑡௜ାଷሿ,𝑘ସ(𝑡) = 𝑚𝑡 −𝑚ሾ(𝑖 + 1)(1 + 𝜆) + 1ሿ∆ + 𝑘௠௜௡, 𝑡 ∈ (𝑡௜ାଷ, 𝑡௜ାସ), (7)

where 𝑚 = (௞೘ೌೣି௞೘೔೙)ఒ୼ , for 𝑖 = 0,1,2, … and a small parameter 𝜆 ∈ (0,1).  
Once defined 𝑘(𝑡), we can obtain the corresponding transition matrix for each interval as 

follows. 
Interval [𝑡଴, 𝑡ଵ). In this case 𝑘(𝑡) = 𝑘ଵ(𝑡) = 𝑘௠௔௫ and Eq. (3) reduces to  𝑥ሷ(𝑡) + 𝑘ଵ(𝑡)𝑥(𝑡) = 0, 𝑥(𝑡଴) = 𝑥଴, 𝑥ሶ(𝑡଴) = 𝑥ሶ଴. The transition matrix from 𝑡଴ to 𝑡଴ + Δ = 𝑡ଵ is: 

Φଵ(𝑡଴, 𝑡ଵ) = ൮ cos൫ඥ𝑘௠௔௫Δ൯ 1ඥ𝑘௠௔௫ sin൫ඥ𝑘௠௔௫Δ൯−ඥ𝑘௠௔௫sin൫ඥ𝑘௠௔௫Δ൯ cos൫ඥ𝑘௠௔௫Δ൯ ൲, 
and we have ቀ𝑥ଵ𝑥ሶଵቁ = Φଵ(𝑡଴, 𝑡ଵ) ቀ𝑥଴𝑥ሶ଴ቁ. 

– Interval [𝑡ଵ, 𝑡ଶ). Here 𝑘(𝑡) = 𝑘ଶ(𝑡) = −𝑚𝑡 + 𝑚[𝑖(1 + 𝜆) + 1]∆ + 𝑘௠௔௫. Then Eq. (3) 
becomes 𝑥ሷ(𝑡) + 𝑘ଶ(𝑡)𝑥(𝑡) = 0, 𝑥(𝑡ଵ) = 𝑥ଵ, 𝑥ሶ(𝑡ଵ) = 𝑥ሶଵ.  

The corresponding fundamental matrix is: 
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Ψଵ(𝑡) = ቆ 𝐴𝑖(𝜏(𝑡)) 𝐵𝑖(𝜏(𝑡))𝑚ଵ/ଷ𝐴𝑖′൫𝜏(𝑡)൯ 𝑚ଵ/ଷ𝐵𝑖′൫𝜏(𝑡)൯ቇ, 
where 𝜏(𝑡) = −𝑘ଶ(𝑡)/𝑚ଶ/ଷ. 

The transition matrix is from 𝑡ଵ to 𝑡ଶ = 𝑡ଵ + 𝜆Δ is Φଶ(𝑡ଵ, 𝑡ଶ) = Ψଵ(𝑡ଶ)Ψଵି ଵ(𝑡ଵ) and  ቀ𝑥ଶ𝑥ሶଶቁ = Φଶ(𝑡ଵ, 𝑡ଶ) ቀ𝑥ଵ𝑥ሶଵቁ. 
– Interval [𝑡ଶ, 𝑡ଷ). For 𝑘(𝑡) = 𝑘ଷ(𝑡) = 𝑘௠௜௡, we have 𝑥ሷ(𝑡) + 𝑘ଷ(𝑡)𝑥(𝑡) = 0, 𝑥(𝑡ଶ) = 𝑥ଶ, 𝑥ሶ(𝑡ଶ) = 𝑥ሶଶ. The transition matrix in the interval is: 

Φଷ(𝑡ଶ, 𝑡ଷ) = ൮ cos൫ඥ𝑘௠௜௡Δ൯ 1ඥ𝑘௠௜௡ sin൫ඥ𝑘௠௜௡Δ൯−ඥ𝑘௠௜௡sin൫ඥ𝑘௠௜௡Δ൯ cos൫ඥ𝑘௠௜௡Δ൯ ൲, 
and ቀ𝑥ଷ𝑥ሶଷቁ = Φଷ(𝑡ଶ, 𝑡ଷ) ቀ𝑥ଶ𝑥ሶଶቁ. 

– Interval [𝑡ଷ, 𝑡ସ). Finally, 𝑘(𝑡) = 𝑘ସ(𝑡) = 𝑚𝑡 −𝑚[(𝑖 + 1)(1 + 𝜆) + 1]∆ + 𝑘௠௜௡. The 
fundamental matrix is: Ψଶ(𝑡) = ൬ 𝐴𝑖(𝜏) 𝐵𝑖(𝜏)−𝑚ଵ/ଷ𝐴𝑖′(𝜏) −𝑚ଵ/ଷ𝐵𝑖′(𝜏)൰, 
where 𝜏(𝑡) = −𝑘ସ(𝑡)/𝑚ଶ/ଷ. Then Φସ(𝑡ସ, 𝑡ଷ) = Ψଶ(𝑡ସ)Ψଶି ଵ(𝑡ଷ).  

Using the Airy Wronskian identity 𝑊(𝐴𝑖,𝐵𝑖) = 1/𝜋, it follows that det൫Ψଵ(𝑡)൯ =det൫Ψଶ(𝑡)൯ = ௠భ/యగ , which is constant in time. This constant determinant is explicitly taken into 
account when computing Ψଵି ଵ(𝑡ଵ) and Ψଶି ଵ(𝑡ଷ), ensuring correct normalization in the 
construction of the transition matrix. 

Due to the periodicity of 𝑘(𝑡), the procedure can be repeated identically for any number of 

periods 𝑇 = 2(1 + 𝜆)Δ. Consequently, ൬𝑥(𝑇)𝑥ሶ(𝑇)൰ = Φସ(𝑡ସ, 𝑡ଷ)Φଷ(𝑡ଷ, 𝑡ଶ)Φଶ(𝑡ଵ, 𝑡ଶ)Φଵ(𝑡଴, 𝑡ଵ) ቀ𝑥଴𝑥ሶ଴ቁ.  
Defining the matrix:  Φ(𝑇) = Φସ(𝑡ସ, 𝑡ଷ)Φଷ(𝑡ଷ, 𝑡ଶ)Φଶ(𝑡ଵ, 𝑡ଶ)Φଵ(𝑡଴, 𝑡ଵ), (8)

known as the monodromy matrix, the evolution after 𝑛 periods satisfies: ൬𝑥(𝑛𝑇)𝑥ሶ(𝑛𝑇)൰ = [Φ(𝑇)]௡ ቀ𝑥଴𝑥ሶ଴ቁ. (9)

The eigenvalues of Φ(𝑇), denoted by 𝜌 are the Floquet multipliers, which determine the 
stability of the system. The stability criterion is as follows: If |𝜌| < 1 for all Floquet multipliers, 
then the solution is asymptotically stable. Unstable solutions are classified according to the nature 
of the dominant Floquet multiplier. A positive real multiplier (𝜌௠௔௫  > 1) indicates a period-𝑇 
instability; a negative real multiplier (𝜌௠௔௫  < −1) corresponds to a period-2𝑇 instability; and a 
complex conjugate pair with amplitude larger than one |𝜌௠௔௫ | > 1 indicates a parametric 
resonance characterized by oscillatory, multi-periodic growth. 

This classification is used throughout the numerical analysis presented in Figs. 4-6. The time-
domain responses in Figs. 4 and 5 were obtained via numerical integration using a  
Runge-Kutta 4(5) adaptive scheme, whereas the stability chart in Fig. 6 was computed by 
evaluating the spectral radius of the monodromy matrix associated with one full switching period. 
All simulations and calculations were conducted in MATLAB R2025b. The numerical results 
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correspond to the parameter sets listed in Table 1. Note that the system response can be either 
stable or unstable depending on the selected parameters: for the stable case, the maximum Floquet 
multiplier is |𝜌௠௔௫| = 0.9211, whereas for the unstable case |𝜌௠௔௫| = 1.3402. 

Table 1. Parameters simulation 
Parameter Stable Unstable Stable 𝑘௠௔௫ 1.5 1.5 1.5 𝑘௠௜௡ 1 1 1 Δ 20 20 10 𝜆 0.01 0.04 0.04 |𝜌௠௔௫| 0.9211 1.3402 0.6962 

 
Fig. 4. Stable numerical solution 𝑥(𝑡) when Δ = 20 and 𝜆 = 0.01 

 
Fig. 5. Unstable numerical solution 𝑥(𝑡) when Δ = 20 and 𝜆 = 0.04 

At first glance, it might appear that increasing the value of 𝜆 lead to a unstable solution, since 
changing 𝜆 from 0.01 to 0.04 results in a transition from stable to unstable behavior. However, 
this trend does not hold globally in the parameter space: when we change Δ from 20 to 10 keeping 𝜆 = 0.04, the solution becomes stable again, with |𝜌௠௔௫| = 0.6962. Fig. 6 presents a 3D map of 
the maximum Floquet multiplier as a function of the parameters (Δ, 𝜆). The contour plot included 
in the same figure highlights the stability boundary defined by |𝜌௠௔௫| = 1. Regions below this 
contour correspond to asymptotically stable solutions, while regions above it correspond to 
instability. 

As illustrated in Fig. 7, the parameter plane exhibits a structured organization of dynamical 
responses. A large stable region (blue) is separated from a domain of period-T instability (red), 
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while the emergence of parametric resonance (green) forms well-defined resonance tongues. This 
demonstrates that even small variations of the parameters may lead to a sudden transition from 
stable motion to strongly amplified oscillations. 

 
a) 3D map of |𝜌௠௔௫| 

 
b) Contour map: |𝜌௠௔௫| = 1 

Fig. 6. Dependence of |𝜌௠௔௫  | on the parameters Δ and 𝜆 

 
Fig. 7. Instability classification: blue – stable; red – Period-T instability; green – parametric resonance 

The stability transitions observed in the (Δ, 𝜆)-plane have direct relevance for real 
vibration-control systems in which the stiffness is periodically modulated, either intentionally 
(e.g., parametric controllers) or unintentionally (e.g., structural degradation or load fluctuations). 
In this context, the appearance of alternating regions of stability and instability provides a practical 
guideline for controller design: increasing the modulation amplitude 𝜆 does not necessarily 
destabilize the system, and the effect critically depends on the (Δ, 𝜆) parameters interaction. 

The parameter 𝜆 does not merely represent a small perturbation of the excitation profile; rather, 
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it controls the spectral content of the parametric modulation 𝑘(𝑡). When 𝜆 = 0, the 
piecewise-constant excitation has a Fourier series rich in harmonics. Increasing 𝜆 introduces a 
linear ramp that effectively acts as a low-pass filter, attenuating the higher-order harmonics of the 
excitation. 

Overall, the results highlight that effective parametric control requires not only tuning the 
amplitude of stiffness variation but also its timing. The Floquet multipliers provide a quantitative 
indicator for selecting safe operating regions and preventing undesired transitions to exponentially 
growing oscillations. 

Finally, a closed-form analytical approximation of the transition matrices may be derived by 
replacing the Airy functions by their asymptotic expansions for large positive and negative 
arguments. Such an approach would lead to perturbative expressions for the monodromy matrix, 
potentially yielding an approximate analytical stability condition similar to the  
Whittaker-Ince-Straus relation in the Mathieu case. However, the present study explores 
parameter regimes where the arguments of the Airy functions are not asymptotically large, and 
therefore we evaluate Φଶ and Φସ numerically to ensure uniform accuracy in the entire stability 
map. 

5. Conclusions 

The analysis of Floquet multipliers as a function of the parameters Δ and 𝜆 shows a structure 
of alternating bands of stability and instability (Arnold tongues), characteristic of Hill-type 
systems. As Δ increases, recurrent regions of parametric resonance are observed, where small 
variations in periodicity cause transitions between stable and exponentially growing solutions. On 
the other hand, the parameter 𝜆 regulates the extension of the temporal variation of 𝑘(𝑡); small 
values produce stable, quasi-harmonic behavior, while large values introduce instabilities by 
increasing the influence of the linear temporal variation regions. In these intervals, the solutions 
are expressed by Airy functions, the combination of which determines whether the response is 
attenuated or amplified between periods. Overall, the results show that the stability of the system 
depends on the balance between the periodicity imposed by Δ and the parametric modulation 
controlled by 𝜆, mediated by the transitional dynamics represented by the Airy functions. 

Although the complete formulation of the unforced mechanical system possesses an 
underlying Hamiltonian structure, the approximation 𝑏 ≪ 1 used in this study does not explicitly 
preserve that property. Nevertheless, this reduction isolates the dominant mechanism responsible 
for stability loss, and the Floquet spectrum obtained numerically shows that any departure from 
exact Hamiltonian symmetry is of higher order and does not alter the onset or nature of the 
observed instabilities.  

We acknowledge that the prescribed piecewise-linear profile for 𝑘(𝑡) constitutes an idealized 
representation of actuator-driven stiffness modulation. This formulation was adopted because it 
enables an analytically tractable characterization of the transition matrices and the resulting 
monodromy matrix, allowing us to isolate and study the specific effect of finite transition time on 
stability. While more realistic actuator-coupled models may introduce additional dynamical 
effects that are outside the scope of the present work, we expect the qualitative trends reported 
here to remain relevant. Extending the analysis to more general transition laws represents a natural 
continuation of this line of research. 
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