Published: 30 September 2011

Influence of photogrammetric dynamic movements of non – metric camera on the accuracy results in digital images processing

Jurate Sužiedelyte-Visockiene1
Aušra Pranskeviciute2
Views 0
Reads 0
Downloads 1185


Real-time photogrammetry is used for the registration and control of object structure and deformations, registration of dynamic processes, particularly, in the architectural heritage objects. The main product of the photogrammetry is a three-dimensional (3D) data – real world vision at the time the images are acquired with fixed viewing angles. In order to achieve this result a lot of digital photogrammetric workstations (DPW) were designed. A wide range of digital imagery such as scanned aerial film frames, images from digital aerial cameras as well as images from various satellite sensors could be processed using DPW. The requirements of processing, the algorithms of the photogrammetric software systems for the dynamic line-by-line acquisition processing of digital images in the photogrammetric way differ according to the applications. Therefore, it is important to test the capabilities and data accuracy of more than one digital photogrammetric system. The images of the research object were taken by a digital nonmetric camera Canon EOS 1D Mark III. The quality of images depends on the camera optical system errors (calibration parameters) and camera stability - dynamic movements during images exposure. Thus, it is necessary to test calibration results and camera positions during the image exposure time. In this case, the camera was recalibrated and the new calibration parameters were checked during the images processing. Values that define camera stability and dynamics were determined. Close-range digital images were processed – the triangulation procedure was accomplished by using digital photogrammetric software PhotoMod and Inpho as well as DPW system Bluh. The accuracy of triangulation has been tested and compared with the manufacturer’s software.

About this article

05 June 2011
05 September 2011
30 September 2011
digital camera
calibration parameters
standard deviation
dynamic processes