Published: 13 October 2022

The importance of a realistic leakage evaluation to support public awareness and acceptance for carbon capture and storage

Andreas Busch1
1Heriot-Watt University, Lyell Centre, Research Avenue S, Edinburgh, Scotland, United Kingdom
Views 7
Reads 3
Downloads 224

Abstract

Carbon Capture and Storage is not only highly recommended by the IPCC as a mechanism to significantly lower carbon emissions to the atmosphere, it is now also gaining traction in terms of large-scale implementation. Its importance is increasing in many parts of the world to directly decrease emissions from industrial sources, but also to lower the carbon footprint of blue hydrogen production.

With most CCS projects being planned for offshore locations, public acceptance is less of a determining factor than it used to be 10-20 years ago, where discussions were rather for onshore locations. CO2 leakage has always been a risk highlighted in the public debate, while no or minimal leakage has been reported for current CCS projects worldwide. However, as scientific community, we need to realistically highlight the risk of leakage across sealing units for CO2 stored to inform various stakeholders like regulators, the public and of course also operating companies.

Caprock leakage needs to be studied across various length and time scales, considering the undisturbed matrix as well as fracture networks and faults; we need to consider advective and diffusive flow and transport and incorporate mineral alterations, potentially leading to changes in hydraulic or mechanical properties.

This talk will highlight the current state of research, advancements and future research required for a realistic evaluation of caprock leakage. It will be based on past research related to matrix transport as well as current research focusing on single and multiphase flow along faults and fractures.

About this article

Received
Accepted
08 August 2022
Published
13 October 2022
Keywords
caprocks
matric
faults
public acceptance
advective and diffusive transport