Published: 31 March 2012

A survey of Hopf bifurcation analysis in nonlinear railway wheelset dynamics

Hamid M. Sedighi1
Kourosh H. Shirazi2
Views 2
Reads 2
Downloads 1034


This article attempts to analyze the Hopf bifurcation behavior of a railway wheelset in the presence of dead-zone and yaw damper nonlinearities. A model that is more precise than Yang and Ahmadian is investigated. Using Bogoliubov-Mitropolsky averaging method and critical speed, the amplitude of the limit cycle in the presence of the mentioned nonlinearities is taken into consideration. To solve these nonlinear equations analytically, the integration interval has been divided into three sub-domains. Two-dimensional bifurcation diagrams are provided to illustrate the mechanism of formation of Hopf bifurcation. These diagrams can be used for design of stable wheelset systems.

About this article

07 December 2011
14 February 2012
31 March 2012
Hopf bifurcation
rail wheelset
discontinuous nonlinearity
analytical approach