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Abstract. This work investigates the stability of a linear oscillator with a periodically varying
stiffness composed of constant and linearly time-dependent segments. By combining Floquet
theory with an analytical formulation in terms of Airy functions, the monodromy matrix is
obtained in closed form and the characteristic multipliers that determine the stability regime are
calculated. Unlike the classical literature on Hill or Mathieu systems, where the stiffness profile
is assumed to switch instantaneously or vary sinusoidally, the present model explicitly
incorporates finite transition times through linear ramps. This allows us to quantify how the
duration of these transitions affects the onset of parametric resonance. The resulting stability map
reveals alternating bands of stable and unstable regions reminiscent of Arnold tongues, and shows
that the proportion of the cycle spent in the linear-ramp stage plays a decisive role in either
promoting or suppressing instability. Overall, the study provides a compact analytical and
numerical framework for assessing stability in periodically driven parametric systems of practical
relevance in physics and engineering.

Keywords: parametric resonance, airy functions, time-varying systems.
1. Introduction

In recent years, systems with variable stiffness have attracted attention in control engineering.
These systems exploit the modulation of stiffness properties to achieve objectives such as
vibration attenuation and resonance suppression to improve structural performance. The stiffness
variation is typically implemented via a control law that switches between two discrete values,
allowing the system to adapt its response to operational conditions or external disturbances [1-6].

Among the contributions in this area, Moreno and Diarte [1] propose a control law in which
the switching is state-dependent. Their work demonstrates that such a strategy effectively
mitigates mechanical vibrations in linear time-invariant (LTI) systems. The underlying principle
is that by appropriately alternating the stiffness, one can induce energy dissipation. Nevertheless,
the introduction of a switching control law also introduces significant analytical challenges.
Specifically, the system becomes inherently time-varying, departing from the standard analysis of
LTI systems. In general, time-varying systems — particularly those with discontinuous coefficients
— are difficult to analyze, as classical tools such as eigenvalue analysis and transfer functions are
no longer directly applicable. The example analyzed by Moreno and Diarte is the Reid oscillator,
written as follows:

¥(t) +k(®)x(t) =0, x(0)=x, x(0)=x,, (1)

where the stiffness function is defined as k(t) = 1 + esgn(xx), with sgn(-) denoting the sign
function and 0 < € < 1 a real constant. The non-dimensional adjustment parameter € plays a
pivotal role in governing the dynamics of the system, determining the rate at which oscillations
are attenuated. In addition, this parameter has served as a standard metric for assessing the
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performance of semi-active stiffness devices [6].

To analyze the system, we must note that it has a non-continuous coefficient k(t).
Consequently, the use of specialized mathematical tools for time-varying systems is required.
Such tools often involve sophisticated techniques, including numerical simulations, piecewise
analysis, or perturbation methods. These tools are generally not easy to use. Remarkably, in this
case, k(t) exhibits periodic behavior. This periodicity allows for the application of Floquet theory,
a rigorous framework for studying the stability and qualitative behavior of linear systems with
periodic coefficients, thereby classifying the Reid oscillator as a Hill-type system [7, 8].

Although Floquet theory is generally considered mathematically demanding, the alternating
nature of k(t) between two constant values (commutation) simplifies the analysis. This property
enables the derivation of analytical solutions, similar in approach to the classical Meissner
equation [9]. These analytical expressions not only enhance theoretical understanding but also
provide benchmarks for validating numerical simulations and experimental investigations.

Until now, the study of variable-stiffness systems has been only partially addressed: most
research has focused on the restrictive scenario in which stiffness alternates instantaneously
between two constants. While this assumption renders the problem mathematically tractable, it
does not fully capture the complexity of real-world applications, where switching may be
non-instantaneous or involve more complex stiffness profiles. Therefore, bridging the gap
between idealized commutated models and practically implementable controllers remains an open
problem.

In this work, we address this gap by studying a variant derived from the commutation-based
control law proposed in [2], in which stiffness transitions occur over a finite switching interval.
This alteration fundamentally changes the problem: the switching instants can no longer be
determined analytically in advance, and the system coefficient is no longer piecewise constant. As
a result, the analytical tools traditionally used for the classical Reid and Hill oscillators are no
longer directly applicable. A key contribution of this work is the derivation of explicit analytical
solutions in terms of Airy functions. These solutions do not merely reproduce known Floquet
stability patterns; rather, they reveal how the finite transition duration reshapes the boundaries
between stability and instability and quantifies the corresponding rate of energy dissipation. To
the best of our knowledge, no prior study has established this analytical connection between
smooth stiffness transitions, Airy-function solutions, and vibration-attenuation performance.

2. Problem statement

In [3], a state-dependent controller was designed and experimentally implemented to mitigate
mechanical vibrations induced by seismic excitations. The control strategy was applied to a single-
story building model, schematically represented in Fig. 1, where a movable mass m, traverses a
linear path. The motion of this mass is designed to attenuate the vibrations experienced by the
building structure during a seismic event.

The mathematical model can be expressed as:

mx(t) + bx(t) + kx(t) = u, x(0) = x,, x(0) = x,, 2

where m = m, + m;, m, is a linearly moving mass and m, is the mass of the building roof. The
coefficient b accounts for viscous damping associated with the walls, while k denotes the
structural stiffness of the building. For more details of the model see [10].

Let us consider a control input of the form u = —k(t)x(t) and assume that b <« 1.
Substituting this control law into the Eq. (2) yields:

i)+ k(@)x() =0, x(0) = x,, x(0) = x,, 3)
where k(t) = (k + k(t))/m, is the time-dependent equivalent stiffness of the building-mass
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system, with units [N/m]. As we can see, this model corresponds to the form of Eq. (1). By
appropriate manipulation of the model, we identify k(t) = k(t) expecting to reproduce the same
behavior reported in [1]. However, the experimental results show discrepancy in the controller
response. The switching is not instantaneous, contrary to the idealized assumption. The motion of
the mass m, remains subject to the physical constraints of the experiment, which inherently
introduce short transition intervals between the stiffness states. This phenomenon is illustrated in
Fig. 2, the switching between the minimum and maximum values of k(t) occurs over a finite
duration rather than abruptly. This duration is relatively short, but this time can increase whether
the experimental conditions change, for instance, if the mass m. has to increase its travel or a
higher friction.

u(t)
—
mc
3 (o) Mt

Fig. 1. Single-story building model

0 085 17 255 34 425 t

Fig. 2. Experimental data of k(t)

These observations motivate an analysis of the system in which the stiffness switching is
non-instantaneous. We propose the model depicted in Fig. 3, where the stiffness function k(t)
alternates periodically between two values k., and kp,;,, but with finite rising and falling
transitions. These rises and falls are assumed to be linear in a small-time interval. The resulting
model no longer corresponds to a purely piecewise-constant system, but rather to a continuous,
piecewise-linear periodic system. Therefore, the central problem addressed in this work is the
characterization and analysis of a linear oscillator with non-instantaneous, linearly varying
stiffness switching.

3. Preliminaries

Let us consider Eq. (3). The solutions of Eq. (3) depend directly on the stiffness function k(t).
Two representative cases are distinguished below.

3.1. Case 1. Constant stiffness
If k(t) is any value ky,qx, Kmin > 0, the Eq. (3) reduces to the classical linear oscillator
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equation:

@) +kx(t) =0, x(tg) = xq, x(ty) = Xo. 4)

kmam

AA
4.

1
it1y ‘i A tivg! 1lita
R SR
1 [}

Fig. 3. Non-instantaneous switching of k(t)

The solution is well known and can be expressed as:

(x(t)) _ cos(Vk(t — ty)) %sin(\/ﬁ(t —t)) xo)
*®) —\/Esin(\/ﬁ(t - to)) cos(\/E(t - to))

Xo

while the transition matrix is given by:

COS(\/ kmax (tl - tO)) sin(\/ kmax(tl - tO))
— kmaxSin(\/ kmax(tl - to)) COS(\/ kmax(tl - to))

3.2. Case 2. Linearly varying stiffness

1

CD(tO' tl) =

If k(t) varies linearly with time, that is, k(t) = at + 8, where a and 8 are real constants. If
a > 0, we have a transition from k,,;;, t0 Kpqy. Conversely, if @ < 0, then the transition is from
Kimax 10 Kimin. Substituting this expression into Eq. (3), we obtain:

@)+ (at+p)x(t) =0,  x(t)) =x0,  x(to) = o )

This equation no longer admits trigonometric solutions and belongs to a class of
non-autonomous differential equations. To simplify Eq. (5), let us introduce the change of
variable:

7(t) = — (at + p)/a?/?,

where 7 is a non-dimensional scaled time transformation which transforms the equation into the

standard form of the Airy equation:

d?x(7)
dt?

—1(t)x(r) =0, x(19) = X, x(1y) = —%o/a/3, (6)

where 7(0) = 7,. The solution to Eq. (6) can be expressed as a combination of the Airy functions
Ai(t) and Bi(t) (for details see [11]):
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x(t) = GAI(t(®) + C,Bi(z()).
The constants C; and C, are determined by imposing the initial conditions:
ClAl(To) + CzBl(To) = xo,
X
C,Ai'(ty) + C,Bi' (1) = — —>

al/3

Solving the system of equation, we have:
Ci=m [xOBL (7o) + Bl(TO)]

C2 =—-T _OlAl(To) + oni’(TO)l.

a3

The fundamental matrix is given by:

iy~ [ GO Bi(z(£))
= m34i'(z(t)) mY3Bi'(x(D)))
and the transition matrix is @ (¢, ty) = Y)Y 1(¢y).
The two cases analyzed above establish the foundational elements for constructing the

complete solution of Eq. (3) under a piecewise-defined stiffness function k(t). From here we
construct a solution for the differential Eq. (3) in the Carathéodory sense.

4. Results

We assume that the function k(t) is periodic and defined as follows (see Fig. 3):

ki(t) = kmax t € [t tieal,
k(t) = ky(t) = —mt + m[i(1 + A) + 1]A + kg, t € (tis1, te), ™
k3 (t) = kmin' te [ti+21 ti+3]l

k4(t) =mt — m[(l + 1)(1 + A) + 1]A + kmin: te (ti+3' ti+4)'

where m = W fori = 0,1,2, ... and a small parameter A € (0,1).

Once defined k(t), we can obtain the corresponding transition matrix for each interval as
follows.

Interval [ty t;). In this case k(t) =k,(t) =kmax and Eq. (3) reduces to
(@) + k ()x(t) =0, x(ty) = xg, x(ty) = X,. The transition matrix from t, to to + A = t; is:

c0S(\/Kmaxh sin(y/ Kmax
D, (to, t) = ( ) V Kmax ( )

—MSin(MA) cos(mA)

X1
and we have ( ) ®, (to, ty) ( )
—Interval [ty,t;). Here k(t) = k,(t) = —mt + m[i(1 + 2) + 1]A + kypqr. Then Eq. (3)
becomes X(t) + k,(t)x(t) = 0, x(t;) = x4, x(t;) = x4.
The corresponding fundamental matrix is:
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Ai(t(t)) Bi(z(t))
#i(6) = (m1/3Ai'(T(t)) m1/3Bi'(T(t)))'

where 7(t) = —k,(t)/m?/3.
The transition matrix is from t; to &, = t; + AA is @, (¢, t,) = W1 (t)¥P71(t;) and
X2\ X1
(552) = @, (ty,t;) (x1)
—Interval [t,,t3). For k(t) = k3(t) = kpin, we have X(t) + k3(£)x(t) = 0, x(t,) = x5,
x(t;) = X,. The transition matrix in the interval is:

1
cos(1 / kmmA) sin(, / kmmA)

D3 (t,, t3) = ki

Y kminSin(V kminA) COS( v kmmA)

X3\ _ X2
and (x3) = D;(t,, t3) (xz)
—Interval [t3,t,). Finally, k(t) =k,(t) =mt—m[(i+ 1A+ A1)+ 1]A+ k. The
fundamental matrix is:

Ai(7) Bi(7)
—m34i' (1) —m1/3Bi’(T))'

w0 = (

where T(t) = _k4(t)/m2/3 Then ¢)4(t4, t3) = lpz(t4)lp2_1(t3)
Using the Airy Wronskian identity W(Ai, Bi) = 1/m, it follows that det(¥;(¢)) =

ml/3

det(‘Pz (t)) == which is constant in time. This constant determinant is explicitly taken into

account when computing Wyl(t;) and W;!(t;), ensuring correct normalization in the
construction of the transition matrix.
Due to the periodicity of k(t), the procedure can be repeated identically for any number of
. T X,
periods T = 2(1 + A)A. Consequently, (z&%) = @, (ty, t3)D5(ts, t,) P, (t, t,) P, (Lo, t1) (552)'
Defining the matrix:

D(T) = Dy(ty, t3)P3(ts, t2) P, (tg, t) Py (to, t1), ®

known as the monodromy matrix, the evolution after n periods satisfies:
x(nT)) _ n (%0
(x(nr) = (eI (3,) ©

The eigenvalues of ®(T), denoted by p are the Floquet multipliers, which determine the
stability of the system. The stability criterion is as follows: If |p| < 1 for all Floquet multipliers,
then the solution is asymptotically stable. Unstable solutions are classified according to the nature
of the dominant Floquet multiplier. A positive real multiplier (0,4, > 1) indicates a period-T
instability; a negative real multiplier (p,,4, < —1) corresponds to a period-2T instability; and a
complex conjugate pair with amplitude larger than one |p4, | > 1 indicates a parametric
resonance characterized by oscillatory, multi-periodic growth.

This classification is used throughout the numerical analysis presented in Figs. 4-6. The time-
domain responses in Figs. 4 and 5 were obtained via numerical integration using a
Runge-Kutta 4(5) adaptive scheme, whereas the stability chart in Fig. 6 was computed by
evaluating the spectral radius of the monodromy matrix associated with one full switching period.
All simulations and calculations were conducted in MATLAB R2025b. The numerical results
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correspond to the parameter sets listed in Table 1. Note that the system response can be either
stable or unstable depending on the selected parameters: for the stable case, the maximum Floquet

multiplier is | pyax| = 0.9211, whereas for the unstable case |pyq,| = 1.3402.

Table 1. Parameters simulation
Parameter | Stable | Unstable | Stable

Kpnax 15 15 1.5

Kpin 1 1 1
A 20 20 10
2 0.01 0.04 0.04

|Pmaxl | 0.9211 | 1.3402 | 0.6962

T T T T T T T

100 200 300 400 500 600 700 800
time

Fig. 4. Stable numerical solution x(t) when A = 20 and 4 = 0.01

900

100 200 300 400 500 600 700 800

Fig. 5. Unstable numerical solution x(t) when A =20 and 1 = 0.04

900

At first glance, it might appear that increasing the value of A lead to a unstable solution, since
changing A from 0.01 to 0.04 results in a transition from stable to unstable behavior. However,
this trend does not hold globally in the parameter space: when we change A from 20 to 10 keeping
A =0.04, the solution becomes stable again, with |p,,.| = 0.6962. Fig. 6 presents a 3D map of
the maximum Floquet multiplier as a function of the parameters (A, 4). The contour plot included
in the same figure highlights the stability boundary defined by |ppq.| = 1. Regions below this
contour correspond to asymptotically stable solutions, while regions above it correspond to

instability.

As illustrated in Fig. 7, the parameter plane exhibits a structured organization of dynamical
responses. A large stable region (blue) is separated from a domain of period-T instability (red),
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while the emergence of parametric resonance (green) forms well-defined resonance tongues. This
demonstrates that even small variations of the parameters may lead to a sudden transition from
stable motion to strongly amplified oscillations.

22

o

A
b) Contour map: |ppax] =1
Fig. 6. Dependence of |p;,q, | on the parameters A and 1

0 5 10 15 20 25 30
A

Fig. 7. Instability classification: blue — stable; red — Period-T instability; green — parametric resonance

The stability transitions observed in the (A,A)-plane have direct relevance for real
vibration-control systems in which the stiffness is periodically modulated, either intentionally
(e.g., parametric controllers) or unintentionally (e.g., structural degradation or load fluctuations).
In this context, the appearance of alternating regions of stability and instability provides a practical
guideline for controller design: increasing the modulation amplitude 4 does not necessarily
destabilize the system, and the effect critically depends on the (A, A) parameters interaction.

The parameter A does not merely represent a small perturbation of the excitation profile; rather,
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it controls the spectral content of the parametric modulation k(t). When A =0, the
piecewise-constant excitation has a Fourier series rich in harmonics. Increasing 4 introduces a
linear ramp that effectively acts as a low-pass filter, attenuating the higher-order harmonics of the
excitation.

Overall, the results highlight that effective parametric control requires not only tuning the
amplitude of stiffness variation but also its timing. The Floquet multipliers provide a quantitative
indicator for selecting safe operating regions and preventing undesired transitions to exponentially
growing oscillations.

Finally, a closed-form analytical approximation of the transition matrices may be derived by
replacing the Airy functions by their asymptotic expansions for large positive and negative
arguments. Such an approach would lead to perturbative expressions for the monodromy matrix,
potentially yielding an approximate analytical stability condition similar to the
Whittaker-Ince-Straus relation in the Mathieu case. However, the present study explores
parameter regimes where the arguments of the Airy functions are not asymptotically large, and
therefore we evaluate @, and @, numerically to ensure uniform accuracy in the entire stability
map.

5. Conclusions

The analysis of Floquet multipliers as a function of the parameters A and A shows a structure
of alternating bands of stability and instability (Arnold tongues), characteristic of Hill-type
systems. As A increases, recurrent regions of parametric resonance are observed, where small
variations in periodicity cause transitions between stable and exponentially growing solutions. On
the other hand, the parameter A regulates the extension of the temporal variation of k(t); small
values produce stable, quasi-harmonic behavior, while large values introduce instabilities by
increasing the influence of the linear temporal variation regions. In these intervals, the solutions
are expressed by Airy functions, the combination of which determines whether the response is
attenuated or amplified between periods. Overall, the results show that the stability of the system
depends on the balance between the periodicity imposed by A and the parametric modulation
controlled by 4, mediated by the transitional dynamics represented by the Airy functions.

Although the complete formulation of the unforced mechanical system possesses an
underlying Hamiltonian structure, the approximation b < 1 used in this study does not explicitly
preserve that property. Nevertheless, this reduction isolates the dominant mechanism responsible
for stability loss, and the Floquet spectrum obtained numerically shows that any departure from
exact Hamiltonian symmetry is of higher order and does not alter the onset or nature of the
observed instabilities.

We acknowledge that the prescribed piecewise-linear profile for k(t) constitutes an idealized
representation of actuator-driven stiffness modulation. This formulation was adopted because it
enables an analytically tractable characterization of the transition matrices and the resulting
monodromy matrix, allowing us to isolate and study the specific effect of finite transition time on
stability. While more realistic actuator-coupled models may introduce additional dynamical
effects that are outside the scope of the present work, we expect the qualitative trends reported
here to remain relevant. Extending the analysis to more general transition laws represents a natural
continuation of this line of research.
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